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Abstract

The input-queued switching architecture is becoming the
alternative architecture for high speed switches owing to its
scalability. Tremendous amount of effort has been made to
overcome the throughput problem caused by head of line
blocking and the contentions occurred at input and output
sides of a switch. Existing algorithms only aim at improv-
ing throughput but inadvertently ignore undesired effects on
the traffic shape and quality of service features such as de-
lay and fairness. In this paper, a new algorithm, referred
to as longest normalized queue first, is introduced to im-
prove upon existing algorithms in terms of delay, fairness
and burstiness. The proposed algorithm is proven to be sta-
ble for all admissible traffic patterns. Simulation results
confirm that the algorithm can smooth the traffic shape, and
provide good delay property as well as fair service.

1. Introduction

The input-queued switching architecture has been
adopted for high speed switch implementation owing to its
scalability. A major problem with this architecture is the
head-of-line blocking (HOL) [5], which limits the through-
put of an input-queued switch to 58.6% under Bernoulli
traffic when a single FIFO queue is used in each input.

Previous research has shown that the throughput of an
input-queued switch can be improved by using well de-
signed buffering schemes and scheduling algorithms. The
HOL blocking can be completely eliminated by adopting
virtual output queueing, in which multiple virtual output
queues (VOQs) directed to different outputs are maintained
at each input. However, the contentions occurred at the in-
put and output sides of a switch still limit the throughput.
Moreover, when more than one cell can be accessed by the
scheduler in one input, selecting different cells for transmis-
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sion could lead to different throughput, owing to the inter-
dependence of the inputs.

Maximizing the throughput is similar to the matching
problem in a bipartite graph [3]. An iterative algorithm
called iSLIP, which is a maximum size matching based
scheduler, can achieve 100% throughput for independent
and uniform traffic [8]. Round robin scheduler, which has
low implementation complexity, is adopted in iSLIP to re-
solve the contentions at both input and output sides of the
switch. However, the priority of a round robin scheduler
is not a function of the queue length. Thus, iSLIP per-
forms poorly for non-uniform traffic, in which the aver-
age queue length of the VOQs could differ strikingly under
loaded traffic. Maximum weight matching can achieve high
throughput under both uniform and non-uniform traffic in
which each session is assigned a weight and a match with
the maximum aggregate weight is obtained. Longest queue
first (LQF) [7] and oldest cell first (OCF) [9] are among the
maximum weight matching approach, in which the queue
length and the delay time of head of line cell are set as the
weights, respectively.

Algorithms which only aim at maximizing throughput
could generate adverse effects on traffic shape and qual-
ity of service (QoS) features such as delay and fairness.
In LQF, the priority is set according to the queue length,
1.e., the queue with the largest length has the highest prior-
ity to receive service. Since the queues of the VOQs with
different arrival rates are built up at different speeds, us-
ing the queue length as the weight forces the scheduler to
serve the VOQs with high arrival rates and starve the VOQs
with low arrival rates. This is the main reason why LQF
leads to unfair service and uncontrollable delay time for the
VOQs with low arrival rates. On the other hand, OCF avoids
starvation by setting delay time as the weight, in which the
unserved cells get growing “older” until they eventually be-
come “old” enough to be served. Using delay time as the
weight forces the scheduler to serve the VOQs burst by
burst, thus sacrificing the QoS requirements. By observing
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Figure 1. Input-queued switch model

that session rates should be incorporated in the scheduler
design in order to satisfy the QoS requirements, we propose
a new algorithm, referred to as longest normalized queue
first (LNQF), which performs better than LQF and OCF in
terms of delay, fairness and burst reduction.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe our switch and traffic models. Section 3
presents the proposed algorithm. The stability of the switch
using the proposed algorithm is derived in Section 4. Sec-
tion 5 shows the performance of the proposed algorithm.
Concluding remarks are given in Section 6.

2. Switch and traffic models

Consider an NV x N input-queued ATM switch consist-
ing of IV inputs, NV outputs and a non-blocking switch fab-
ric. To eliminate the HOL blocking, virtual output queueing
is adopted, in which N virtual output queues (VOQs) di-
rected to NV different outputs are maintained at each input,
as shown in Figure 1.

Let Q;,; denote the VOQ directed to output 7 at input 7,
and A; ; denote the arrival process to Q; ;. To provide QoS
features, the switch resources, i.e., the bandwidth and stor-
age should be allocated on a per-session basis. There could
be more than one session arrived at a certain input directed
to the same output. Thus, multiple sessions could share the
same VOQ, in which each session is maintained as an FIFO
queue. Let I; ; 1, be the kth session in Q; ; with arrival rate
Ai k- Therefore, the arrival rate of A; ; can be expressed
as Ajj = > Aijk. An arrival process 4;, which is the
aggregate arrival process to input , is said to be uniform if
Aiim = Ain, Vm # n, 1 < m,n < N. Otherwise, the
process is said to be non-uniform. The traffic Apattem is ad-
missible if and only if 21| A ; < 1and Y0 | Aij < 1.

The traffic in a real network is highly correlated from cell
to cell, and cells tend to arrive at the switch in “bursts.” One
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Figure 2. Simple ON-OFF traffic model

way of modeling a bursty source is by using an ON-OFF
model in the discrete-time domain. This model is equiv-
alent to a two-state Markov Modulated Deterministic Pro-
cess (MMDP)[2]. The two states, OFF state and ON state,
are shown in the Figure 2. In the OFF state, the source does
not send any cells. In the ON state, the source sends data
cells at the peak cell rate (P). The source can independently
shift from one state to another as shown in Figure 2. In a
discrete-time domain, state changes may occur only at the
end of a time-slot. At each time slot, the source in the OFF
state changes to the ON state with a probability «.. Simi-
larly, the source in the ON state changes to the OFF state
with a probability 8. It must be remembered that there is no
correlation between the two probabilities. The probabilities
of the source being in the OFF state and ON state are given
by Poss = (a—f-ﬁ'j and P,,, = (‘&i—ﬂ)’ respectively.

The bursty source is characterized by the peak cell rate
(P), the average cell rate (A) and the average number of
cells per burst (B). The burstiness of the traffic is defined as
the ratio of the peak cell rate and average cell rate. Given
these parameters, the state transition probabilities can be

computed as a = WA—A—) and 8 = —};.
3. The LNQF algorithm

The basic objective of scheduling an input-queued
switch is to find a contention free match based on the con-
nection requests. At the beginning of every time slot, each
input sends requests to the scheduler. The scheduler selects
amatch between the inputs and outputs with the constraints
of unique pairing, i.e., at most one input can be matched to
each output and vice versa. At the end of the time slot, a
cell is transmitted per matched input-output pair.

Finding a contention free match between inputs and out-
puts is equivalent to solving a bipartite graph matching
problem, as shown in Figure 3(a). Each vertex on the left
side represents an input, and that on the right side represents
an output. An edge connects input vertex i and output ver-
tex j if there are cells stored in ); ;. Associated with each
edge is a weight, which is defined differently by different
algorithms. For example, setting weight as the queue length
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Figure 3. A Bipartite graph matching exam-
ple:(a) the request graph, (b) a maximum
weight match, and (¢) a maximum size match.

of the VOQ leads to LQF, and setting weight as the delay
time of the head cell in the VOQ leads to OCF. A maxi-
mum weight matching algorithm computes a match which
can maximize the aggregate weight. Note that maximum
size matching in which the number of connections between
the inputs and outputs is maximized is a special case of
maximum weight matching with the weights of the non-
empty VOQs set to 1 and those of empty VOQs set to 0, re-
spectively. A maximum weight match and a maximum size
match for the same request graph can be different as shown
in Figure 3(b) and 3(c), respectively. It was shown that max-
imum size matching is not stable for non-uniform traffic [7].
Therefore, maximum weight matching is adopted in LNQF.

Denote [; j 1 (n) as the length of the FIFO queue corre-
sponding to session I; j x in Q; jand l; j(n) = 3", lijx(n)
denote the length of Q;; at time slot n. In LNQF,
the weight of a VOQ is set to the normalized queue
length which is the total queue length of the VOQ di-

vided by its rate, i.e., w;;(n) = %}) Let W,(n) =
(wig (), wi2(n),-..,w; n(n))T be the weight vector of
input ¢ and S = [S; ;(n)] be the service matrix which

indicates the match between inputs and outputs. S; ;{n)
is set to 1 if input ¢ is scheduled to transmit a cell to
output j. Otherwise, S; ;(n) is set to 0. Let S;(n) =
(Si1(n), Si2(n),...,Sin(n))T be the service vector as-
sociated with input ¢. The LNQF scheduler, as shown in
Figure 4, performs the following for each time slot

1. Each input ¢ computes the normalized queue length of
each VOQ, sets it as the weight of the VOQ, and sends
the weight vector W, (n) to the scheduler;

. The scheduler searches for a match that achieves the
maximum aggregate weight under the constraint of
unique pairing, i.e.,

arg mgx[z Sij(n)w; ;(n)]

,J
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Figure 4. LNQF scheduler

suchthat 37, S;,;(n) = 3°; Si,j(n) = 1, sends the ser-
vice vector S, (n) to the corresponding input, and uses
the service matrix [S; ;(n)] to configure the fabric;

3. Each input ¢ computes the normalized queue length of
each session in the matched VOQ indicated by S;(n),
and selects the session with the longest normalized
queue length for transmission.

The LNQF algorithm gives preference to the VOQs with
large normalized queue lengths for transmission. Note that
the average queue length of a VOQ in a fair server should
be proportional to its arrival rate. Using the normalized
queue length as the weight forces the scheduler to serve
VOQs more fairly, thus preventing VOQs with slow arrival
rate from starvation. In addition, using normalized queue
length as the weight allows cells arrived later to have higher
weights than cells which come earlier, therefore performing
burst reduction.

4. Stability of LNQF

To prove that LNQF is stable, the stability of a switch is
first defined.

Definition 1 A switch is stable if and only if the expected
queue length in the switch does not increase without bound,
ie.,

E[> Lij(n)] <oo, VYn.
i

Theorem 1 The switch using LNQF is stable for all admis-
sible traffic patterns.
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Figure 5. Fairness of LNQF versus LQF

Proof: We have adopted an approach similar to [7] to prove
the stability of LNQF. The complete proof is given in the
appendix, and the main idea is to show that the quadratic
function of the queue length vector has a negative expected
single-step drift when the total queue length is large.

5. Performance

A 4 x 4 input-queued switch was considered for simula-
tions in which the bursty traffic was generated based on the
on-off traffic model. The average burst length was chosen
to be 20 cells and the burstiness was 2. The traffic was non-
uniform, i.e., the arrival rates of the VOQs in the same input
were different, and were 0.5, 1, 2, and 5Mbps. Two sessions
in each VOQ, a fast session with a rate four times that of a
slow session, were generated. A traffic load of 0.95 was
assumed, and each simulation lasted through 100 seconds.

The fairness of LNQF and LQF is compared in Figure 5,
where the fairness is defined as [4]:

Wi(ty, t2) _ Wi(t1,t2)

F \; X

Vi,j, j#i

l

where W;(t;, t2) is the number of cells delivered for session
¢ during the time interval [t1, 2], and ); is the rate of ses-
sion ¢. The fairness is the maximum difference of the nor-
malized service time, which is the service a session received
normalized by its rate, among all sessions. It provides a
metric on how fair a server is. The smaller the amount of
fairness, the fairer the server is. The fairness of a perfectly
fair server is 0. As shown in the figure, the average fairness
of LNQF is smaller than that of LQF, and so is the variation
of the fairness.
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Table 1 summarizes the performance comparison among
LNQF, LQF and OCF. Note that LQF tends to starve slow
sessions in which the average delays are much higher than
the faster sessions, while LNQF provides comparable delay
for each session. The average time for OCF to complete
transmitting a burst is much smaller than that for LNQF,
implying that LNQF is a better “traffic shaper” in reducing
burstiness.

[ schedulers LNQF | LQF | OCF
dy,1 (time slot) A=0.1Mbps 91.5 | 1049.6 | 147.8
dy 2 (time slot) A=0.4Mbps 137.5 463.0 | 144.6
dp,1 (time slot) A=0.2Mbps 110.1 644.1 | 1293
da,1 (time slot) A=0.8Mbps 130.0 2134 | 1337
d3,1 (time slot) A=0.4Mbps 112.8 328.6 | 129.0
d3,2 (time slot) A=1.6Mbps 129.2 103.7 | 132.2
da,1 (time slot) A=1Mbps 128.2 149.7 | 133.6
d4,2 (time slot) A=4Mbps 139.5 442 | 137.0
fairness 50.3 68.1 50.5
transmission time(time slot)/burst: 135.6 138.1 924

d; j: average delay of the jth session in VOQ 2.

Table 1. Statistics of the simulation results
6. Conclusions

We have proposed a new algorithm, LNQF, to improve
upon existing algorithms in terms of delay, fairness, and
burstiness. We have also proved that LNQF is stable un-
der all admissible traffic patterns and demonstrated through
simulations that LNQF is a starvation-free algorithm which
can provide better fairness than LQF, and better effective-
ness in smoothing traffic than OCE.
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7. Appendix

Several definitions and lemmas, similar to [7], will first
be defined and proven in order to facilitate the proof of sta-
bility of LNQF.

Definition 2 The rate matrix is defined as:
A =[Aig)

where

<1

N N
Mg 20, DXy <1, D N
i=1 j=1

Definition 3 The rate vector associated with the rate ma-

trix A is defined as:
A=At AN, AN - Ava)T

Definition 4 The arrival vector representing the arrivals to
the VOQs is defined as:

A(n) = (A1 1(n),... Ay N(n),... AN (n), ... An N (n)T

where A; ; represents the number of cells arrived at the Q; ;
at time n.

Definition 5 The service matrix indicating the match be-
tween inputs and outputs is defined as:

S(n) = [Si;(n)],
where

Sij(n) = { !

0

if Qs j is selected for service at time n,
if Qi j is not selected for service at time n.

. N N .
Since Yoint Siyj(;ﬂ) = Y j=195:,j(n) = 1, the service
matrix is a permutation matrix.

Definition 6 The service vector corresponding to the ser-
vice matrix is defined as:

S(n) = (S11(n),...S1.n(n),...Sna(n), ... Snn(m)T

Definition 7 The queue length vector representing the
queue length of the VOQs at time n is defined as:

L(n) = (L11(n),... Ly n(n),...Ln1(n),... Ly n(n)T

where L; j(n) represents the queue length of the Q; ; at
time n.
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Definition 8 The normalization matrix R is defined as:

1

R=diag\ 1, Al N> AN ANN]

Definition 9 The approximate next state vector of queue
length is defined as:

L

=i,

(Ll,l(n + 1)) .. -Ll,N(n + 1)3 .. -LN,I(n + 1)7
...Lyn(n+ )T

where

a

Lij(n+1)=Li;(n) - Sij(n) + 4i,;(n),

A

L;j(n + 1) approximates the exact next state queue
length of Q; ;,

Lij(n+1) = [Li;(n) = Sij(n)]* + 4; j(n),
where [z]T = max{0, z}.
Fact 1 (Birkhoff’s Theorem)[1] The doubly sub-stochastic

NxN square matrices form a convex set, C, with the set of
extreme points equal to permutation matrices.

Lemmal LT (n)(1 — RS*(n)) < 0,Y(L(n),R), where
S*(n) is the match (solution) with the maximum weight.

Proof: Consider a linear programming problem as follows:

N
S ni<
j=1

From Fact 1 we know that a doubly sub-stochastic matrix
A forms a convex set, which has extreme points indicated
by permutation matrices. The above linear programming
problem has a solution at the extreme points of the convex
set. Therefore,

N
T 4N > <
mfx(L (n)RA) s.t. Aij >0, Zz\w <1,

i=1

max(LT(n)RA) < max(LT (n)RS(n))
= L"(n)RS*(n) (1
Thus,
LT(n)(L - RS*(n)) <0 2

Lemma 2
E[L" (n+1)RL(n+1)= LT (n)RL(n) | L(n)] < M +L,

where M and L are positive constants.



Proof:
L"(n+ D)RL(n + 1) - LT (n)RL(n)
= [L(n) + A(n) — S(n)]TR[L(n) + A(n) — S(n)]
~LT(n)RL(n)
= 2L"(n)R[A(n) — S(n)] + AT (n)RA(n)
24T (n)RS(n) + ST (n)RS(n) 3)

After taking expectation of Equation (3),

EL" (n + 1)RL(n+1) - LT (n)RL(n) | L(n)]
2L (n)(1 -~ RS*(n)) + ATRA + S*T(n)RS* (n)
—20TRS*(n)

2LT (n)(1 — RS*(n)) + Z Xij + Z
_2252',]‘(”

51,]

)\”

< 2L"(n)(1-RS*(n))+ M + L )
< M+L

Thus,

E[L" (n+ DRL(n +1) - LT (n)RL(n) | L(m)] < M + L

where M =37, X\ ; > 0and L = Do ;j)>0'

Lemma 3

EL (n+ 1)RL(n + 1)
—e || L(n) | +M + L,

~ L"(m)RL(n) | L(n)]
< ©)]
where €, M and L are positive constants.

Proof: For any rate vector ), a vector \* can be found to
satisfy the following conditions:

(1=-B)A* =2
N
DoM<
j=1

<L 20, Vi,j

Z,\

where 0<B8<1
Thus, the first term of equation (4) can be expressed as:
LT (n)RQA - S*(n))
LT (n)R((1 - B)A* - §*(n))
LT (n)R(A* = S"(n)) — LT (n)R(BAY)
—BLT (n)RA*
ﬂ
,3

2 1L 1 1 coss

u
A

I

2 _IT(m)RA

i

L(n) || cosé
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Since Li,j(n) _>_ 07Vi7j
L(n)1

TZm Ll =

cosfd =

From equation (4),

L™ (n)RL(n) | L(n)]
Ijﬂ cosf || L(n) || +M + L

E[L (0 + DRE(n +1) -

< - 3 (6)
Lete = 2 g cos§, Lemma 3 is proved.
Lemma 4
E[L"(n+ DRL(n +1) - L (n)RL(n) | L(n)]
< —ellL(n) || +M + L+ /\fln, @)

where e, M, L and N are positive constants.

Proof: The exact next state queue length is:

[Lij(n) = Sii(m)]" + 4i;(n) ®)

From Definition (9), the approximation of (8) becomes
Lij(n+1) = Ly j(n) = S; ;(n) + A; j(n) ©)

Since S; ;(n) is either 0 or 1, the approximated next state
queue length has the following relation with the exact next
state queue length:

LiJ‘(TL + 1)

Lij(n+1)+1 ifL;j(n)=0 and
Lisin+1) =3 Sij(n) =1;
Lijn+1) otherwise
Thus,
T .T . N
L (n+ DEL(n+1) ~L (n+ DRL(n+1)< 5
min

where Apin = min{A; ;}.
From Lemma 3,

E[LT(n +1)RL(n +1) -
—e | L) |+

/\min

LT(n)RL(n) | L(n)]

< +M+L (10)

Lemma 5 There exists a quadratic Lyapunov function
V(L(n)), such that

EV(L{n +1)) - V(L(n)) | L(n)] <

where € and K are positive constant.

e | L(n) || +K

Proof: Lemma 5 follows from Lemma 4 by letting
V(L(n)) = LT(n)RL(n) and K = M + L + -

From Lemma 5, the quadratic Lyapunov function of the
queue length vector has a negative drift when || L(n) || is
large. According to [6], Theorem 1 is proved.



