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Abstract—This paper traces the development/evolution of three
of our recently proposed MPEG coded video traffic models, that
can capture the statistical properties of MPEG video data. The
basic ideas behind these models are to decompose an MPEG
compressed video sequence into several parts according to mo-
tion/scene complexity or data structure. Each part is described
by a self-similar process. These different self-similar processes
are then combined to form the respective models. In addition,
Beta distribution is used to characterize the marginal cumulative
distribution (CDF) of the self-similar processes. Comparison
among the three models shows that the latest model (called the
simple IPB composite model) is the most practical one in terms of
accuracy and complexity. Simulations based on many real MPEG
compressed movie sequences, includingStarWars, have demon-
strated that the simple model can capture the autocorrelation
function (ACF) and the marginal CDF very closely.

Index Terms—ARIMA, autocorrelation, motion pictures,
MPEG, self-similar process, traffic modeling.

I. INTRODUCTION

T HE TREND to transmit videos over a network is
emerging. Traffic models are important for network de-

sign, performance evaluation, bandwidth allocation, and bit-rate
control. It was observed, however, that traditional models fall
short in describing the video traffic because video traffic is
strongly autocorrelated and bursty [1]. To accurately model
video traffic, autocorrelations among data should be taken
into consideration. A considerable amount of effort on video
modeling has been reported that include: Markov Modulated
Rate Process (MMRP) [2], Discrete Auto-Regressive Process
[DAR (1)] [3], Fluid Models [4], Markov-Renewal-Modulated
transform expand sample (TES) Models [5], Long Range De-
pendency (LRD) models or Self-Similar models [6],
input process models [7], GBAR Model [8], and Markov chain
model [9].

Markov-Renewal-Modulated TES models are used to model
motion JPEG encoded picture sequence. One of the drawbacks
of the TES approach is that the ACF of a TES process for lags
beyond one cannot be derived analytically. The ACF can only
be obtained by searching in the parameter space, and thus good
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results can hardly be guaranteed. The ACF of MPEG encoded
video sequence is quite different from that of JPEG sequence
as shown in Figs. 1 and 2. Thus this method fails to capture the
second-order statistics of MPEG sequences.

The input process model is a compromise between
the LRD and short range dependence (SRD) models [7]. Sim-
ulation results were found to be better than those of a self-sim-
ilar process when the switch buffer is relatively small. Better re-
sults than those of DAR (1) model were found when the buffer
size is large. The results were obtained from JPEG and MPEG-2
I-frame sequences.

The MPEG video model presented in [9] is a Markov chain
model based on the Group of Pictures’ (GOP) level process
rather than the frame level process. This has the advantage of
eliminating the cyclical variation in the MPEG video pattern,
but at the expense of decreasing the resolution of the time scale.
Typically a GOP has duration of a half second, which is con-
sidered long for high speed networks. Of particular interests in
video traffic modeling are the frame-size distribution and the
traffic correlation. The frame size distribution has been studied
in many existing works.

Krunz [10] proposed a model for MPEG video, in which,
a scene related component is introduced in the modeling of I
frames, but ignoring scene effects in P and B frames. The scene
length is i.i.d. with common geometric distribution. I frames are
characterized by a modulated process in which the local varia-
tions are modulated by an Auto-Regressive (AR) process that
varies around a scene related random process with log-normal
distribution over different scenes; i.e., two random processes
were needed to characterize I frames. The sizes of P and B
frames were modulated by two i.i.d. random processes with
log-normal marginals. This model uses several random process
and need to detect scene changes, thus complicating the mod-
eling process.

In this paper, we analyze and compare three of our recently
developed MPEG video traffic models that can capture the LRD
characteristics of video ACF [11]–[13]. The basic ideas behind
these models are to decompose an MPEG compressed video se-
quence into several parts according to motion/scene complexity
or data structure; each part described by a self-similar process.
These different self-similar processes are then combined in re-
spective fashion to form the models. In addition, Beta distribu-
tion is used to characterize the marginal cumulative distribution
(CDF) of the self-similar processes. Comparison among three
models leads to the observation that the simple IPB composite
model is preferred in terms of accuracy and simplicity. Simu-
lations on many real MPEG compressed movie sequences in-
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Fig. 1. ACF of MPEG compressed videoStarWars.

Fig. 2. ACF of JPEG compressed videoStarWars.

cludingStarWarshave demonstrated that our new simple model
can capture the LRD of ACF and the marginal CDF very well.
The rest of the paper is organized as follows. In Section II,
empirical data and their ACFs are described. Section III dis-
cusses the decomposition of data according to motion/scene
complexity or data structure. Modeling of each part and com-
bination of the decomposed parts are discussed in Section IV.
Using Beta distribution to model CDF of the video traffic is pre-
sented in Section VI. Experiments are discussed in Section VII.
Network performance in terms of the average queue size is pre-
sented in Section VIII. Concluding remarks are given in Sec-
tion IX.

II. EMPIRICAL MPEG ENCODEDDATA AND THEIR ACFS

The MPEG coded data ofStarWars1 were used as the
representative of the empirical data among many MPEG
coded video sequences. TheStarWarsvideo sequence con-
tains scenes ranging from low complexity/motion to those
with high and very high actions. The data file consists of
174 136 integers, whose values are frame sizes (bits per frame).
The movie length is approximately two hours at the frame rate
of 25 frames per second. The frames were organized as follows:

1The MPEG coded data were the courtesy of M. W. Garrett of Bellcore and
M. Vetterli of UC Berkeley.
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IBBPBBPBBPBB IBBPBB…, i.e., 12 frames in a Group
of Pictures (GOP). I frames are those which were coded by
using intraframe coding method (exploit the spatial redundancy
within a picture), P frames are those which were coded by using
interframe coding technique (exploit the temporal redundancy
within a video sequence), and B frames were also coded by
interframe coding technique except that they are predicted via
both forward and backward methods.

For a stationary process with
mean and variance , the autocorrelation function2 of is
defined by:

(1)

The ACF of the frame size of the MPEG codedStarWarsis
shown in Fig. 1, and it is quite different from that of JPEG coded
StarWars(see Fig. 2). The ACF of MPEG coded data depends
on the GOP pattern, and in principle always looks like Fig. 1
if the same GOP pattern is used for the whole sequence. From
Fig. 1 we note that the ACF fluctuates around an envelope, re-
flecting the fact that, after the use of motion estimation and mo-
tion compensation techniques, the dependency between frames
is reduced. This characteristics should be taken into considera-
tion in modeling MPEG coded video sequences.

III. D ECOMPOSITION OFMPEG DATA

The fluctuation of the ACF as shown in Fig. 1 has convinced
us that such fluctuation can hardly be captured by a single
random process, and has further led us to the intuitive belief that
the data should be decomposed into several parts, each captured
by a random process. This section describes the intuition that
has resulted in the three proposed decompositions.

A. Decomposition According to Motion/Scene Complexity

With the conjecture that the fluctuation of the ACF of MPEG
coded video data was caused by motion/scene complexity and
the GOP structure, we proposed to divide the traffic data into
three different parts—inactive part, active part, and the most ac-
tive part, inspired by [2]. Suppose is the number of bits in
the th frame. The video traffic can be classified as follows:

1) If , then belongs
to the noninactive part; otherwise, belongs to the inac-
tive part, where is a threshold value.

2) Similarly, the noninactive part can be classified into the
active and most active part.

Taking these three data sets as three different random pro-
cesses, we can calculate their ACFs.

B. Decomposition According to MPEG Data Structure

Although the model based on the decomposition introduced
above can model each part of the video traffic very well, it
cannot capture the ACF of the whole sequence very well. This
slight discrepancy highly depends on how one defines mo-
tion/scene complexity and has thus inspired us to decompose
the MPEG data according to the MPEG data structure.

2In reality, (1) is known as the autocovariance function rather than the au-
tocorrelation function. The difference between the two is a constant offset of
(�=�) . However, (1) has been interchangeably referred to either in the litera-
ture for video traffic modeling.

Specifically, in the second proposed model, we decompose
the MPEG traffic into 10 sub-sequences ,

, and . consists of all I frames, consists of
all P frames, the first B frames in all GOPs constitute , the
second B frames in all GOPs constitute , and so on.

Although the above-described model is more accurate than
the first one, it uses eight random processes to model eight dif-
ferent B frame subsequences. Since B frames are usually much
smaller than I and P frames, and the B frames play less impor-
tant role than I and P frames. The modeling of B frames may not
be as critical as that of I and P frames in estimating network per-
formance [9]. So we can further simplify this model. Through
careful analysis, we found the B frames have similar properties
in terms of the coding mechanisms, and so we combine all the B
frames into one subsequence, resulting in three sub-sequences

, and . As before, consists of all I frames,
consists of all P frames, but, now, consists of all B frames.

IV. M ODELING EACH PART AND COMBINING PARTS TOOBTAIN

MPEG CODED TRAFFIC MODELS

To obtain a model that can capture the ACFs of MPEG data,
we model each part by a self-similar process and then combine
these processes in an appropriate fashion. In this section, the uti-
lization of the self-similar processes is justified. Three different
ways in combining, leading to three different models, are de-
scribed.

A. Markov Modulated Self-Similar Processes Model

The ACF of each self-similar process is very different from
that of the original sequence. For the sake of brevity, only the
ACF associated with the active part is shown in Fig. 3. The
fluctuation is no longer that drastic. We have used , ,
and to approximate the ACFs of a self-similar process,
a Markov process and an input process, respectively.
From Fig. 3, it is quite clear that is a better approxima-
tion of the ACF of the active part of the MPEG codedStarWars
empirical data than the other two. We therefore use self-similar
processes , , and to model these processes. Using the
least squares fit, we obtained , and
for the active, inactive, and most active part, respectively. The
corresponding Hurst parameters for these self-similar processes
are , , and , respectively.

To model the whole data set, we need a process to govern the
transition among the processes, , and obtained above.
Markov chain is adopted because of its simplicity.

Using Markov chain as the dominating process, our model
for MPEG video traffic can be described by the state diagram
shown in Fig. 4, where states , , and representing the
inactive part, the active part and the most active part, respec-
tively, correspond to the three respective self-similar processes.
At state , bit rates are generated by process. The transition
probability from to can be estimated from the empirical
data as follows:

(2)

where is the total number of times that the system goes
through states , is the number of times that the system
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Fig. 3. ACF of the active part ofStarWars.

Fig. 4. A Markov modulated self similar process for modeling MPEG videos.

make a transition to state from state . For theStarWars
video, the following transition matrix

is obtained. This matrix is useful for the synthesis of the video
traffic.

B. Structurally Modulated Self-Similar Processes Model

Since the technique used to classify inactive, active and very
active parts of MPEG video traffic adopted in the first model
(refer to Section III-A) is rather crude, it is conceivable that the
performance of the first model (decomposing video into three
parts based on motion/scene complexity) can be improved
significantly with an advanced technique which can accurately
identify motion/scene complexity. This task is by no means
easy, and is a hot research subject in the field of computer vision
and video processing. On the other hand, the GOP structure of
MPEG data is universal regardless of motion/scene complexity.
Therefore, the decomposition according to the MPEG data

structure is practical and straightforward. In the second model,
we decompose the MPEG traffic into several subsequences
based on the GOP structure, .
consists of all I frames, consists of all P frames, the first B
frames in all GOPs constitute , the second B frames in all
GOPs constitute , and so on. We have also used , ,
and , corresponding to the ACFs of a self-similar process,
a Markov process, and an input process, respectively,
to approximate ACFs of these processes. For the sake of
brevity, only the approximation for is shown in Fig. 5.
We have obtained similar results for . It is
quite obvious that self-similar processes are the better choice,
justifying our usage of self-similar processes for modeling
these data.

Using the least squares fit, , , ,
, , , , , , and are

derived for , , , , and , respectively, for
StarWars. In this model, we combine , , , ,
and in a manner similar to the GOP pattern to obtain the
model for the MPEG coded traffic. This model can be used to
more accurately generate traffic data than the first one.

Although the model described above is more accurate than
the first one, it uses eight self similar random processes, one
for each of the different B frame subsequences. So, we can fur-
ther simplify this model by modeling each of the three sub-se-
quences , and as discussed in Section III-B by a self-
similar process, hence referred to as the simple IPB composite
model. To show that the self-similar process is a better choice
for the simple model, we have conducted the following exper-
iment. That is, we use , , and , corresponding
to the ACFs of a self-similar process, a Markov process, and
an input process, respectively, to model I, P, and B
frame sub-sequences of 18 commonly used MPEG coded video
sequences. Designing and conducting such a set of experiments
in justifying the utilization of self-similar random processes to
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Fig. 5. Approximation for ACF of P frames by: Self similar,M=G=1, and Markov processes.

TABLE I
LEAST SQUARE ERRORSOBTAINED BY SELF-SIMILAR (SS) PROCESS, MARKOV, AND M=G=1

characterize I, P, and B frame subsequences is part of the contri-
bution of this article. In fact, P and B frame subsequences were
not modeled by the process [7] as mentioned in Sec-
tion I. Table I shows the least squares errors between the ACF of
the empirical data and that of the approximated ACF using these
three random processes for each of the 18 video sequences. The
average mean square errors are shown at the bottom of the table.
Note that the self-similar process is the best among the three

random processes. For most of the video sequences, it appears
that the self-similar processes are the better choices for I, P, and
B frames. Modeling these three parts in a way similar to the
GOP structure leads to our simple IPB composite model. The
synthesized data generated by our proposed simple model and
its ACF are very close to the empirical data and its ACF. The
performance of this simple model is further discussed in Sec-
tions VII and VIII.
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TABLE II
ESTIMATED PARAMETERS FOR THESIMPLE IPB COMPOSITEMODEL USING LEAST SQUARESFIT

Fig. 6. CDF of I frames and its approximation by Beta distribution.

V. GENERATING SYNTHETIC MPEG STREAMS BASED ON THE

SIMPLE MODEL

To synthesize video traffic using our simple IPB composite
model requires a self similar traffic generator. There are several
options to generate the self similar traffic. Two of the most
commonly used methods are the exactly self similar fractional

Gaussian noise (FGN) [14] and asymptotically self similar frac-
tional autoregressive integrated moving-average (F-ARIMA)
process [14]. F-ARIMA [6], [15], [16] can be used to match
any kind of ACF, and is thus adopted here to generate the self
similar random process. The algorithm to generate F-ARIMA
process is given in the Appendix.
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Fig. 7. CDF of P frames and its approximation by Beta distribution.

Fig. 8. CDF of B frames and its approximation by Beta distribution.

Video traffic can be synthesized by combining of the three
obtained self similar processes in a way similar to the GOP
structure. Table II shows the estimated parameterfor different
video traces using the least squares fit.

VI. M ODELING CDF OF I, P, AND B FRAMES USING THEBETA

DISTRIBUTION

As mentioned at the beginning, the CDF is another important
statistics for video traffic modeling. We use Beta distribution

[17] to model the marginal distributions of these processes. The
marginal distribution of a Beta distribution process has the fol-
lowing form

otherwise.
(3)
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Fig. 9. Traffic data generated by our model forStarWars.

Fig. 10. The empirical traffic trace forStarWars.

where and are the shape parameters, and is the do-
main where the distribution is defined. Beta distribution is quite
versatile and can be used to model random processes with quite
different shapes of marginal distributions. The following for-
mulae are used to estimate the parameters of Beta distribution,

and :

(4)

(5)

where

(6)

(7)

and is the number of data in the data set.
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Fig. 11. The first hundred samples of the traffic data generated by our model.

Fig. 12. ACFs of the empirical trace and our traffic model forStarWars.

The parameters for the simple IPB composite model,and ,
are listed in Table II for different video traces. The simulations
demonstrate that the Beta-distribution follows the CDF very
closely in our simple model. The CDF of I, B, and P frames and
their approximations by Beta distribution of the simple model
are shown in Figs. 6–8.

VII. EXPERIMENTS AND DISCUSSIONS

The performance of our simple IPB composite model on sev-
eral traces is evaluated. Traces generated by the simple IPB
composite model are shown in Figs. 9 and 11 with large and
small lags. For comparison, the corresponding empirical trace is
shown in Fig. 10. From Figs. 9 and 10, we note that the simple
IPB composite model can generate traffic, which are similar to

the empirical data trace. In the empirical data trace, the size of
I frame is often larger than the size of P frame and B frame,
implying that a large frame is often followed by several small
frames. It is shown in Fig. 11 that the traffic generated by our
model can capture this kind of characteristics. Figs. 12 and 13
show the ACF of the empirical trace and synthesized data using
the simple IPB composite model; we can see our simple model
follows the ACF very well. For simulations on different video
traces such as News, Race, SoccerWM and Talk2, similar re-
sults are achieved. So the simple model, though simpler than
the second model, is almost as accurate as the second model in
tracking the ACF of MPEG data. ACF is a very important factor
from the networking perspective, because traffic autocorrelation
has an important impact on queuing performance. Li and Hwang
[18] examined the queue response to various input correlation
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Fig. 13. ACFs of the empirical trace and our traffic model for video traceAtp.

Fig. 14. Average queue size at different service rates for synthesized data and empirical trace.

properties on the basis of input power spectrum in discrete-fre-
quency domain and concluded that the mean queue size is dom-
inated by the low frequency power in the power spectrum. High
positive correlation will introduce more input power in the low
frequency band, thus resulting in a larger mean queue size. The
larger the autocorrelation, the larger the mean queue size. The
larger the mean queue size will introduce longer delay and larger
cell loss, thus deteriorating the Quality of Service (QoS). The
validity of network simulations depends on the accuracy of the
traffic model, which in turn depends on how close the video
model has captured the statistics of the real video traffic espe-
cially the autocorrelation. Our simple IPB composite model fol-
lows the ACF very well, and thus it can play an important role

for designing and testing future communication networks that
will carry multiplexed video traffics.

VIII. Q UEUING PERFORMANCE

While a good traffic model is expected to capture statistical
properties of the underlying empirical data trace, the ultimate
goal is to predict network performance accurately for the pur-
pose of allocating network resources. The queuing performance
should be deemed as a crucial factor that determines the appro-
priateness of a traffic model [7]. Therefore, traffic models are
commonly used to predict the queuing performance at a switch;
the appropriateness of a model is also determined by its ability
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to accurately predict the actual queuing behavior. To further
verify the appropriateness of our proposed simple model, we
have studied its queuing performance and compared it with that
of the empirical trace.

The system used here is a single server first-in first-out
(FIFO) queue with infinite buffer size. Our synthetic traffic
was used as a source traffic to the single server queue. The
performance is compared with the same system using the
empirical trace as the source traffic. A single arrival process is
assumed in our simulation, and its service rate is assumed to
be constant. We conducted the simulation on video trace Atp.
Fig. 14 shows the average queue size using the synthesized
data generated by our proposed simple model and the empirical
trace. From Fig. 14, there is a little difference in the average
queue size for both synthesized data and empirical trace with
different service rates. Thus, our simple model is accurate
enough for the purpose of evaluating network performance.

IX. CONCLUSIONS

In this paper, we have proposed a simple traffic model for
MPEG coded video streams. The simple model, which consists
of three self-similar processes, is successfully fitted to different
empirical video sequences. Simulation results showed that not
only the ACF of video traffic can be captured accurately, but
the GOP pattern can also be reproduced. This is a better traffic
model in the sense that it can not only capture the ACF and CDF
of video traffic, but the traffic generated by this model is also
more similar to the empirical trace. The queuing performance
in a single FIFO system with different service rates using our
proposed model is compatible with that using empirical data.
Thus our proposed simple IPB composite model, which is rather
accurate, can be adopted in network simulations.

APPENDIX

The following is the algorithm for generating the F-ARIMA
process [6], [16]:

1) Generate from a Gaussian distribution . Set
initial values .

2) For , calculate
iteratively using the following formulae

(8)

(9)

(10)

(11)

(12)

(13)

Finally, each is chosen from . In this way, we
obtain a process with ACF approximating to .

To generate a self-similar process approximately, the autocor-
relation function can be calculated in a recursive way as

(14)

where .
ACFs of F-ARIMA and FGN generated traffic are less

than for small . To compensate for the under-estimation
of ACFs of a self-similar process, (14) used to generate the
F-ARIMA traffic can be enlarged for small. New self-sim-
ilar traffic generators need to be devised so that more exact
self-similar traffic can be generated.

Distribution of these data is Gaussian. For data to be Beta
distributed, the following mapping can be used

(15)

where is a self-similar Gaussian process, is the cumu-
lative probability of the normal distribution, and is the in-
verse cumulative probability function of the Beta model.
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