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ABSTRACT

This paper traces the development/evolution of three of
our recently proposed MPEG video traffic models, that can
capture the statistical properties of MPEG video data. The
basic ideas behind these models are to decompose an MPEG
compressed video sequence into several parts according to
motion/scene complexity or data structure. Each part is
described with a self-similar process. These different self-
similar processes are then combined to form the respective
models. In addition, Beta distribution is used to charac-
terize the marginal cumulative distribution (CDF) of the
self-similar processes. Comparison among the three models
shows that the latest model (called the simple models) is
the most practical one in terms of accuracy and complex-
ity. Simulations based on a real MPEG compressed movie
sequence of Star Wars have demonstrated that the simple
model can capture the ACF and the marginal CDF very
closely.

1. INTRODUCTION

The trend to transmit video over network, especially over
ATM, is emerging. Traffic models are important to net-
work design, performance evaluation, bandwidth allocation
algorithm design, and bit-rate control. It was observed,
however, that traditional models fall short in describing the
video traffic because video traffic is strongly autocorrelated
and bursty [11]. To accurately model video traffic, autocor-
relations among data should be taken into consideration. A
considerable amount of effort on video modeling has been
reported that include: Markov Modulated Rate Process
(MMRP) [12], Discrete Auto-Regressive Process (DAR(1))
[3]; Fluid Models [9], Markov-Renewal-Modulated TES Mod-
els [10], Long Range Dependency (LRD) models or Self-
Similar models [1], M/G/oo input process models [5], and
GBAR Medel [4]. Most of the work dealing with video traf-
fic appeared in the literature is based on a short period of
video sequences or video conference sequences, which con-
tain little drastic motions. It is therefore far from enough to
model general video traffic, say, movie sequences containing
all kinds of motions.

In this paper, we analyze and compare three recently
developed MPEG video traffic models that can capture the
LRD characteristics of video ACF [6], [7], [8]. The basic
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ideas behind these models are to decompose an MPEG com-
pressed video sequence into several parts according to mo-
tion/scene complexity or data structure; each part described
by a self-similar process. These different self-similar pro-
cesses are then combined in respective fashion to form the
models. In addition, Beta distribution is used to character-
ize the marginal cumulative distribution (CDF) of the self-
similar processes. Comparison among three models leads to
the observation that the simple MPEG video traffic model
is preferred in terms of accuracy and simplicity. Simulations
on a real MPEG compressed movie sequence of Star Wars
have demonstrated that our new simple model can capture
the LRD of ACF and the marginal CDF very well. This
paper is organized as follows. In Section 2, empirical data
and the ACF are described. Section 3 discusses the de-
composition of data according to motion/scene complexity
or data structure. Modeling of each part and combination
of the decomposed parts are discussed in Section 4. Using
Beta distribution to model CDF of the video traffic is pre-
sented in Section 5. Comparison and discussion are made
in Section 6.

2. EMPIRICAL DATA AND ACF

The empirical data used here was MPEG coded data of Star
Wars'. The source contains materials ranging from low
complexity /motion scenes to those with high and very high
actions. The data file consists of 174,136 integers, whose
values are frame sizes (bits per frame). The movie length is
approximately 2 hours at 24 frames per second. The original
video was captured as 408 lines by 508 pels, and then con-
verted to 240x352 (Luminance - Y), and 120x176 (Chromi-
nance - U and V). Motion estimation techniques were used
to compress data volume. The frames were organized as
follows: IBBPBBPBBPBB IBBPBB..., i.e., 12 frames in
a Group of Pictures (GOP). I frames are those which use
intra frame coding method (without motion estimation), P
frames are those which use inter frame coding technique
(with motion estimation), and B frames are predicted using
both forward and backward prediction. Every frame was
partitioned into blocks of 8x 8 pixels. These data blocks
were transformed using DCT. After DCT transformation,

1The MPEG coded data were the courtesy of M.W.Garrett of
Bellcore and M. Vetterli of UC Berkeley.



coefficients were quantized and Huffman coded. Run length
coding was further used to reduce bit rate.

The ACF of frame size of MPEG coded Star War is
shown in Fig. 1, and it is quite different from the ACF
of frame size of JPEG coded movies Star Wars (see Fig.
2). The ACF of MPEG coded data fluctuates around an
envelope, reflecting the fact that, after the use of motion
estimation techniques, the dependency between frames is
reduced. This characteristic should be taken into consider-
ation in modeling MPEG coded video sequences.
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Figure 1: ACF of MPEG compressed video Star Wars
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Figure 2: ACF of JPEG compressed video Star Wars

3. DECOMPOSITION OF MPEG DATA

The fluctuation of the ACF as shown in Fig. 1 has con-
vinced us that such fluctuation can hardly be captured by
a single random process, and has further led us to the intu-
itive belief that the data should be decomposed into several
parts, each captured by a random process. This section de-
scribes the intuition that has resulted in the three proposed
decompositions.
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3.1. Decomposition according to Motion/Scene Com-
plexity

With the conjecture that the fluctuation was caused by mo-
tion/scene complexity, we proposed to divide the traffic data
into three different parts—inactive part, active part, and
the most active part (authors in [12] also pointed out that a
video bit rate process has three main components: a slowly
changing component, a more quickly changing component,
and an impulsive component). Suppose f() is the number
of bits in the ith frame. The video traffic can be classified
as follows

1. If f(i4+1)/f(i) > T,i=2,3,--, then f(i+1) belongs
to the non-inactive part; otherwise, f(i + 1) belongs
to the inactive part, where T is a threshold value.

2. Similarly, the non-inactive part can be classified into
the active and most active part.

Taking these three data sets as three different random pro-
cesses, we can calculate their ACFs.

3.2. Decomposition According to MPEG Data Struc-
ture (I)

Although the model based on the decomposition introduced
above can model each part of the video traffic very well, it
cannot capture the ACF of the whole sequence very well.
This slight discrepancy highly depends on how one defines
motion/scene complexity and has thus inspired us to decom-
pose the MPEG data according to the MPEG data struc-
ture.

Specifically, in the second proposed model, we decom-
pose the MPEG traffic into 10 sub-sequences X1, Xp, X5,,
XB,, -+, and Xp,. X1 consists of all | frames, Xp consists
of all P frames, the first B frames in all GOPs constitute
XB,, the second B frames in all GOPs constitute Xp5,, and
S0 on.

3.3. Decompasition according to MPEG Data Struc-
ture (IT)

By observing that the B-frames have similar properties in
terms of coding mechanism, we combine all the B-frames in
the previous decomposition into one subsequence, resulting
in three sub-sequences, X7, Xp, X5. As before, X consists
of all I frames, X p consists of all P frames, but, now, Xp
consists of all B frames.

4. MODELING EACH PART AND COMBINING
PARTS TO OBTAIN MPEG CODED TRAFFIC
MODELS

To obtain a model that can catch the ACFs of MPEG data,
we model each part by a self-similar process and then com-
bine these processes in an appropriate fashion. In this sec-
tion, the utilization of the self-similar processes is justified.
Three different ways in combining, leading to three different
models, are described.
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Figure 3: ACF of the active part of Star Wars (Self-similar
process is denoted by LRD)
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Figure 4: A Markov modulated self-similar process model

- for MPEG video

4.1. Markov Modulated Self-similar Processes Model

The ACF of each self-similar process is very different from
that of the original sequence. For the sake of brevity, only.
the ACF associated with the active part is shown in Fig. 3.
The fluctuation is no longer that big. We have used kP,
e P*and =P ‘/E, corresponding to the ACF's of a self-similar
process, a Markov process and an M /G /oo input process,
respectively, to approximate the ACFs of these three pro-
cesses. From Fig. 3 it is quite clear that k=# is a better
approximation of the ACFs of these classified data, and we
therefore use self-similar processes s1, sz, and s; to model
these processes. Using the least square method, we obtained
8 = 0.3321, 0.3069, and 0.4396 for the active, inactive, and
most active part, respectively. The corresponding Hurst
parameters for these self-similar processes are H = 0.8339,
0.8465, and 0.7802.

To model the whole data set, we need a process to govern
the transition among the processes s1, sz, and s3 obtained
above. Markov chain is used because of its simplicity.

Using Markov chain as the dominating process, our model
for MPEG video traffic can be described by the state dia-

gram shown in Fig. 4, where state S, S2, and S3 cor-
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Table 1: Least square errors obtained by self-similar process,
Markov and M/G /oo method

T v By [ B2 | Ba By | Bs

Be By By
LRD 0.5 0.4 0.5 0.5 0.4 0.5 0.4 0.5 0.5 0.5
M/G/oo | 5.1 i3 5.4 78 | 62 5.2 5.8 50 | 5.0 5.3
Markov 80 | 31 5.5 7.3 i1 81 10 8.0 | 7.2 3.8

respond to the three respective self-similar processes. At
state S;, bit rates are generated by process s;. The tran-
sition probability from S; to S; can be estimated from the
empirical data as follows:

N;; )
Pij = o (1)

where, NV; is the total number of times that the system goes
through state S;, N;; is the number of times that the system
make transition to state S; from state S;. For the Star Wars
video, the following transition matrix

. 0.0002 0.9998 0
P=] 01174 0.5232 0.35%4
0.0209 0.9791 0

is obtained. This matrix is useful for the synthesis of video
traffic. : :

4.2. Structurely Modulated Self-similar Processes
Model

In the second model, we have also used k™7, ¢ ?*, and

e ‘/E, corresponding to the ACFs of a self-similar process,
a Markov process, and an M /G /oo input process, respec-
tively, to approximate ACFs of these processes. Owing to
the space limit, only the approximation for X p is shown in
Fig. 5. The sums of squares of errors obtained by the three
kinds of methods are tabulated in Table 1. Again, it is quite
obvious that self-similar processes are better choices, justi-
fying our usage of self-similar processes for modeling these
data.

Using the least squares method, we obtained 8 = 0.4663,
0.3546, 0.4468, 0.4779, 0.4294, 0.4656, 0.4380, 0.4682, 0.4465,
and 0.4606 are derived for X7, Xp, XB,. XB,, -, and Xg,,
respectively. The corresponding Hurst parameters for these
processes are H = 0.7668, 0.8227, 0.7766, 0.7610, 0.7853,
0.7672, 0.7810, 0.7659, 0.7768, 0.7697, respectively.

In our second model, we combine X7, Xp, X5,, X5,, -,
and X p, in a manner similar to the GOP pattern to obtain
the model for the MPEG coded traffic. This model can be
used to more accurately generate traffic data than the first
one.

4.3. The Simple MPEG Video Traffic Model

In the third model, again we have used k=P, e P* and
e P ‘/E, corresponding to the ACF's of a self-similar process,
a Markov process, and an M/G/co input process, respec-
tively, to approximate ACFs of these processes. Similar to
the previous case, the self-similar processes are the better
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Figure 5: Approximation for ACF of P frames by : Self-
similar (LRD), M/G/oc, and Markov processes.

choices. Again, using the least squares method, 8 = 0.4662,
0.3404, 0.3040 are derived for X7, Xp, X, respectively.
The corresponding Hurst parameters for these processes are
H = 0.7669, 0.8296, 0.8480 respectively.

Modulating these three parts in a way similar to the
GOP structure leads to our third model, which is simple,
yet accurate.

5. MODELING OF CDF USING BETA
DISTRIBUTION

As mentioned at the beginning, the CDF is another im-
portant statistics to catch. Beta distribution [2] is used to
model the marginal distributions of these processes. The
marginal distribution of a Beta distribution process has the
following form

For simplicity, only the parameters for the third model
are listed here. That is, ¥ = 4.0605, 1.6605, 1.6431, and #/ =
10.4273, 12.0277, 14.0742, which are derived for X7, Xp,
XB, respectively. The simulations demonstrate that the
Beta-distribution follows the CDF very closely in all three
models. For illustration purpose, only CDF of I frames and
its approximation by Beta distribution of the third model
are shown in figure 6.
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Figure 6: CDF of I frames and its approximation by Beta
distribution.

6. COMPARISON AND DISCUSSION

The performance of the three models have been presented.
First, it is found from our simulations that the Markov mod-
ulated self-similar processes model cannot reflect the fluctu-
ating pattern existing in the ACF of the data trace as well
as the last two models can. Furthermore, the data gener-
ated by using the first model cannot follow the real traffic
data very closely. The last two models can however be used

1 T(v+n) (Z=to 7—1(1 _ m—pg )n—l
p1=po T(YT(n) \ p1—po H1—bo
o Lz <1, 0<v,0<n

0 otherwise

to generate traffic data, which are similar to the data trace.

flasvim po, ) = A trace of traffic data and the ACF generated by the third

(2)
where v and n are shape parameters, and [uo, 1] is the
domain where the distribution is defined. Beta distribution
is quite versatile and can be used to model random processes
with quite different shapes of marginal distributions. The
following formulae are used to derive the parameters of Beta
distribution:

—Z[2(1 - 7) - 57] (3)

i= @

where
1 N
= N E zi, (5)

2 NZ?; @} - (Zf\;l 15)2
= N(N —1) ‘ ()

and N is the number of data in the data set.

8
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model are shown in Fig. 7 and 8, respectively. We there-
fore conclude that the last two models which are based on
the MPEG structure are more accurate than the first model.

Secondly, as shown above, the third model, though sim-
pler than the second model, is almost as accurate in tracking
the ACF of MPEG data. It can generate traffic data, which
are similar to the data trace, as demonstrated in Fig. 7 and
8.

Since motion/scene complexity is not the focus of this
paper, the technique used to classify inactive, active and
very active parts of MPEG video traffic adopted in the first
model (refer to the formula in Section 3.1) is rather un-
sophisticated. Therefore it is conceivable that the perfor-
mance of the first model {decomposing video into three parts
based on motion/scene complexity) can be improved signif-
icantly with an advanced technique to accurately identify
motion/scene complexity. This task is by no means easy,
and is a hot research subject in the field of computer vision
and video processing. On the other hand, the GOP struc-
ture of MPEG data is universal regardless of motion/scene
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Figure 8: ACF's of empirical trace and our traffic model

complexity. Therefore, the decomposition according to the
MPEG data structure is practical and straightforward. The
simple model can be readily used to accurately model as
well as generate MPEG video data.
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