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On Modeling MPEG Video Traffics
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Abstract—This paper traces the development/evolution of three results can hardly be guaranteed. The ACF of MPEG encoded
of our recently proposed MPEG coded video traffic models, that video sequence is quite different from that of JPEG sequence

can capture the statistical properties of MPEG video data. The as shown in Figs. 1 and 2. Thus this method fails to capture the
basic ideas behind these models are to decompose an MPEG -
compressed video sequence into several parts according to mo-s’econd'Order statistics of MPEG sequences.

tion/scene complexity or data structure. Each part is described ~ TheM /G /oo input process model is a compromise between
by a self-similar process. These different self-similar processesthe LRD and short range dependence (SRD) models [7]. Sim-
are then combined to form the respective models. In addition, jation results were found to be better than those of a self-sim-

Beta distribution is used to characterize the marginal cumulative . . . .
distribution (CDF) of the self-similar processgs. Comparison ilar process when the switch buffer is relatively small. Better re-
among the three models shows that the latest model (called the Sults than those of DAR (1) model were found when the buffer

simple IPB composite model) is the most practical one in terms of Size is large. The results were obtained from JPEG and MPEG-2

accuracy and complexity. Simulat_ions b_ased on many real MPEG |-frame sequences.

compressed movie sequences, includin§tarWars have demon-  The \PEG video model presented in [9] is a Markov chain

strated that the simple model can capture the autocorrelation . ,

function (ACF) and the marginal CDF very closely. model based on the Group of Pictures’ (GOP) level process
. . . rather than the frame level process. This has the advantage of

Index Terms—ARIMA, autocorrelation, motion pictures, Lo . SR .

MPEG, self-similar process, traffic modeling. eliminating the cyclical variation in the MPEG video pattern,

’ ’ but at the expense of decreasing the resolution of the time scale.
Typically a GOP has duration of a half second, which is con-
sidered long for high speed networks. Of particular interests in

|. INTRODUCTION video traffic modeling are the frame-size distribution and the

L . traffic correlation. The frame size distribution has been studied
HE TREND to transmit videos over a network IS, many existing works

1 emerging. Traffic quels are |mportant fo_r network de- Krunz [10] proposed a model for MPEG video, in which,
sign, performance evaluation, bandwidth allocation, and bit-rate T : .
cene related component is introduced in the modeling of |

" S
control. It was observed, however, that traditional models fall . : .
. I . , . __Trames, but ignoring scene effects in P and B frames. The scene

short in describing the video traffic because video traffic i

strongly autocorrelated and bursty [1]. To accurately modﬁﬁ”gth isi.i.d. with common geometric distribution. | frames are

. ) . Characterized by a modulated process in which the local varia-
video traffic, autocorrelations among data should be taken .
. : . ) ., tons are modulated by an Auto-Regressive (AR) process that
into consideration. A considerable amount of effort on video_ . .

varies around a scene related random process with log-normal

modeling has been reported that include: Markov Modulated =~ . : o
. . istribution over different scenes; i.e., two random processes
Rate Process (MMRP) [2], Discrete Auto-Regressive Process . .
. were needed to characterize | frames. The sizes of P and B
[DAR (1)] [3], Fluid Models [4], Markov-Renewal-Modulated . !
frames were modulated by two i.i.d. random processes with
transform expand sample (TES) Models [5], Long Range D% normal marginals. This model uses several random process
pendency (LRD) models or Self-Similar models [6],/G /oo 9 9 ) P

input process models [7], GBAR Model [8], and Markov chair?nd need to detect scene changes, thus complicating the mod-

model [9]. eling process.

Markov-Renewal-Modulated TES models are used to mod(?lIn this paper, we_analyze_and compare three of our recently
. . veloped MPEG video traffic models that can capture the LRD
motion JPEG encoded picture sequence. One of the drawba

S - . o .
of the TES approach is that the ACF of a TES process for Ia%aractenstms of video ACF [11]—[13]. The basic ideas behind

: : ese models are to decompose an MPEG compressed video se-
beyond one cannot be derived analytically. The ACF can on ; . . .
. L ence into several parts according to motion/scene complexity
be obtained by searching in the parameter space, and thus goo i ; L
or data structure; each part described by a self-similar process.
These different self-similar processes are then combined in re-
Manuscript received August 16, 2002; revised October 25, 2002. This W%‘gective fashion to form the models. In addition, Beta distribu-
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Fig. 1. ACF of MPEG compressed vid&tar\Wars.
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Fig. 2. ACF of JPEG compressed vid8tarWars.

cludingStarWarshave demonstrated that our new simple model Il. EMPIRICAL MPEG ENCODED DATA AND THEIR ACFS
can capture the LRD of ACF and the marginal CDF very well. The MPEG coded data oStarWars were used as the

The rest of the paper is organized as follows. In Section Pepresentative of the empirical data among many MPEG
empirical data and their ACFs are described. Section Ill disgqed video sequences. TiStarWarsvideo sequence con-
cusses the decomposition of data according to motion/scggfs scenes ranging from low complexity/motion to those
complexity or data structure. Modeling of each part and cony;th high and very high actions. The data file consists of
bination of the decomposed parts are discussed in Section1Y4 136 integers, whose values are frame sizes (bits per frame).
Using Beta distribution to model CDF of the video traffic is preThe movie length is approximately two hours at the frame rate

sented in Section VI. Experiments are discussed in Section V@F.25 frames per second. The frames were organized as follows:
Network performance in terms of the average queue size is pre-

S_emed in Section VIII. Concluding remarks are given in SeC-1the MPEG coded data were the courtesy of M. W. Garrett of Bellcore and
tion IX. M. Vetterli of UC Berkeley.
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IBBPBBPBBPBB IBBPBB..., i.e., 12 frames in a Group Specifically, in the second proposed model, we decompose
of Pictures (GOP). | frames are those which were coded by MPEG traffic into 10 sub-sequencel;, Xp, Xp,,
using intraframe coding method (exploit the spatial redundandyz, . .., and X z,. X consists of all | framesX p consists of
within a picture), P frames are those which were coded by usiaty P frames, the first B frames in all GOPs constitiig, , the
interframe coding technique (exploit the temporal redundansgcond B frames in all GOPs constitute;,, and so on.
within a video sequence), and B frames were also coded byAlthough the above-described model is more accurate than
interframe coding technique except that they are predicted e first one, it uses eight random processes to model eight dif-
both forward and backward methods. ferent B frame subsequences. Since B frames are usually much
For a stationary proces§ = {X,: n = 1,2, ...} with smaller than | and P frames, and the B frames play less impor-
meany and variancer2, the autocorrelation functiérof X is tantrole than I and P frames. The modeling of B frames may not

defined by: be as critical as that of | and P frames in estimating network per-
formance [9]. So we can further simplify this model. Through
r(k) = E[(Xy — /‘)(QXnJrk — “)]. (1) careful analysis, we found the B frames have similar properties
g

in terms of the coding mechanisms, and so we combine all the B

The ACF of the frame size of the MPEG codSthrWarsis frames into one subsequence, resulting in three sub-sequences
shown in Fig. 1, and itis quite different from that of JPEG coded 1, Xp and X . As before,X; consists of all | framesX p
StarWars(see Fig. 2). The ACF of MPEG coded data depend@@nsists of all P frames, but, now,z consists of all B frames.
on the GOP pattern, and in principle always looks like Fig. 1
if the same GOP pattern is used for the whole sequence. Frbfim M ODELING EACH PART AND COMBINING PARTS TOOBTAIN
Fig. 1 we note that the ACF fluctuates around an envelope, re- MPEG CGoDED TRAFFIC MODELS

flecting the fact that, after the use of motion estimation and MO-14 obtain a model that can capture the ACFs of MPEG data,

tion compensation techniques, the dependency between fra%@%odel each part by a self-similar process and then combine

Is reduced. This characteristics should be taken into COnSIOlet'i‘l"]lése processes in an appropriate fashion. In this section, the uti-
tion in modeling MPEG coded video sequences.

lization of the self-similar processes is justified. Three different
ways in combining, leading to three different models, are de-
scribed.

The fluctuation of the ACF as shown in Fig. 1 has convinced
us that such fluctuation can hardly be captured by a single Markov Modulated Self-Similar Processes Model

random process, and has further led us to the intuitive belief thatThe ACF of each self-similar process is very different from
the data should be decomposed into several parts, each captiret ot the original sequence. For the sake of brevity, only the

by a random process. This section describes the intuition tI}{ﬁF associated with the active part is shown in Fig. 3. The
has resulted in the three proposed decompositions. fluctuation is no longer that drastic. We have uged’, e=°*,

-8Vk i _simi
A. Decomposition According to Motion/Scene Complexity 2nde to approximate the ACFs of a self-similar process,
i , , a Markov process and af /G /oo input process, respectively.
With the conjecture that the fluctuation of the ACF ofMPEq‘Erom Fig. 3, it is quite clear that—* is a better approxima-
coded video data was caused by motion/scene complexity_ qm of the ACF of the active part of the MPEG codBtarWars

the GO.P structure, we pro_posed to d'_V'de the trafiic data 'ng?npirical data than the other two. We therefore use self-similar
three different parts—inactive part, active part, and the most Gocess es1, 55, andss to model these processes. Using the

tive part, inspired by [2]. Suppos(i) is the number of bits in least squares fit, we obtaingd= 0.3321, 0.3069, and0.4396

theith frame. The video traffic can be classified as follows: L - . .
. . . . for the active, inactive, and most active part, respectively. The
DI+ 1)/f(0) > T, i =2, 3, .., thenf(i + 1) belongs corresponding Hurst parameters for these self-similar processes
to the noninactive part; otherwisg(i + 1) belongs to the inac- e
P i+ 1) g are H = 0.8339, 0.8465, and0.7802, respectively.

tive part, wherel" is a threshold value. T del the whole d d h
2) Similarly, the noninactive part can be classified into the 0 model the whole data set, we need a process to govern the

active and most active part. transition among the processes s», andss obtained above.
Taking these three data sets as three different random pMfrkov chain is adopted because of its simplicity.

I1l. DECOMPOSITION OFMPEG DATA

cesses. we can calculate their ACFs. Using Markov chain as the dominating process, our model
for MPEG video traffic can be described by the state diagram
B. Decomposition According to MPEG Data Structure shown in Fig. 4, where state, S2, andS; representing the

Although the model based on the decomposition introducg&mtive part, the active part and the _most act_ivg part, respec-
above can model each part of the video traffic very well, Hvely, corres_pond to the three respective self-similar processes.
cannot capture the ACF of the whole sequence very well. THY StateS;, bit rates are generated by processThe transition
slight discrepancy highly depends on how one defines migrobability from S; to S; can be estimated from the empirical
tion/scene complexity and has thus inspired us to decomp&&ia as follows:
the MPEG data according to the MPEG data structure. Nij

(2)
2In reality, (1) is known as the autocovariance function rather than the au-

tocorrelation function. The difference between the two is a constant offset ofh N is th | b f ti h h
(11/o)>. However, (1) has been interchangeably referred to either in the lite®1€7€ [V; IS the total number of times that the system goes

ture for video traffic modeling. through statesS;, N;; is the number of times that the system
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Fig. 3. ACF of the active part dbtarWars

P13 structure is practical and straightforward. In the second model,
we decompose the MPEG traffic into several subsequences
@ P13 based on the GOP structur&;, Xp, XB,, XB,, -... X1
P3 consists of all | framesX p consists of all P frames, the first B
frames in all GOPs constitut¥ 3, , the second B frames in all
S GOPs constituté g, , and so on. We have also used’, e=#*,
% Y ande=#Vk, corresponding to the ACFs of a self-similar process,
a Markov process, and @i /G /oo input process, respectively,
to approximate ACFs of these processes. For the sake of
brevity, only the approximation foXp is shown in Fig. 5.
Py We have obtained similar results faf;, Xp,, XB,, .... Itis
quite obvious that self-similar processes are the better choice,
A Markov modulated self similar process for modeling MPEG Video?ustifying our usage of self-similar processes for modeling
these data.
Using the least squares fiti = 0.4662, 0.3404, 0.4468,
0.4779,0.4294, 0.4656, 0.4380, 0.4682, 0.4465, and0.4606 are

P11

«

Fig. 4.

make a transition to stat€; from stateS;. For theStarWars
video, the following transition matrix

0.0002 0.9998 0 derived forX;, Xp, Xp,, Xp,, ..., andXg,, respectively, for
P=101174 05232 0.3594 StarWars In this model, we combin&;, Xp, Xp,, XB,, ..,
0.0209 0.9791 0 and X g, in a manner similar to the GOP pattern to obtain the

model for the MPEG coded traffic. This model can be used to

is obtained. This matrix is useful for the Synthesis of the VidQﬂore accurate|y generate traffic data than the first one.
traffic. Although the model described above is more accurate than
the first one, it uses eight self similar random processes, one
for each of the different B frame subsequences. So, we can fur-

Since the technique used to classify inactive, active and veaher simplify this model by modeling each of the three sub-se-
active parts of MPEG video traffic adopted in the first modejuencesX;, X p andX g as discussed in Section IlI-B by a self-
(refer to Section IlI-A) is rather crude, it is conceivable that theimilar process, hence referred to as the simple IPB composite
performance of the first model (decomposing video into thresodel. To show that the self-similar process is a better choice
parts based on motion/scene complexity) can be improvis the simple model, we have conducted the following exper-
significantly with an advanced technique which can accuratsiyent. That is, we usé—?, e=?* ande=?V*, corresponding
identify motion/scene complexity. This task is by no mears the ACFs of a self-similar process, a Markov process, and
easy, and is a hot research subject in the field of computer visiam M /G /oo input process, respectively, to model I, P, and B
and video processing. On the other hand, the GOP structurdraime sub-sequences of 18 commonly used MPEG coded video
MPEG data is universal regardless of motion/scene complexisgquences. Designing and conducting such a set of experiments
Therefore, the decomposition according to the MPEG daitajustifying the utilization of self-similar random processes to

B. Structurally Modulated Self-Similar Processes Model
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Fig. 5. Approximation for ACF of P frames by: Self similde/G/oo, and Markov processes.

TABLE |
LEAST SQUARE ERRORSOBTAINED BY SELF-SIMILAR (SS) RROCESS MARKOV, AND M /G /oo

Trace I frame P frame B frame
SS M/G /oo | Markov | SS M/G/oo | Markov | SS M/G /oo | Markov
StarWars | 1.5820 | 5.0527 7.2517 | 0.6630 | 12.8669 | 25.4433 | 0.5987 | 13.7523 | 32.0705
Asterix | 0.6339 | 2.6476 5.2218 | 0.3783 | 0.7556 2.9004 | 0.4667 | 2.0326 11.2931
MrBean | 0.9406 | 0.6141 3.5079 | 3.0020 | 1.7339 9.7293 | 4.1578 | 1.5768 9.5433
Atp 1.3261 | 1.1945 1.0703 | 1.2523 | 1.0084 0.6863 | 4.5886 | 1.8858 1.1787
Bond 4.4744 | 1.2134 6.4118 | 0.4621 | 2.3412 5.0441 | 1.2248 | 1.5295 12.9623
Dino 0.4879 | 1.1936 5.7375 | 0.5437 | 2.2678 7.7840 | 3.6411 | 11.4657 | 31.2375
Fuss 0.5588 | 0.5812 0.4402 | 1.2778 | 0.7110 0.3453 | 1.5033 | 0.4278 0.3447
Movie2 | 0.1746 | 0.1902 0.7299 | 0.0233 | 0.2179 1.0820 | 0.2631 | 1.7634 4.8799
Mtv 0.2763 | 0.2871 1.8391 | 0.4315 | 1.3929 7.1952 | 1.2207 | 5.4241 15.1273
News 0.7754 | 0.3993 0.2381 | 0.9677 | 0.3199 0.2755 | 5.7957 | 0.9597 1.3095
Race 0.1841 | 0.2840 0.2831 | 0.9239 | 0.5328 0.0693 | 2.7580 | 0.8312 0.2331
Sbowl | 0.4207 | 0.4543 0.1725 | 1.3894 | 1.6837 3.5870 | 3.8844 | 2.3000 4.2929
Simpson | 0.4425 | 0.1208 1.3436 | 0.0798 | 0.4945 2.2366 | 0.0218 | 0.4408 3.1401
SocerWM | 0.3094 | 0.4095 0.0651 | 1.2413 | 0.7335 0.0243 | 2.9909 | 0.8010 0.2886
Star2 2.5977 | 2.0756 5.0999 | 1.8096 | 5.5754 10.8903 | 8.5032 | 19.8118 | 45.0521
Talk2 0.5827 | 0.5781 0.7382 | 0.9721 | 0.2476 1.2716 | 9.5476 | 1.9688 3.7166
Talk 0.4451 | 0.2816 0.8290 | 0.9303 | 0.2405 1.0145 | 7.4527 | 1.4122 1.3407
Term 0.0715 | 0.1667 0.3802 | 0.0330 | 0.3697 1.2219 | 0.2067 | 0.7083 2.5137
Average | 0.9047 | 0.9858 2.2978 | 0.9101 | 1.8607 4.4889 | 3.2681 | 3.8426 9.4020

characterize |, P, and B frame subsequences is part of the comairdom processes. For most of the video sequences, it appears
bution of this article. In fact, P and B frame subsequences wehat the self-similar processes are the better choices for I, P, and
not modeled by thd//G /oo process [7] as mentioned in SecB frames. Modeling these three parts in a way similar to the
tion I. Table | shows the least squares errors between the ACFIOP structure leads to our simple IPB composite model. The
the empirical data and that of the approximated ACF using thesmthesized data generated by our proposed simple model and
three random processes for each of the 18 video sequences.iEhACF are very close to the empirical data and its ACF. The
average mean square errors are shown at the bottom of the tgmbeformance of this simple model is further discussed in Sec-
Note that the self-similar process is the best among the thtems VII and VIII.
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TABLE I
ESTIMATED PARAMETERS FOR THESIMPLE IPB COMPOSITEMODEL USING LEAST SQUARES FIT

Trace I frame P frame B frame

Y n B ¥ U B v U B
StarWars | 4.0605 | 10.4233 | 0.4662 | 1.6605 | 12.0277 | 0.3404 | 1.6431 | 14.0724 | 0.3040
MrBean | 4.9569 | 6.1068 | 0.5684 | 1.0084 | 6.1457 | 0.4385 | 1.9798 | 43.88 0.2631
Asterix | 4.43 | 6.0825 |0.6078 | 1.7008 | 5.7095 | 0.5271 | 1.6014 | 8.2953 | 0.3562
Atp 4.7191 | 8.9661 | 0.8415 | 2.3581 | 12.7828 | 0.6541 | 3.4765 | 23.4751 | 0.5302
Bond | 3.6932 | 9.7717 | 0.4578 | 2.4559 | 11.3658 | 0.3635 | 3.3685 | 17.5669 | 0.2764
Dino | 6.1765 | 10.6556 | 0.5776 | 1.3718 | 6.5978 | 0.3731 | 1.7872 | 17.2641 | 0.2912
Fuss 2.9395 | 5.6374 | 0.8184 | 2.1856 | 6.7743 | 0.6731 | 2.3760 | 19.2525 | 0.6129
Movie2 | 2.6122 | 5.7122 | 0.7699 | 1.3527 | 8.8534 | 0.6419 | 1.1375 | 18.8076 | 0.5041
Mtv 2.9316 | 7.2989 | 0.6757 | 2.3029 | 11.6746 | 0.5133 | 1.666 | 12.7058 | 0.3710
News | 2.6119 | 5.3078 | 0.7167 | 1.3900 | 7.7165 | 0.5330 | 2.7786 | 20.0555 | 0.3653
Race 2.6884 | 6.7643 | 0.7777 | 2.4372 | 12.4445 | 0.6813 | 2.6811 | 21.7449 | 0.5529
Sbowl | 4.0798 | 5.5735 | 0.7900 | 2.7713 | 7.7488 | 0.5410 | 3.0845 | 18.3636 | 0.4624
Simpson | 4.7542 | 6.0256 | 0.6626 | 1.3053 | 7.3020 | 0.6056 | 1.9526 | 44.0132 | 0.4242
SoccerWM | 2.3526 | 5.7727 | 0.7667 | 1.5712 | 6.9937 | 0.6312 | 1.0401 | 8.8374 | 0.5180
Star2 | 3.0648 | 8.1755 | 0.5609 | 0.7524 | 4.4219 | 0.4300 | 0.8869 | 9.5508 | 0.2865
Talk2 | 4.8427 | 7.4619 | 0.6583 | 2.0912 | 11.3488 | 0.5470 | 3.9607 | 50.2894 | 0.3288
Talk 4.2759 | 6.2969 | 0.7001 | 1.2827 | 6.0661 | 0.6013 | 2.3166 | 10.6146 | 0.46
Term | 3.8739 | 7.8080 | 0.7606 | 2.3778 | 8.6690 | 0.6701 | 2.1026 | 158.3204 | 0.5103
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Fig. 6. CDF of | frames and its approximation by Beta distribution.

V. GENERATING SYNTHETIC MPEG STREAMS BASED ON THE ~ Gaussian noise (FGN) [14] and asymptotically self similar frac-
SIMPLE MODEL tional autoregressive integrated moving-average (F-ARIMA)
To synthesize video traffic using our simple IPB compositerocess [14]. F-ARIMA [6], [15], [16] can be used to match
model requires a self similar traffic generator. There are seve@dly kind of ACF, and is thus adopted here to generate the self
options to generate the self similar traffic. Two of the mosgimilar random process. The algorithm to generate F-ARIMA
commonly used methods are the exactly self similar fraction@locess is given in the Appendix.
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Fig. 7. CDF of P frames and its approximation by Beta distribution.

CDF of B frames and Beta approximation
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Fig. 8. CDF of B frames and its approximation by Beta distribution.

Video traffic can be synthesized by combining of the threfd 7] to model the marginal distributions of these processes. The
obtained self similar processes in a way similar to the GQRarginal distribution of a Beta distribution process has the fol-
structure. Table Il shows the estimated paraméfer different lowing form

video traces using the least squares fit.
fla;v, m, po, )

1 Tly+n) (z—pm\" Cm—p \"
VI. MODELING CDF OFI, P, AND B FRAMES USING THE BETA ) = e DL (n) (/ﬂ _ uo> < 1 — ;m)
DISTRIBUTION - o <<y, 0<,0<1n
As mentioned at the beginning, the CDF is another important | o otherwise.

statistics for video traffic modeling. We use Beta distribution )
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Fig. 10. The empirical traffic trace fdstarWars

wherey andr are the shape parameters, &gl 1] is the do- where
main where the distribution is defined. Beta distribution is quite

versatile and can be used to model random processes with quite 1 N
different shapes of marginal distributions. The following for- =N Z«’Uv (6)
mulae are used to estimate the parameters of Beta distribution, =1
n and~: N N ?
N> a? - (Z JL>
1-7 - . 2 — i=1 i=1
n=—s[3(1-7) -5 (4) § NN—1) @)

n
T=1_% (3) andN is the number of data in the data set.
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Fig. 11. The first hundred samples of the traffic data generated by our model.
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Fig. 12. ACFs of the empirical trace and our traffic model &arWars

The parameters for the simple IPB composite mogahdn, the empirical data trace. In the empirical data trace, the size of
are listed in Table Il for different video traces. The simulationisframe is often larger than the size of P frame and B frame,
demonstrate that the Beta-distribution follows the CDF veiynplying that a large frame is often followed by several small
closely in our simple model. The CDF of I, B, and P frames arfdames. It is shown in Fig. 11 that the traffic generated by our
their approximations by Beta distribution of the simple modehodel can capture this kind of characteristics. Figs. 12 and 13
are shown in Figs. 6-8. show the ACF of the empirical trace and synthesized data using
the simple IPB composite model; we can see our simple model
follows the ACF very well. For simulations on different video
traces such as News, Race, SoccerWM and Talk2, similar re-

The performance of our simple IPB composite model on sesults are achieved. So the simple model, though simpler than
eral traces is evaluated. Traces generated by the simple IfAB second model, is almost as accurate as the second model in
composite model are shown in Figs. 9 and 11 with large aiwcking the ACF of MPEG data. ACF is a very important factor
small lags. For comparison, the corresponding empirical tracdiism the networking perspective, because traffic autocorrelation
shown in Fig. 10. From Figs. 9 and 10, we note that the simghas an importantimpact on queuing performance. Liand Hwang
IPB composite model can generate traffic, which are similar {&8] examined the queue response to various input correlation

VII. EXPERIMENTS AND DISCUSSIONS
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Fig. 14. Average queue size at different service rates for synthesized data and empirical trace.

properties on the basis of input power spectrum in discrete-ffer designing and testing future communication networks that
guency domain and concluded that the mean queue size is devitkcarry multiplexed video traffics.

inated by the low frequency power in the power spectrum. High
positive correlation will introduce more input power in the low
frequency band, thus resulting in a larger mean queue size. The
larger the autocorrelation, the larger the mean queue size. Th&Vhile a good traffic model is expected to capture statistical
larger the mean queue size will introduce longer delay and largeoperties of the underlying empirical data trace, the ultimate
cell loss, thus deteriorating the Quality of Service (QoS). Thypal is to predict network performance accurately for the pur-
validity of network simulations depends on the accuracy of thmse of allocating network resources. The queuing performance
traffic model, which in turn depends on how close the videshould be deemed as a crucial factor that determines the appro-
model has captured the statistics of the real video traffic esgiateness of a traffic model [7]. Therefore, traffic models are
cially the autocorrelation. Our simple IPB composite model focommonly used to predict the queuing performance at a switch;
lows the ACF very well, and thus it can play an important rolthe appropriateness of a model is also determined by its ability

VIIl. QUEUING PERFORMANCE
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to accurately predict the actual queuing behavior. To furtherTo generate a self-similar process approximately, the autocor-
verify the appropriateness of our proposed simple model, waation function can be calculated in a recursive way as

have studied its queuing performance and compared it with that k+d
of the empirical trace. r(0)=1, r(k+1)= ) r(k) (14)
The system used here is a single server first-in f|rst-o\LIJvthered o5,

(FIFO) queue with infinite buffer size. Our synthetic traffic '
was used as a source traffic to the single server queue. T eACF_S of F-ARIMA and FGN generated traffic are Ie_ss
nk—# for small k. To compensate for the under-estimation

performance is compared with the same system using t L
. . . . of ACFs of a self-similar process, (14) used to generate the
empirical trace as the source traffic. A single arrival process , ' .
b 9 b —S\RIMA traffic can be enlarged for small. New self-sim-

assumed in our simulation, and its service rate is assume tr traffic generators need to be devised so that more exact
be constant. We conducted the simulation on video trace Al ) ' 9 . Vi X
Ié—smnar traffic can be generated.

Fig. 14 shows the average queue size using the synthesi g >mrar ) .

data generated by our proposed simple model and the empirica |_str|but|on of thes_e data |s_Gau53|an. For data to be Beta
trace. From Fig. 14, there is a little difference in the avera éStI’IbUted, the following mapping can be used
queue size for both synthesized data and empirical trace with Yi = Egl(FN(Xk)) k>0 (15)
different service rates. Thus, our simple model is accurat

] w%ereXk is a self-similar Gaussian procedsy is the cumu-
enough for the purpose of evaluating network performance. | . . o . )
g PUTP g P lative probability of the normal distribution, ari’q,_1 is the in-

verse cumulative probability function of the Beta model.

?

IX. CONCLUSIONS

In this paper, we have proposed a simple traffic model for
MPEG coded video streams. The simple model, which consistd™!
of three self-similar processes, is successfully fitted to different
empirical video sequences. Simulation results showed that not!
only the ACF of video traffic can be captured accurately, but
the GOP pattern can also be reproduced. This is a better traffi¢3]
model in the sense that it can not only capture the ACF and CDF
of video traffic, but the traffic generated by this model is also [4]
more similar to the empirical trace. The queuing performance
in a single FIFO system with different service rates using our s
proposed model is compatible with that using empirical data.
Thus our proposed simple IPB composite model, which is rather[G]
accurate, can be adopted in network simulations.

(7]
APPENDIX
The following is the algorithm for generating the F-ARIMA (g
process [6], [16]:
1) GenerateX,, from a Gaussian distributioV (0, v). Set o]
initial valuesNy = 0, Dy = 1. [10]
2)Fork =1,2,..., N —1,calculatepy;, j=1,2, ..., k
iteratively using the following formulae [11]
k—1 2
Ne=r(k) =3 drr,jr(k - j) @® [
j=1
Dy =Di_1 — N2_y/Dis 9 M
brr = Ny /Dy, (10) 4]
i =br-1,5 — Prrbr—1,6—j, J=1, ..., k=1 (11)
k (15]
mp = Z D Xij (12) [
=1
vk = (1 — dpp)Vr—1. (13) 7
(18]

Finally, eachX}, is chosen fromN (my, v). In this way, we
obtain a procesX with ACF approximating to(k).
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