FAIR QUEUEING FOR INPUT-BUFFERED SWITCHES
WITH BACK PRESSURE

Shizhao Lif, Jian-Guo Chen} and Nirwan Ansarif

{Dept. of Electrical and Computer Engineering
New Jersey Institute of Technology

Newark, NJ 07102, U.S.A.

+1-973-596-3670(tel) +1-973-596-5680(fax)
emails: sx13576@megahertz.njit.edu, ang@njit.edu

ABSTRACT

The output-buffered switching architecture, though
is able to offer high throughput, guaranteed delay and
fairness, is not practical owing to its lack of scalabil-
ity, i.e., the memory size, speed, and control logic have
to be scaled up proportionally to the number of in-
put links, thus becoming infeasible for large switches.
The commercial and research trend is to adopt architec-
ture with input buffering which is scalable, but yields
lower throughput and lacks the quality-of-service fea-
tures such as delay bound and fairness. Although the
problem of low throughput owing to head of line block-
ing in input-buffered switches can be resolved by adopt-
ing per-output-port queueing in each input port, the
contention among input ports still limits the through-
put. Existing schedulers designed for input-buffered
switches attempt to improve throughput by imposing
back pressure to the contending cells, and scheduling
cells free of contention for transmission, at the expense
of delay and fairness.

In this paper, we modeled and analyzed the back
pressure with independent Bernoulli traffic load, and
showed that back pressure occurs with high probabil-
ity under loaded traffic. We also derived the average
queue length at the input buffer. To address the above
issues in input-buffered switches, we proposed a new
algorithm, referred to as min-max fair input queueing
(MFIQ), which minimizes the additional delay caused
by back pressure and at the same time provides fair
service among competing sessions.

Keywords: input-buffered switch, fair queueing,
back pressure

1. INTRODUCTION

High performance switching technology is a key
component in the competition to meet today’s booming
demands for Internet services and applications. ATM

0-7803-4982-2/98/$10.00©1998 IEEE 252

{Lucent Technologies

Murray Hill, NJ 07974, U.S.A.
+1-908-582-8034(tel) +1-908-582-3662(fax)
email: jianguoll@lucent.com

switches which are designed to deliver small fixed length
packets can provide fast connection between the in-
put and output as well as guaranteed quality-of-ser-
vice(QoS). An ATM switch typically consists of three
parts: input queues, output queues and a switch fab-
ric. Input queues buffer cells coming from input links,
while output queues buffer cells going out to output
links. The fabric routes cells from arbitrary input links
to arbitrary output links. Different approaches to build-
ing such a switch have been proposed. In general,
two categories are broadly classified according to where
the buffer is placed: the input-buffered switch and the
output-buffered switch.

It was shown [1] that the throughput of an input-
buffered switch is limited to 0.586 when a single first-in-
first-out (FIFO) queue is used in each input port. This
is mainly owing to the head of line (HOL) blocking, i.e.,
if cells in the front of the input queue are blocked, the
cells stored behind them cannot be transmitted even
if their destination output ports are open. Since the
publication of the seminal paper by Karol et al. [1],
many works [2]-[4] have indicated that the throughput
of the input-buffered switch can be improved by us-
ing well designed scheduling algorithms. Maximizing
the throughput of a switch is equivalent to maximizing
the number of connections between the input and out-
put ports with the constraint of unique pairing. This
is similar to the problem of bipartite graph matching,
which has a high computational complexity. Parallel
Iterative Matching (PIM) will reach 100 % throughput
if a sufficiently large number of iterations are used. It-
erative round-robin matching with slip (¢SLIP) [4] was
proposed later which has similar performance with PIM
at much lower hardware complexity. The above algo-
rithms aim at maximizing throughput at the expense
of QoS features such as delay and fairness.

Output-buffered switches are not afflicted by the
same throughput problem. A large effort has been
made to design scheduling algorithms to provide guar-

anteed end-to-end delay and fairness services among
competing sessions for output-buffered switches. How-
ever, output buffering is not practical for building high
speed switches with large aggregate switching capacity
owing to the speedup problem. Since more than one
cells can arrive at an output port during one time slot
and only one of them can be transmitted in the same
time slot, the fabric and the output queue should have
the capability to accommodate the excess cells. At the
worst case, the fabric has to run N times faster than the
input and output link when all N input ports send cells
to the same output port. Thus, the memory size and
the control logic have to be scaled up proportionally
to the number of input links. Owing to this scalability
problem, the commercial and research trend is to adopt
input buffering architecture, even though it yields lower
throughput and lacks the QoS features.

While scheduling algorithms designed for output-
buffered switches, like Packet Fair Queueing (PFQ),
can provide end-to-end delay bound and fairness among
sessions, they are not directly applicable to input-buff-
ered switches without causing performance degrada-
tion. When the scheduler at an input port schedules
one cell for transmission, schedulers at other input ports
could also schedule cells for transmission to the same
output port. Only one cell can get through the fabric,
and the other cells are back pressured and stored in the
input ports. Instead of wasting bandwidth, the sched-
uler in a back pressured port should schedule another
cell for transmission. As a result, the back pressured
sessions suffer extra delay and lose their fair share of
the bandwidth while other sessions get more services
than they should. The key issue is what type of ac-
tions should a scheduler executes when the output port
is open for the back pressured sessions after a certain
time lapse. Instead of only aiming at maximizing the
throughput , we propose an algorithm, called min-max
fair input queueing(MFIQ), to minimize the additional
delay and to arbitrate fair service among all competing
sessions in an input port.

The rest of the paper is organized as follows. The
model of the back pressure problem under independent
Bernoulli traffic is presented in Section 2, and it is
shown that the effect of back pressure is significant.
Section 3 presents our proposed scheduler, and sim-
ulation results are shown in Section 4. Remarks are
concluded in Section 5.

2. BACK PRESSURE MODEL AND
QUEUEING ANALYSIS

Consider a system with N input ports, N output
ports, and an N x N fabric. The cell arrival processes
at the input ports are assumed independent and identi-
cal Bernoulli. Let p be the traffic load, i.e., in any given

253

Il

VT O

Figure 1: Per-output-port queueing

time slot, the probability that a cell arrives at a particu-
lar input port is p. The cell has equal probability of 1/N
to go to any given output port, and successive cells are
independent. To eliminate HOL blocking, per-output-
port queueing is adopted, i.e., IV separated queues, each
of which is associated with a corresponding output port,
are maintained in an input port. The probability of a
cell appears at a per-output-port queue is p/N. There
are N2 per-output-port queues in the system as shown
in Figure 1. Associated with an output port is a queue
group with N per-output-port queues, each of which is
located in one of the N input ports. The cell arrival
processes in these queues are also independent. Let A
be the total number of cells appeared at the head of
each per-output-port queue in a queue group in one
time slot. Thus, A is a Binomial random variable and
has the following distribution:

pa=i = () emra-mm= @

Contention occurs when more than one of the per-
output-port queues have cells in the same time slot.
Only one out of the competing cells can get through
the fabric, and the others are back pressured for later
transmission. Thus, back pressure occurs with proba-
bility

Pa = 3 (N) (o/NY (1 — p/N)N=i

4)
=2
p

= 1-a-2"a-L+p. @

When the number of input ports increases, the proba-

Figure 2: The discrete time Markov chain for the total
queue length of one queue group

bility of back pressure becomes

I}I—IPWPB-I_G P(1+ p). 3)
Note that Equation (3) is monotonically increasing with
the load p. The probability of back pressure reaches its
maximum value of 1 — 2/e when the load reaches one.

Consider the total queue size of one queue group.
With the assumption that one cell can always be trans-
mitted during the time slot if there are cells at the head
of the N per-output-port queues, the Markov chain for
the total queue length of the queue group can be ob-
tained as shown in Figure 2, where

N

Pi=<i

and the state value of the chain indicates the queue size
of the queue group. The transition probability matrix
of the Markov chain is

) (P/N)i(1 - P/NYN,

Po+p1 P2 D3 v O
bo Pr P2 ... PN-1 PN
p= 0 p P p2

0 0
It is difficult to derive the close form distribution of the
queue length, but the generating function of the queue

length distribution can be readily derived:

(1-p)(z-1)

Q(2) TIoAD 4
where

AR = Q-F+=z5)" (5)

is the generating function of random variable A. Thus,
the mean steady-state queue length can be obtained as
follows:

N-1 p?
N 2(1-p)

Q = (6)

lim Q'(2) =

20.0
18.0
16.0
140
12.0

10.0

Mean Queue Length

8.0

6.0

4.0
20

0.0
00 01 02 03 04 05 06 07 08

Load at Input Link

0.9

Figure 3: Mean queue length of a queue group with
ideal throughput

where @Q'(-) is the derivative of Q(-). Figure 3 shows the
average total queue length in a queue group associated
with one output port.

Note that Equation (6) is applicable to every queue
group. If queue groups corresponding to different out-
put ports are independent, the average queue length at
the input buffer of the switch is N@. Since the traffic in
the N input ports are independent, the average queue
length in one input port is also @ . The Markov chain
is derived based on the assumption that there is always
a cell to be transmitted to a given output port when-
ever there are cells in the queue group. In fact, if more
than one output ports schedule the same input port to

 transmit cells, only one cell can be transmitted. As a

254

result, the bandwidths of the other output ports are not
utilized. Thus, the actual throughput can only be lower
than what is assumed here. Hence, the average queue
length at the input buffer in a realistic situation (Fig-
ure 4) is longer than the ideal case (Figure 3). Thus,
back pressure can potentially cause adverse effect on
the delay and fairness of the competing sessions.

3. MIN-MAX FAIR INPUT QUEUEING
ALGORITHM

Generalized Processor Sharing (GPS) [5] was pro-
posed to guarantee end-to-end delay and to provide
fair service among competing sessions. Associated with
each session is a real number 7;, which represents its ser-
vice share of the server. The normalized service time
of a session in a time interval (¢1,%2) is defined as the
amount of service W (¢1,t2) the session receives during

100.0
80.0
E 60.0
g . Ne3z
)
g 400
=
Net
Ne2
200
0.0
00 01 02 03 04 05 06 07 08 09
Load at Input Link

Figure 4: Mean queue length of a queue group simula-
tion results

that interval divided by its rate r;. Thus, fairness be-
tween two sessions can be measured by the difference
between their normalized service times:
Wi(ti,t2) W;(ta, t2) |

r; Ty

F = |

(7

GPS, with the assumption that data unit can be in-
finitely divisible (infinitesimally small), and that all ses-
sions can be served simultaneously, is a perfectly fair
scheduler in which F = 0. In reality, the GPS’s as-
sumptions do not hold, and thus the fairness of a server
can be quantized by the upper bound of the fairness be-
tween any two sessions, i.e.

| Wi(tl’t2) _ W](t17t2) ! .

8
Vioj, i T T ®

Many Packet Fair Queueing (PFQ) algorithms [5],[7]-
[9] were proposed to emulate the GPS model for schedul-
ing output-buffered switches. Each PFQ algorithm main-
tains a system potential V' (¢) which represents the nor-
malized service time that each session should receive by
time t. In addition, associated with each session % are a
virtual start time S;(t) and a virtual finish time F;(t).
S;(t) keeps track of the normalized service received by
session ¢ by time t. The virtual time is updated accord-
ing to the following rule [5]:

maz(V (t), S;(t-))

Fs =

session i becomes

backlogged ©)
current packet
finishes service

S =1 sie-)+ &

where [represents the length of the current packet of
session i. Thus, the virtual finish time for session 7 (i.e.,

255

for the current packet) is
l
Fi(t) = Si(t)+ _ (10)

PFQ algorithms approximate GPS performance by se-
lecting cells with minimum virtual finish time for trans-
mission. Different policies for choosing the system po-
tential lead to different PFQ algorithms. For example,
choosing real time as the system potential leads to Vir-
tual Clock [6], and choosing the virtual finish time of
currernt session in service as the system potential leads
to Self-Clocked Fair Queueing [7].

Though PFQ algorithms can provide bounded end-
to-endl delay and fair service for output-buffered switch-
es, they cannot be directly applied to input-buffered
switches to achieve the same performance. Before we
proceed to describe our algorithm which will overcome
the shortcomings of applying PFQ directly to input-
buffered switches, we first define the following.

Definition 1 A reference scheduler of a system is an
ideal scheduler which operates without back pressure but
has the same configuration as the real scheduler in the
systerm.

The reference scheduler maintains its own virtual time.
The virtual time of a session scheduled by the reference
scheduler is updated no matter whether the session is
back pressured in the real system. Thus, virtual time
of sessions in the reference system keeps track of the
service that the sessions should receive in the real sys-
tem.

Definition 2 The additional delay of a cell is the time
interval between the time when the cell is transmitted in
the real system and the time when the cell is scheduled
in the reference system.

Note that the additional delay is negative when the
cell is transmitted before it is scheduled in the reference
systein.

Definition 3 The normalized service lag of a session
is the difference between the normalized service time
the session should receive in the reference scheduler and
the normalized service time it has received in the real
system.

For input-buffered switches, the schedulers of input
ports are not independent from each other. When more
than one input port schedule cells to the same output
port, contention occurs. Only one of the competing
cells can get through the fabric, and the others are back
pressured in the input ports. To increase throughput,
the scheduler of the back pressured input port needs to
schedule another cell that is free of contention. Thus,

the back pressured cell experiences additional delay and
loses its fair share of service. On the contrary, the being
served session receives earlier and more service than its
fair share. There could be more than one session back
pressured at the same time. When the output ports
for the back pressured cells are open for transmission,
which cell should be transmitted? Within the context
of GPS which is the perfectly fair scheduler, the back
pressured session with the largest normalized service lag
is the one that has been back pressured longest, thus
experiencing the largest additional delay. It is therefore
intuitively fair to transmit the cell of the session that
has been back pressured the longest. This is the essence
our algorithm as shown in Figure 5.

In the algorithm, a reference virtual time system
and a real virtual time system are maintained. The
virtual time of each session is updated in the reference
system, independent of the status of the real system, to
keep track of the normalized service the session should
receive. Normalized service lags are maintained in the
real system. The system potential V (¢) can be updated
by using any PFQ algorithms like WFQ [5], SCFQ [7],
WE2Q [8], and WF2Q+ [9]. For example, if WFQ is
selected to update the system potential, the rule is

(11)

r
2oicBTi ’

where B represents all backlogged sessions and 7 is the
time increment. The session with the smallest virtual
finish time F; in the reference scheduler is updated re-
gardless of the status of the real system, i.e., the vir-
tual finish time of the selected session ¢ in the reference
system is updated no matter whether it is back pres-
sured or not. The session with the largest normalized
lag is scheduled for transmission in the real system. If
the transmitted session j is not the session selected in
the reference system, the selected session is deferred for
transmission. Thus, the normalized service lag of the
selected session is increased by {/r;, and that of the
transmitted session is decreased by {/r;.

V(t+7) V() +

4. SIMULATION RESULTS

Consider a system with eight input ports and eight
output ports. To eliminate HOL blocking, per-output-
port queueing is used. Each per-output-port queue has
three sessions with transmission rates of 1, 5 and 10
Mbps. WFQ was selected to update the system poten-
tial. Simulations were conducted for a load of 0.8, 0.9
and 0.95. Each simulation lasted through 2 seconds.

Two schedulers were simulated: our proposed MFIQ
algorithm, and the reference scheduler defined earlier.
Sessions were scheduled only based on their virtual times
in the reference scheduler. When the scheduled session
was back pressured, its virtual time was updated and

Cell.reaches.head-of .queue(session i, packet xcell)
ifi€B
if queuelength(i) ==0
S,‘ £~ maa:(V, S,)
F; + S;+1/r;
else
S;«V
lag; + 0
B+ BuUji
enqueue(session i, packet xcell)

Transmit_cell
g-to_update + min; F;
g-to_send <+ maz; lag; {i | i € not BP }
if gtosend # —1
dequeue(g-to_send)
Update_system potential()
Sq.to.update — Sq_to_update + l/Tq_to_update
Fq..to_update A Sq.to.update + l/rq_to..update
if q-to-update # g_to_send
normalized lag(g-to-update]
+ normalized lag[gto_update] + 1/Tq_to update
normalized lag[g-to_send)]
+ mnormalized lag[gto_send] — l/rq.to_send

Sessionleave(session 1)
B+ B\

Figure 5: The pseudo-code of the min-max fair input
queueing algorithm

another session which was free of contention was se-
lected for transmission. The scheduler did not keep
track of the service time lost by the back pressured
sessions. Thus, the lost service time could not be com-
pensated.

The normalized service times received by three ses-

_ slons belonging to different per-output-port queues are

256

shown in Figures 6 and 7. Since our proposed algo-
rithm always selected the session with the largest nor-
malized service lag for transmission, the differences of
the received normalized service times among sessions
were smaller than that of the reference scheduler. The
instantaneous fairness, which is the difference between
the largest normalized service lag and the smallest nor-
malized service lag experienced by all sessions, is com-
pared in Figure 8. The instantaneous fairness of MFIQ
is much smaller than that of the reference scheduler,
even though they both experience randomness owing
to the back pressure. The proposed MFIQ has better
performance in terms of maximum normalized service
lag and maximum additional delay, as shown in Fig-
ures 9-11.

Table 1 illustrates the statistics of the simulations
for different loads. Four results can be derived from the
table.

1. The two algorithms have similar performance in
terms of average delay and average queue length;

2. The proposed MFIQ has better performance in
terms of fairness and additional delay;

3. The total delay of a session is inversely propor-
tional to its rate;

4. Average instantaneous fairness, average maximum
additional delay, and average queue length in-
crease as the load increases.

5. CONCLUSION

We have modeled and analyzed the back pressure
occurred in input-buffered switches for independent Ber-
noulli traffic. The probability of back pressure and the
average queue length have been derived. In reality,
the average queue length at the input could be worse
than the analytical results, and thus back pressure is an
important issue. We have proposed a new algorithm,
MFIQ, and demonstrated through simulations its ef-
fectiveness in minimizing the additional delay caused
by back pressure and in providing fair service among
competing sessions.

6. REFERENCES

[1] M. J. Karol, M. G. Hluchyj and S. P. Mor-
gan, “Input versus output queueing on a space-
division packet switch,” IEEE Trans. Commun.,
vol. COM-35, pp. 1347-1356, Dec. 1987.

M. J. Karol, K. Y. Eng and H. Obara, “Improv-
ing the performance of input-queued ATM packet
switches,” INFOCOM ’92, pp.110-115.

2l

H. Obara and T. Yasushi, “An efficient con-
tention resolution algorithm for input queueing
ATM cross-connect switches,” International Jour.
of ‘Digital & Analog Cabled Systems, vol. 2, no. 4
pp- 261-267. Oct.-Dec. 1989.

N. McKeown, P. Varaiya and J. Walrand,
“Scheduling cells in an input-queued switch,” IEE
Electronics Letters, pp. 2174-2175, Dec. 9th, 1993.

A. K. Parekh and R. G. Gallager, “A generalized
processor sharing approach to flow control in in-
tegrated services networks: the single-node case,”
IEEE/ACM Trans. on Networking, vol. 1, no.3,
pp. 344-357, June, 1993.

L. Zhang, “Virtual clock: A new traffic control
algorithm for packet switching,” ACM Trans. on
Computer Systems, vol. 9, no.2 pp.101-124, May,
1991

(3]

[5]

257

[71 S. J. Golestani, “A self-clocked fair queue-
ing scheme for broadband applications,” INFO-
COM’9/4, pp.636-646, June, 1994.

[8] J.C.R. Bennett and H. Zhang, “WF2Q: worst-
cast fair weighted fair queueing,” INFOCOM’96,
pp.120-128, March, 1996.

[9] J.C.R. Bennett and H. Zhang, “Hierarchical packet
fair queueing algorithms,” ACM SIGCOMM’96,
pp.143-156, Aug, 1996.

2000ms
~—— Session |
--------- Session 2
Session 3 s
5001 <
1500ms Y7z
g
g
2
2 1000ms
H
5
z
500ms
Oms
Oms 500ms 1000ms 1500ms
Tirme

Figure 6: Normalized service time received by the three

sessions: MFIQ

2000ms

2000ms
—— Session |
— — Session 2 A
Session 3
1500ms
o
£
£
z
4
K 1000ms
E
3
g
3
z 4
£ Z /
500ms 57
,/ 2
Z
o
Oms_
Om: 500ms 1000ms 1500ms
Time

Figure 7: Normalized service time received by the three

sessions: reference scheduler

2000ms

258

600ms T r

—e
— reference scheduler 1

Instantancous Faimess

Figure 8: Instantaneous fairness:

ence scheduler

2000ms

MFIQ versus refer-

200ms ; T T

———
—— reference scheduler |
L | e MFIQ |

150ms
x
3
3
E

g 100ms
Z
3
b3

50ms

Om 3 1 1 "
s 500ms 1000ms 1500ms
Time

2000ms

Figure 9: Maximum normalized service lag: MFIQ ver-

sus reference scheduler

150ms T T T 150ms

5 100ms - 1 > 100ms :
g | 2
3 . 2
2 | E
H : H
i |
£ 50ms - 2 50ms

rms 500ms 1000ms 1500ms 2000ms O 500ms 1000ms 1500ms 2000ms
Time Time
Figure 10: Maximum additional delay: Figure 11: Maximum additional delay:
MFIQ reference scheduler
[10ad 0.8 | 0.9 0.95 |
schedulers RS? MFIQ || RS MFIQ || RS MFIQ

average delay of session 1(ms): rate=1Mbps | 0.98 1.17 207 .| 2.54 5.24 4.24
average delay of session 2(ms): rate=5Mbps | 0.50 0.41 0.88 0.82 1.85 1.49
average delay of session 3(ms): rate=10Mbps | 0.28 0.28 0.43 0.61 1.35 1.01

average queue length (cell) 19.97 19.33 39.56 | 39.26 71.89 | 75.77
average instantaneous fairness(ms) 327.45 | 51.87 314.75 | 88.45 378.96 | 88.83
average maximum additional delay(ms) 347 3.20 5.78 4.22 11.09 | 5.19

average maximum normalized lag (ms) 66.66 | 15.87 110.73 | 47.13 116.35 | 41.65

Table 1 Statistics of the simulation results

Lreference scheduler.

259

