An Efficient Expression of Timestamp and Period
in Packet-based and Cell-based Schedulers

Dong Weif, Jianguo Cheni, and Nirwan Ansari

" -

' Advanced Networking Lab
New Jersey Institute of Technology
dxw3077@njit.edu, nirwan.ansari@njit.edu

! Bell Labs
Lucent Technologies

jianguol I @lucent.com

Abstract — Scheduling algorithms are implemented in
hardware in high-speed switches to provision Quality-of-Service
guarantees in both cell-based and packet-based networks. Being
able to guarantee end-to-end delay and fairness, timestamp-
based fair queuing algorithms have received much attention in
the past few years. In timestamp-based fair queuing algorithms,
the size of timestamp and period determines the supportable
rates in terms of the range and accuracy. Furthermore, it also
determines the scheduler’s memory in terms of off-chip
bandwidth and storage space. An efficient expression can reduce
the size of the timestamp and period without compromising the
accuracy. In this paper, we propose a new expression of the
timestamp and period, which can be implemented in hardware
for both high-speed packet-based and cell-based switches. As
compared to fixed-point and floating-point number expression,
when the size is fixed, the proposed expression has a better
accuracy.

I. INTRODUCTION

The current high-speed, service-integrated and packet-
switched networks support many kinds of services at the
same time. Packet switches are required to support a large
number of sessions with diverse bandwidth requirements; for
example, the supportable rate can go as low as 4 Kbits/s and
as high as 2.4Gbits/s (OC48) and 10Gbits/s (0C192). Packet
switches are also required to support a wide range of packet
sizes, from 40 bytes to 64 Kbytes (such as IP). Three
important issues should be considered in the design of a
scheduler: 1) end-to-end delay, 2) fairness, and 3)
implementation complexity.

Based on the architecture of the schedulers, packet
switches are classified into two types [1]: 1) frame-based, and
2) sorted priority. Recently, sorted priority algorithms, also
known as packet fair queuing (PFQ), have received much
attention because they can approximate the idealized
generalized processor-sharing (GPS) algorithm, which has
desirable properties in terms of end-to-end delay and fairness
(21.

In a PFQ algorithm, there is a global variable called virtual
time, associated with outgoing sessions being scheduled. The
virtual time is updated when a packet receives service. Each
packet has its own timestamp in the system. All packets are

sorted by their timestamps. Timestamp sorted algorithms [1]-
[2] include weighted fair queuing (WFQ), self-clocked fair
queuing (SCFQ), and worst-case weighted fair queuing such
as WF’Q and WF’Q+. The virtual start time and the virtual
finish time are the typical timestamps used in these
algorithms. Service interval is a function of the packet size
and the required session bandwidth. Given a virtual start
time, the service interval is used to calculate the virtual finish
time, and vice versa.

The size of the timestamp and period determines the
supportable rate in terms of range and accuracy. In this sense,
it seems to be tempting to use a larger size to represent them.
However, the size of the timestamp and period determines the
system memory in terms of bandwidth required to access and
space to store. In this regard, the smaller size the better. To
resolve this trade-off, we need to find the optimal
representation of the timestamp and period that can meet the
required accuracy in the smallest size. Note that it is very
difficult to use normal fixed-point or floating-point to
represent the large range of both the packet size and service
rate efficiently. To simplify the implementation and obtain a
satisfactory accuracy, we propose an alternative expression.
By shifting the decimal point to accommodate different
ranges of service rates, we can have a better representation in
terms of accuracy and size of timestamp and period. This
representation is generically applicable to any timestamp-
based scheduling algorithm. -

The rest of the paper is organized as follows. Section II
presents the background of the expression of timestamp and
period of PFQ. Our proposed expression for packed-based
schedulers is discussed in Section III. The proposed
expression is extended for cell-based (ATM) schedulers in
Section IV.

II. BACKGROUND

PFQ algorithms are used to approximate the idealized
generalized processor-sharing (GPS) algorithm. All PFQ
algorithms have similar sorted-queue architecture. They
differ in two aspects [2]: virtual time function and packet-
selection policy.

* This work was supported in part by the New Jersey Commission on Science and Technology via the NJ Center for Wireless
Telecommunications, and the New Jersey Commission on Higher Education via the NJI-TOWER project.

0-7803-7097-1/01/$10.00 ©2001 IEEE

95

A. Notation

Z(.) — the number of bits

P — the idealized period with infinite bit expression
P - actual period representation with finite bit expression
7 — the idealized service rate with infinite bit expression
r — actual service rate with finite bit expression

Fmax — Maximum supportable service rate

Fmin — Minimum supportable service rate

r; — required service rate for session i

ric— link capacity of the scheduling system

£(0,) — the relative error of o

T — timestamp

1, — integer part of o

F, — fractional part of o

M, — mantissa part of 0l

E, — exponent part of ot

L— the packet size

N- total number of bits of timestamp and period

B. PFQ Algorithms

PFQ algorithms have a global variable — system virtual
time V(.), which is defined differently for different PFQ
algorithms. They also maintain a virtual start time and a
virtual finish time for each session. When the &” packet of
session { arrives, the virtual start time Si(.) and virtual finish
time Fi() of this packet are given as follows:

max(V (), F;(t—)) session i in service(l)
T Fi(t-) Pkl finished service
i
F(n=5n)+—)
g

The worst-case fair index (WFI) [3] was introduced to
characterize the faimess performance of PFQ algorithms. It
was shown that PFQ algorithms with two tags (the virtual
start time and the virtual finish time) can achieve better
faimess performance than those with only a single tag. From
(1) and (2), the virtual finish time can be derived from the
virtual start time and the packet service interval.

C. Expression of Timestamp and Period

In a packet scheduling system, owing to the size limit of
the outgoing buffer, each packet is split into fixed-size
fragments, and the size of each fragment normally equals to
the minimum supportable packet size L, The concept of
time slot is introduced to normalize the time interval. One
time slot 7 equals to the time interval required to transmit a
fragment at link rate r;cc T= Ly / ric. Usually, the
maximum supportable service rate is the same as the link rate
of the scheduling system: #.. = rz¢. The period of session i is
defined as follows: P; = r,./r;, where r; is the required
service rate of session i.)

0-7803-7097-1/01/$10.00 ©2001 IEEE

Denote (Dik as the service interval for the &™ packet of

session i, and (D,," as the normalized value of (Di" . That is,

k
o iy L,-/
)} =_'~and¢_k= i noe
r i

i =

T Lmin
Fovax

where Lik is the size of the k™ packet of session i.

The service interval of one packet is the time in seconds
required to transmit this packet. The period of a session is the
ratio of the system maximum supportable rate to the
bandwidth requirement of this session, and it is a unitless
parameter. A session with P=3 means that the session needs
to receive service of one time slot in every three time slots.
The service interval and period are related as follows:

K £=L;'Lﬂr_=l‘kfp 3)
r L r. r L

The period is stored in a processing table for each session
and the timestamp is assigned for each packet. Using the

Lo

‘min

_ virtual start time as the timestamp, the service interval can be

calculated from (3), and thus we can derive the virtual finish
time from (2); using the virtual finish time as the timestamp,
the virtual start time can be similarly computed.

Modular comparison is used to select 1) packets eligible to
enter the scheduler; 2) fragments which should get service.
By employing modular comparison, two binary numbers
represented by n+1 bits can be compared without ambiguity
if the difference between them is less than 2". Using the
notation X[i:j] to represent the binary number extracted from
the #* through j* bits of X, with the convention that the LSB
bit is the 0" bit. A modular arithmetic comparison X>Y can
be computed by the following pseudo code:

Boolean Modular_Comparison (X, ¥)
if X[n-1:0] > Y[n-1:0]

then result = TRUE
else result = FALSE
if X[n]=Y[n]
then return result
else return NOT result

X[n-1:0] represents the binary number, and X[n] (the n™
bit of X) is used to discern wraparound ambiguity [2],[5]. The
following condition must be satisfied:

| -r|<2"

With this property, Reference [4] suggests that the size of
timestamps has to be at least one bit larger than the largest
normalized service interval ¢ _ .

AN b W —

Lm‘
_ min
] in
rmax
Therefore:
r L
Z(I,)E[]ogz‘“—“"+log2—L—“‘4“"—}+l 4)
rmm ‘min

96

The largest period is "mx/ . Therefore, the number of bits
rmin
to represent the integer part of the period must satisfy the
following inequality:

v
Z(Ip)2 [log2 %-l

min

&)

In a cell-based scheduling system, it is tempting to use an
integer representation of the timestamp, so that the system
virtual time is simply increased by one each time a cell is
transmitted. However, this would adversely affect the
provisioning of those sessions with high bandwidth
requirement. In a scheduling system with integer
representation of virtual time, the period of 1,23 ..
represents service rate of 1, 1/2, and 1/3... times the link
capacity. As a result, session rates between 1/2 and 1/3 of the
link capacity cannot be represented. Therefore, we need more
bits after the decimal point to represent the timestamp and
period of high-rate sessions. The relative error of the service
rate can be expressed in terms of the period representation
with finite bits as follows: g(r) =~ g(P) , with the assumption

that we have enough bits to represent the period, then ip - Fl

is far less than P .

The timestamp and period are stored and used together for
each packet in the system. The accuracy of both of them
determines the accuracy of the service rate. Usually, the
number of bits of the timestamp is determined by ¢ __, and

the accuracy of the period is determined by both of the
number of bits of the period and the accuracy of the
timestamp.

1) The Fixed-Point Expression:

Using the fixed-point expression, the minimal number of
bits to represent (from (4) and (5)) the timestamp and period
are:

‘min Tmin

Z(IT)=[log2 imax +10g2—r&1+1 (6)

Z(Ip)= [logz Tmax] @]

Tmin

Since scheduling involves arithmetic operations on both
timestamp and period, they should maintain the same
accuracy. That is, they should have the same number of
fractional bits.

Z(F)=2(F;) (@)
in which case we will not waste any bit in the expression.
Thus, the generalized accuracy of the fixed-point expression
is:

0-7803-7097-1/01/$10.00 ©2001 IEEE

9 ~ZE D

—_—, if Z(Fp)<Z(F,
7 if Z(Fp)<Z(Fy) ©)
(2

P

The total number of bits to represent the timestamp and
period is:

N=Z()+Z(F)+Z(1,)+ Z(F,) (10)

Consider a packet scheduling system .S which is required to
support service rates from 4 Kbits/s to 622 Mbits/s, and the
packet size ranged from 40 bytes to 64 Kbytes. Then, Z(I;) =
29 and Z(Ip) = 19. With Z(Fy) = Z(Fp) = 0, i.e. N = 48, the
maximum relative error of the service rate is shown in Fig. 1.

g(P)=
s i Z(Fp)2 Z(Fr)

2) The Floating-Point Expression

Similarly, in order to achieve unambiguous modular
comparison, the following inequality must be satisfied for the
floating-point expression:

Z(MT)erlogzﬁ+log2r'“—“-‘+l (12)
Lmin rmin
Let & be the number of additional bits:
Z(MT):[loglliﬂ+ log, rﬂ} +1+6 13)
Z(M,) =[1og2r‘ﬂ}+5 (14)
rmin

To maintain the same degree of accuracy of the timestamp,

Z(E;)=[log, Z(M})] (15)

Z(E,)=[log, Z(M,)] (16)
Thus,

N=Z(M,)+Z(E;)+Z(M,)+Z(E,) 17

Denote AM(P)=Z(Mp)-Ep and A(T)=Z(Mqy)-Er . AM(P) and
A(T) are the number of bits after the decimal point in the
period and timestamp, respectively. Thus, the maximum
relative error can be expressed as:

2
Z(Mpi1 ‘
S B(M,)-2' +270
=0

if A(P)< MT)

(18)
E(P) = 2/1(P)—Z,(T)—l

S TAE] v else
B,(M,)-2' +2%M»
i=A(P)~A(T)
Intuitively, with A(T)< A(P), if the timestamp has more bits
after the decimal point, the accuracy of the period is higher.

The value of the timestamp ranges from 0 to @, implying

that A(T) ranges from & to Z(Mp. The worst case,
corresponding to AM(T) = Auu(T) = Z(Myp-4, yields the
following maximum relative error:

97

2 if AP)< A, (T)

Z(Mp)-1 . ‘min
B(M,)-2' +2%%p

i=0

&(P)=

QAPI-A(T)-1
else

Z (M1
D B(M,)-2 42740
i=A(PY=2 i (T)

Consider the same packet scheduling system § as before.
Using (15) and (16), we have

Z(Er) =Z(Ep) =5 .

With (Z(M7) = 31, Z(Mp) = 7), i.e., N= 48, &=2, the
maximum relative error of the service rate using the floating-
point expression is shown in Fig, 1.

1I1. THE PROPOSED EXPRESSION FOR PACKET
SCHEDULERS

We propose a new expression by allocating bits to a range
number, say, C. Each range number C determines the decimal
point, and thus the range of the period. Denote C,; as the range
number for session i For example, when C=4, then
2<P<2.

Equations (6), (8) and (9) are still held for this expression,
. but the total number of bits becomes:

N=ZU)+Z(F))+ZU)+ Z(F,)+ Z(C) (19)

In a scheduling system, Z(I;) and Z(C) are constants. Other
three parameters are determined by the range of the period,
but the total number of bits NV remains the same. We shall
illustrate this representation by means of an example.

A. Example

Consider the same packet scheduling system § as before.
To compare the performance with the fixed-point and
floating-point representations, the number of bits for all
representations should be kept the same, say, N=48. With
Z(Iy) =29 and Z(C) = 4, Table 1 tabulates Z(Ip), Z(Fp), Z(Fy)
and different ranges of the period. .

Fig. 1 shows the maximum relative error of the service rate
using different expressions. Normally, 1% relative error of
the service rate induced by the expression is acceptable in a
scheduling system. Note that the proposed scheme has a
higher accuracy.

B. General Formula to Calculate the Number of Bits by
Using the Proposed Representation

In this section, we shall derive the formula for computing
the number of bits required to meet the maximum relative

error using our proposed expression. Denote €p.(r) as the
maximum relative error of the service rate. Let

B= [logz rmi-l

min

(20)

To maintain the same accuracy between the timestamp and
the period, the number of bits to represent the fractional parts
should be the same. Thus,

Z(F,) = Z(Fy)

0-7803-7097-1/01/$10.00 ©2001 IEEE

TABLEI
RANGE OF THE PROPOSED EXPRESSION

Range # Prin Prax Z(le) | Z(Fp) | Z(F1)
0000 1 2 1 7 7
0001 2 4 1 7 7
0010 4 8 3 6 6
0011 8 16 3 6 6
0100 16 32 5 5 5
0101 32 64 5 5 5
0110 64 128 7 4 4
0111 128 256 7 4 4
1000 256 512 9 3 3
1001 512 1024 9 3 3
1010 1024 2048 1 2 2
1011 2048 4096 11 2 2
1100 4096 8192 13 1 1
1101 8192 16384 15 0 [
1110 16384 32768 15 0 0
11 32768 | 155500 15 0 0

To perform modular comparison without ambiguity, (4)
must be met, and the minimum number of bits is

Z(1,) ={logz%l‘3‘—+log2 max]+1

‘min min

Range number C determines the range of the period as
follows:

2C,» S 1)1 < 2C,-+1
Then, the number of bits to represent C is
Z(C)=log, B1-1 @1

It can be shown that the minimum number of bits to
represent Ip, Fp and Fr such that the relative error is within

the maximum relative error €,,,,(7) is
Z(,)+Z(Fp)+ Z(Fy)=M
where
M = max{2 [~ log, &,,, }[log, BT}
The range number of P; can be computed as follows:
C = min{ rlog2 P]-1, 22O 1}
Then, the number of bits of the fractional parts is

{ 1-Jlogy(B-2°)]_1} P
Z(Fp)=Z(Fr)= 2
0 if p=26*
Thus, the number of bits of I is
Z(Ip)=M-2-Z(Fp) 25
Again, consider the previous packet scheduling system §,

in which the relative error of the service rate is required to lie
within 1%. Using the fixed-point expression, it takes at least
60 bits to meet the requirement of the system (i.e. Epu(?),
Linaxs Limins Tmax and Iin); alternatively, using the floating-point
expression requires at least 52 bits. However, it only requires

(22)

(23)

24

98

47 bits to satisfy the same system requirement by employing
our proposed representation. Obviously, the proposed
expression is more efficient. :

C. Implementation Issues

We have proved that the proposed expression uses fewer
bits than the fixed-point and floating-point expression to
represent the timestamp and period with the same accuracy of
the service rate, thus saving memory in terms of off-chip
bandwidth and storage space.

With the fixed-point representation, it is very easy to
perform operations such as addition and comparison. With
the floating-point expression, we need to first shift mantissa
of both timestamp and period, and then perform addition or
comparison. The computational complexity of the proposed
expression lies between them. The proposed expression uses
additional operations to adjust the decimal point by range
number as compared to the fixed-point expression. This can
be readily realized by hardware with some extra logic
operations.

IV. THE PROPOSED SHIFTING EXPRESSION FOR
CELL-BASED (ATM) SCHEDULERS
The cell-based scheduler can be considered as a special
case of the packet-based scheduler, with L,,,,=L,,,= constant.
Equations derived for the fixed-point, floating-point and our
proposed shifting fixed-point representations still hold. Note
that in this case Jog(Lma/Lmin) = 0 and @, = P;.

Consider an ATM scheduling system that is required to
support service rates from 4 Kbits/s to 622 Mbits/s. With cell
size of 53 bytes, Z(I;) = 19. With N=38, comparable results
similar to the ones shown in Fig. 1 are obtained for each
respective expression, implying that the proposed expression
has a higher accuracy for cell-based schedulers too.

V. CONCLUSION

In this paper, we have developed a new expression, which
can be implemented in hardware for high-speed switches, to
represent timestamp and period in packet-based and cell-
based scheduling system. It is applicable to any timestamp-
based scheduler.

0-7803-7097-1/01/$10.00 ©2001 IEEE

In comparison with the normal fixed-point and floating-
point representation, the proposed expression can achieve
better performance in terms of the number of bits and
accuracy. If the number of bits for all expressions is kept the
same, the proposed representation has a smaller relative error
than those of the other two. In other words, if the relative
error is kept the same for all expressions, our representation
uses fewer bits than others, thus saving system memory and
indirectly reducing latency. We have also derived the formula
to calculate the minimum number of bits to represent the
timestamp and period that meets the system requirement (i.e.

Emax (}"), Limaxs Limins Tmax and rmin)-

REFERENCES .
[1] A. Varma and D. Stiliadis, “Hardware Implementation of Fair Queuing

Algorithms for Asynchronous Transfer Mode Networks” [EEE
Communication Magazine, December 1997, pp. 54-68
[2] D.C. Stephens, J.C.R. Bennett and Hui Zhang, “Implementation

Scheduling Algorithms in High-Speed Networks” [EEE Journal on
Selected Areas in Communications, Vol.17, No.6, June 1999, pp. 1145-
1158

[3] J.CR. Bennett and Hui Zhang”WF’Q: Worstcase fair weighted
queuing”, Proc. IEEE INFOCOM’96, San Francisco, CA, pp. 120-128

[4] J.L. Rexford, A.G. Greenberg, and F.G. Bonomi, "Hardware-efficient fair
queuing architecture for high-speed networks", IEEE INFOCOM'96, San
Francisco, CA, pp. 638-646

[5] GR. Wright and W.R. Stevens, TCP/IP [llustrated Volume 2: The
Implementation, Reading, MA: Addison-Wesley, 1995, pp. 807-812

The Relative Error of Service Rate (48-bit Expression)

0 T T T T T y r T

Log10(Relative Error)

—3— Shifting Fixed-Point
-4~ Fixed-Point W,

Sk . Floating-Point . N
1% Relative Error AN
B
-6 ' TR S L . L L
0 2 4 6 8 10 12 14 16 18
Log2(Period)

Fig. 1 The comparison of various expressions with 48 bits in
terms of the maximum relative error

99

