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Abstract—Input-queued switching architecture is becoming an attrac-
tive alternative for designing very high speed switches owing to its scal-
ability. Tremendous efforts have been made to overcome the throughput
problem caused by contentions occurred at the input and output sides of
the switches. However, no QoS guarantees can be provided by the current
input-queued switch design.

In this paper, a frame based scheduling algorithm, referred to as Store-
Sort-and-Forward (SSF), is proposed to provide QoS guarantees for input-
queued switches without requiring speedup. SSF uses a framing strategy
in which the time axis is divided into constant-length frames, each made up
of an integer multiple of time slots. Cells arrived during a frame are first
held in the input buffers, and are then ‘“sorted-and-transmitted’’ within
the next frame. A bandwidth allocation strategy and a cell admission
policy are adopted to regulate the traffic to conform to the (r, T') traffic
model. A strict sense 100% throughput is proved to be achievable by re-
arranging the cell transmission orders in each input buffer, and a sorting
algorithm is proposed to order the cell transmission. The SSF algorithm
guarantees bounded end-to-end delay and delay jitter. It is proved that a
perfect matching can be achieved within N(In N + O(1)) effective moves.

I. Introduction

Scheduling is one of the most important issues in providing
guaranteed quality of service (QoS) in packet-switching net-
works. Scheduling algorithms which have been studied in the
literature can be classified into three categories according to
the adopted switching architecture: input scheduling, output
scheduling, and combined input output scheduling.

Most of the early studies focused on the output scheduling
owing to its conceptual simplicity. By assuming that cells are
readily available to be transmitted to the output links upon en-
tering a switch, many proposed algorithms are able to provide
QoS guarantees (for an overview, see [1]). However, the out-
put queueing architecture suffers from the scalability problem.
Since more than one cell can arrive at the switch in a given time
slot heading for the same output, the fabric and output buffers
should have the capability to accommodate all of the cells to
avoid cell loss and to meet certain delay bounds. In the worst
case, an N x NN switch has to run IV times faster than a single
link when all N inputs receive cells directed to the same output
in a time slot. Thus, the buffers, switch fabric, and control sys-
tem have to be sped up proportionally to the number of input
or output links, thus severely limiting the switch capacity.
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The input queueing architecture, on the other hand, elimi-
nates the scalability problem. Since buffers are placed at the
input side of the switch, the fabric and buffers can run at the
same speed as a single link without causing cell loss. Ow-
ing to its scalability, input queueing is receiving attention in
both the research and commercial communities [2], [3], (4],
[5], [6]. The major problem with the input queueing architec-
ture is its low throughput. It was shown [7] that the throughput
of an input-queued switch is limited to 58.6% of its capacity
for independent Bernoulli traffic if a single FIFO queue is used
in each input buffer. This is mainly owing to the head of line
(HOL) blocking, i.e., if cells at the head of the FIFO queues are
blocked, cells stored behind them cannot be transmitted even
if their destination outputs are open. Since the publication of
(7], many works have indicated that the throughput of an input-
queued switch can be improved by adopting a well designed
buffering scheme [8], [9]. HOL blocking can be eliminated by
adopting virtual output queueing, in which each input main-
tains a separate FIFO queue for each output. Cells at the heads
of the FIFO queues are all accessible to the scheduler. Since
the head cells are directed to different outputs, even if one cell
is blocked, the others are still available for transmission. How-
ever, since only one cell can be transmitted from each input
or to each output in any given time slot, contentions occur at
both the input and output sides, thus still limiting the through-
put of an input-queued switch. Most studies on input schedul-
ing focus on improving the throughput rather than providing
deterministic QoS guarantees. Maximizing the throughput is
equivalent to the matching problem in a bipartite graph [10].
An iterative algorithm called SLIP, which is a maximum size
matching based scheduler, can achieve asymptotically 100%
throughput for uniform traffic* [5]. Maximum weight match-
ing based algorithms have been proposed later to achieve 100%
throughput for non-uniform traffic {4], (6]. However, none of
the existing input scheduling algorithms has been able to pro-
vide deterministic QoS guarantees.

There has been a trade off between QoS guarantees and scal-
ability: the input queueing architecture is scalable but can-
not provide guaranteed QoS, while the output queueing ar-
chitecture can provide guaranteed QoS but is not scalable.
Lately, there is a trend to adopt combined input output queue-

1 All arrivals have the same rate, and are directed equally to all outputs.
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Fig. 1. An N x N input-queued switch with time axis divided into frames

ing (CIOQ), in which buffers are placed at both the input and
output sides of a switch [11], [12]. It has been proven in [11]
that a speedup of 2 is sufficient for a CIOQ switch to behave
identically to an output-queued switch which employs work-
conserving and monotonic scheduling discipline.

With the same buffer access and fabric speed, a switch which
does not require speedup can provide N times the capacity
of a switch which requires a speedup of N. Thus, speedup
should be kept as low as possible, and can only be eliminated
by using solely input queueing. In this paper, an input schedul-
ing algorithm, referred to as Store-Sort-and-Forward (SSF), is
proposed and proved to be able to provide guaranteed end-to-
end delay and delay jitter bounds, and to achieve strict sense
100% throughput with no speedup. As opposed to existing
input scheduling algorithms [4], [5], [6], [13] which employ
the work-conserving discipline, SSF uses a framing strategy,
which is non-work-conserving. A switch implementing the
non-work-conserving discipline may be idle even when there
are cells waiting for service, thus possibly increasing the aver-
age delay. However, the end-to-end delay bound is a more im-
portant performance index than average delay for guaranteed
services [1]. In the existing algorithms, cells are immediately
eligible for transmission upon their arrivals to a switch, and
thus the existence of a perfect matching in which every input
is matched to a unique output cannot be ensured in every time
slot. As a result, although 100% throughput can be achieved
asymptotically, no QoS guarantees can be provided. In SSF,
the time axis is divided into constant periods of length 7', called
frames, each of which is an integer multiple of the cell trans-
mission time. Cells arrived at the inputs of a switch during one
frame are first held in the input buffers, and are then “sorted-
and-transmitted” in the next frame. The (r, T') traffic model is
adopted in SSF, in which a connection with a rate of r cannot
transmit more than r - T bits during time 7". Bandwidth alloca-
tion is performed before a connection is established to assign
the connection rate in such a way that the aggregate rate of any
link is below its capacity. The SSF algorithm consists of a cell
admission policy to regulate the traffic pattern to conform to
the (r, T') traffic model at the source node of each connection,
and a sorting algorithm at each switching node to resolve the
input and output contentions. It is proved that cells arrived dur-
ing one frame can be transmitted in the next frame. Therefore,
an input-queued switch employing SSF can achieve strict sense
100% throughput, and provide deterministic end-to-end delay
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Fig. 2. Time relation between cell arrivals and departures

and delay jitter bounds. Since SSF is a non-work-conserving
scheduler, the performance analysis can be extended from a
single node to a network with arbitrary topology, and more ef-
ficient usage of buffer space than work-conserving schedulers
can be achieved [1].

The rest of the paper is organized as follows. Section 2
presents the SSF algorithm. The proof of the QoS guarantees
and the analysis of the complexity of SSF are given in Section
3. Concluding remarks are given in Section 4.

II. The Store-Sort-and-Forward algorithm

The Store-Sort-and-Forward (SSF) algorithm consists of two
parts: a cell admission policy which is only needed at the
source node of each connection to regulate the traffic to con-
form to the (r,T') traffic model [14], and a sorting algorithm,
which is needed at each switching node to resolve input and
output contentions.

A. Framing strategy and cell admission policy

Consider an N x N input-queued cell switch in which buffers
are only placed at the input side of the switch. A framing strat-
egy similar to [14] is adopted in SSE. At each switch, the time
axis is divided into frames with equal length of T', where T'
is an integer multiple of the transmission time of a cell. We
assume that all input and output links have the same transmis-
sion rate R and are synchronized, i.e., input and output links
start service at the same point of time, as shown in Fig. 1. For
simplicity, the frame size M is expressed in unit of cells, i.e.,
M = 1.R-T, where L is the cell length in bits.

Cells arrived during one frame are first held in the input
buffers and eligible for transmission in the next frame, as
shown in Fig. 2. Cells stored in one input buffer may go to
any of the outputs. Let r; ; be the rate of a connection between
input 7 and output j. The traffic load of any input or output
link should be kept below its capacity to avoid cell loss, i.e.,
Zi\;'l Ti,g * T S R -T and Z;\]_—-l Tig * T S R-T. Thus,
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Fig. 3. Celis arrived in one frame: (a) original arrival orders. (b)
scheduled transmission orders.

bandwidth allocation must be performed in the signaling phase
before a connection is established. To guarantee that the traf-
fic on any link is not overloaded, a cell admission policy is
needed to regulate the traffic to conform to (r, T') traffic model,
in which a connection with a rate of r; ; can transmit no more
than 7; ; - T bits during a frame with length of T'. If each server
along a connection path guarantees that cells arrived during one
frame can always be transmitted in the next frame, the connec-
tion will conform to the (r,T') traffic model at every switch
throughout the network [14], and therefore, it is only necessary
to have the cell admission function at the source node of the
connection.

B. The sorting algorithm

The sorting algorithm is a key element of SSF to ensure that
cells arrived in one frame can be transmitted in the next frame
by completely resolving the input and output contentions. Cells
arrived at one input during a frame can go to any of the outputs.
Since there is no speedup at either the buffers or the fabric,
only one cell can be transmitted from each input, and likewise
only one cell can be forwarded to each output in any given
time slot. Thus, contentions occur when more than one cell is
destining for the same output in the same time slot, as shown
in Fig. 3(a). Contention is the main problem which restricts
an input-queued switch from providing QoS guarantees, and
can be resolved by rearranging the transmission order of the
cells among different connections? arrived during one frame in
each input buffer in such a way that cells to be transmitted in

2Changing the relative transmission order of cells belonging to an individual
connection does not affect the contentions.

the same time slot are going to different outputs, as shown in
Fig. 3(b). Let C; ; be the number of cells which arrive at input
1 and are directed to output j in one frame. We will prove in
Section 3 that such a rearrangement always exists if the traffic
pattern conforms to the (r, 7") model and the traffic is not over-
loaded, ie., 3, C;; < M and 3 C;; < M. For simplicity,
we make the following assumption.
Assumption 1: 3 All the input and output links are fully uti-
lized, i.e.,
> Cij=M and Y Cij=M Vij=1,2,--,N.
K3

J

Definition 1: A perfect matching is a matching in which ev-
ery input is matched to a unique output.

To ensure that cells arrived in one frame can be forwarded to
the output links in the next frame, a perfect matching is needed
in each time slot. A traffic matrix W = [w; ;] can be generated
for each frame, where every row % in W represents a distinct
input k, and every column j represents a distinct output {. Note
that 7 is not necessarily equal to k; likewise, j may not equal
to I. The element w; ; at the intersection of row ¢ and column
j indicates the number of cells destined for the corresponding
output ! from the corresponding input k. The sum of elements
along any row or column is exactly M based on Assumption 1.
If elements along the diagonal of the matrix are all nonzero, ev-
ery input is matched to a unique output. Such a matrix, referred
to as a matched matrix, is attainable by swapping rows and
columns of an arbitrary traffic matrix if Assumption 1 is held.
A modified version of McWorter’s algorithm which was origi-
nally proposed to resolve the marriage problem [15] is used to
obtain a matched matrix.

Consider a traffic matrix which can be decomposed into the
following form:

ne[2 2]

where blocks A and D are square, and all diagonal elements of
A are nonzerot.

Definition 2: An effective move consists of row and column
swappings with the constraint that all diagonal elements of A
remain nonzero that will result in

» moving a nonzero element in D to the upper-left corner of

D,

« replacing a zero element in B by a nonzero element in A4,

or

« replacing a zero element in D by a nonzero element in C.

A matched matrix can thus be obtained by the following it-
erative procedure in each time slot:

1. Single effective move: If there is at least one nonzero el-

ement in block D, that element can be moved to the upper-
left corner of D by swapping rows and columns without

Y. Cij < Mor Z]. Ci,j < M, void cells can be easily inserted into
corresponding input buffers at the end of each frame to meet Assumption 1.
Void cells are sorted as normal cells, but are not transmitted.

4Initially, the size of A can be 0.
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Fig. 4. A single effective move: (a) There is a nonzero element
in block D. (b) The nonzero element is moved to the upper-left
corner of block D by swapping rows 7 and 8, and then columns
7 and 8.

changing any element in block A, as shown in Fig. 4.
Therefore, the size of A is increased by one® within a sin-
gle effective move. This step is repeated until all elements
in D become zero or the size of D becomes zero.

2. Double effective move: If all elements in D become
zero, find a nonzero element in C. There must be some
nonzero elements in block C, otherwise the input buffers
corresponding to the rows in blocks C' and D do not
contain any cell, thus violating Assumption 1. For any
nonzero element w; ; in block C, if there exists a corre-
sponding nonzero element w;,;, for some k in block B, in-
terchange columns j and k, thus resulting in one nonzero
element in block D, as shown in Fig. 5. By repeating Step
1, the size of A is increased by one. That is, it takes two
effective moves to increase the size of A by 1, thus so
called a double effective move.

3. Multiple effective move: For every element w; ; in block
C, if the corresponding element w; x is zero for all k in
block B, rows and columns are swapped (see Fig. 6(b))
such that nonzero columns of C' are moved right next to
block D resulting in the following matrix:

A X G
Wi=}| F A 0},
0 E D

where block E contains all the nonzero columns of C
and all diagonal elements of A; and A, are still nonzero.
Block F'is called a residue matrix. We will prove in Sec-
tion 3 that elements in block F' cannot be all zero. For any
nonzero element w; ; in F, if there exists a correspond-
ing nonzero element wj ; for some k in G, interchange
columns j and k, thus resulting in a nonzero element in
the zero block just below G (i.e., completion of one ef-
fective move), as shown in Fig. 6(c). Then, Step 2 can be
repeated to augment the size of A by one. However, for

5We adopt the notation that the size of an N x N matrix when increased by
one becomes an (N + 1) x (N + 1) matrix.
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Fig. 5. A double effective move: (a) Block D has only zeros
and there is a nonzero element in block B corresponding to a
nonzero element in block C. (b) The nonzero element in block
C is moved to block D by swapping columns 5 and 8.

every nonzero element w; ; in F, if the corresponding ele-
ment wj x is zero for all & in block G, the sub-matrix con-
sisting of all but the extended rows and extended columns®
of block F satisfies the same conditions as the original sit-
uation in Step 3, and can thus be further decomposed as
above. Hence, either a nonzero element can be moved to
the zero block below G or the traffic matrix can be recur-
sively decomposed.

We will prove in Section 3 that a perfect matching can be
found within N(ln N 4+ O(1)) effective moves if the traffic
pattern conforms to Assumption 1. Once a matched matrix
is found in a time slot, a cell corresponding to each diagonal
elements, say w; ;, is scheduled to be transmitted during the
next frame from the input corresponding to row ¢ to the output
corresponding to column 4. Then the value of each diagonal el-
ement is reduced by one. In the next time slot, a new matched
matrix is obtained based on the updated traffic matrix until all
the cells in the frame are scheduled.

I1I. Algorithm analysis

In this section, we first prove that by rearranging the cell
transmission orders in each input buffer, a contention free
schedule can be found in each time slot if the traffic pattern
follows Assumption 1, and then we analyze the complexity of
the algorithm.

A. Guaranteed QoS

Finding a perfect matching is the same as finding a system
of distinct representatives (SDR) in a family of sets [16].

Definition 3: Suppose = {S1, S, -, Sy} is a family of
sets, where S;, 7 = 1,2,---, N, is a set of elements. Sets
S; and S; are not necessarily distinct Vi # j. Let V. =
(a1,az,---,an) be an N-tuple vector with a; € S1, a2 € Sy,
---,an € Sy. Then, V is called a system of representatives

% An extended row of a block is referred to as the row of the traffic matrix
which contains the row of that block; an extended column of a block is referred
to as the column of the traffic matrix which contains the column of that block.
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Fig. 6. A multiple effective move: (a) There are only zero elements in block B corre-
sponding to the nonzero elements in block C. (b) Residue matrix F' is constructed by
swapping columns 2 and 6, and then rows 2 and 6. There is a nonzero element in G
corresponding to a nonzero element in F. (c) The nonzero element in F' can be moved
to the zero block below G by swapping columns I and 8.

for Q. In addition, if a;’s are all distinct, V is called a system
of distinct representatives (SDR) for §2.

Fact 1: Philip Hall’s Theorem [16]: The family of sets Q2 =
{81, 2, -+, SN} possesses an SDRiff forallk = 1,2,---, N,

a union of any k sets in 2, U S;, contains at least &k distinct

elements, i.e., |6 S; |> k, where | S | represents the number
of distinct elements in S.

Let I; be a set, where elements in I; represent the distinct
destinations of the cells arrived at input % in one frame. Thus,
a perfect matching is in fact an SDR of the family of sets ] =

{Ii,I,---,In}.

k
Lemma 1: Let U I; be a union of any & sets in I. The fol-
lowing relation holds for any traffic pattern which satisfies As-
sumption 1:

k
U I |> k,

i.e., the number of distinct destinations of cells belonging to
one frame in k input buffers is at least k.
Proof: This is proved by contradiction. Assume that the state-
ment is not true, i.e., the number of distinct destinations of cells
belonging to one frame in any k input buffers could be less
than k. Since the total number of cells belonging to the frame
in these k input buffers is k£ - M, at least one output link must
be receiving more than M cells, thus violating Assumption 1.
Therefore, the Lemma must be true. 0
Let O = {O1,0s,---,0n} be a family of sets, where O; is
a set, whose elements are the distinct inputs from which cells
belonging to one frame are directed to output 7.

k

Lemma 2: Let U O; be a union of any k sets in O. The
following relation holds for any traffic pattern which satisfies
Assumption 1:

k
|UO; |> k,
i.e., the number of distinct sources (inputs) of the cells received

by k outputs in one frame is at least k.
The proof is the similar to that of Lemma 1. O

Lemma 3: Let T be a set of any k inputs, and © be a set
of any k outputs, where kK = 1,2,---, N. If cells belonging
to one frame in the k input buffers in I" are directed to the k
outputs in © exclusively, the k outputs in © can only receive
cells from these k inputs in I' during the frame given that the
traffic pattern satisfies Assumption 1, and vice versa.

Proof: This is proved by contradiction. Assume that the state-
ment is not true, i.e., under the condition that cells belonging
to one frame in k input buffers in [ are directed to the &k out-
puts in © exclusively, the & outputs in © can still receive cells
from inputs which are not in I". According to Assumption 1,
the number of cells which can be transmitted to any k outputs
or from any & inputs in each frame is exactly k& - M. If the k
outputs in © receive cells from inputs which are not in I', the
number of cells transmitted to these k outputs from the k in-
puts in I’ must be less than k - M. Thus, some of the cells in
the k inputs in ' must be transmitted to some outputs not in
©, which contradicts our condition, and therefore, the lemma
must be true. Similarly, if cells received by the k£ outputs in
© all come from the k inputs in ' during one frame, the cells
stored in these k input buffers in I' can only be directed to the
k outputs in © in that frame. O

Lemma 4: A perfect matching always exists if the traffic pat-
tern satisfies Assumption 1.

k
Proof: This lemma follows directly from Lemma 1. Since |U
I; |> k if the traffic pattern satisfies Assumption 1, according
to Philip Hall’s Theorem, an SDR exists for the family of sets
I, which is in fact a perfect matching. 0
Theorem 1: SSF can guarantee strict sense 100% through-
put, bounded end-to-end delay, and bounded end-to-end delay
jitter.
Proof: From Lemma 4, a perfect matching exists provided As-
sumption 1 is satisfied, i.e.,

S Cij=M and Y Ci;j=M Vi,j=12,---,N,
i J
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Fig. 7. Two extreme cases of cell transmission: (a) the cell experiences an end-to-end
delay of (n — 1)T" + 7. (b) the cell experiences an end-to-end delay of (n + 1)T — 7.

where C; ; is the number of cells which arrive at input 7 and
directed to output j in one frame.

Once a perfect matching is found in a time slot, the rest of the
cells belonging to that frame still satisfy Assumption 1, except
that instead of M there are M — 1 cells left in each input buffer.
Therefore, a perfect matching can be found in each time slot
until all the cells belonging to that frame are scheduled, and
thus 100% throughput is achieved.

Noting that cells arrived during one frame can be transmit-
ted in the next frame, the following are two extreme cases of
cell transmission for a connection consisting of n concatenated
switches: a cell arrived in the last time slot of frame f at the
first switch is transmitted in the first time slot of frame f + n at
the nth switch resulting in an end-to-end delay of (n—~1)T 4+,
where 7 is the time duration of one time slot, and a cell arrived
in the first time slot of frame f at the first switch is transmitted
in the last time slot of frame f + n at the nth switch resulting in
an end-to-end delay of (n + 1)T — 7, as shown in Fig. 7. Thus,
the end-to-end delay and end-to-end delay jitter of a connec-

tion are bounded by (n + 1)T — 7 and 2(T" — 7), respectively.
[}

B. Complexity issues

In this section, we derive the upper bound of the number of
effective moves needed to obtain a perfect matching.

Consider the following N x N traffic matrix satisfying As-
sumption 1,

A B
WO = [ C D ] )
where block A isa P x P block, D is an (N — P) x (N — P)
block, and all diagonal elements of A are nonzero.

The rows and columns in Wy, are associated with the inputs
and outputs, respectively. Assume that row ¢ is corresponding
to input k, and column j is corresponding to output [, where
1<14,5,k,1 < N. Therefore, a nonzero element w; ; indicates
that input & has cells directed to output [.

Lemma 5: If D is an (N — P) x (N — P) “zero” block, the
number of nonzero columns in block C is atleast N ~ P + 1,

and similarly, the number of nonzero rows in block B is at least
N—-P+1.

Proof: There are N — P rows in blocks C and D. According
to Lemma 1, cells stored in the inputs corresponding to these
rows are directed to at least NV — P distinct outputs, i.e., there
are at least N — P nonzero columns in blocks C and D. Since
D is a “zero” block, there are at least N — P nonzero columns
in block C. However, if the number of nonzero columns in
block C'is N — P, i.e., cells stored in the inputs corresponding
to the IV — P rows are directed to N — P distinct outputs,
according to Lemma 3, the V — P outputs corresponding to the
N — P nonzero columns in block C can only receive cells from
these N — P inputs. Hence, columns in block A corresponding
to these N — P outputs must be zero, thus conflicting with
the condition that the diagonal elements of A are all nonzero.
Therefore, the number of nonzero columns in block C' is at
least N — P + 1. Similarly, the number of nonzero columns in
block Bis atleast N — P + 1. O

In the previous section, we claimed that block F in the traf-
fic matrix W; must have some nonzero elements. The proof
is given by the following Lemma. Note that in the scenario of
a multiple effective move, the traffic matrix is decomposed re-
cursively, and a residue matrix is constructed in each iteration
of the recursive procedure until a nonzero element w; ; cor-
responding to a nonzero element w; ; in the residue matrix is
found in block G, as shown in Fig. 8.

Lemma 6: Consider a traffic matrix which satisfies Assump-
tion 1. Any residue matrix F associated with an (IV — P) x
(N — P) all-zero block D must have at least N — P41 nonzero
columns.

Proof: Consider the residue matrix constructed in the first it-
eration of the recursive procedure. For convenience, the traffic
matrix W is written again below:

A X G
Wl = F A2 0 ]
0 E D

where D is an (N — P) x (N — P) “zero” block, and diagonal
elements of A; and A are all nonzero. By virtue of the proce-
dure in obtaining a matched matrix, the block below a residue
matrix is always a “zero” block, and the extended rows of block
F constitute a zero block in the area above D.
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First, we prove that there are at least N — P + 1 columns in
block F'. According to Lemma 5, there are at least N — P + 1
nonzero columns in block C' and N — P + 1 nonzero rows
in block B. Thus, if the number of zero columns in block C'
is less than NV — P + 1, there must exist at least one nonzero
element w;  in block B corresponding to a nonzero element
wj,; in block C, which results in a double effective move, and
no residue matrix is needed to be constructed. Thus, residue
matrix F' is only necessary when the number of zero columns
in C is larger than or equal to V — P + 1, i.e., there are at least
N — P + 1 columns in block F.

Let m be the number of columns in F, i.e., block A; is an
m X m block, and n be the number of nonzero columns in F,
and thus there are m — n zero columns in F'. Suppose cells
received by the outputs corresponding to these m — n extended
columns of F" and the N — P extended columns of G come from
d distinct inputs. Since all nonzero elements in these extended
columns are in blocks A; and G, the number of distinct inputs
d is no more than m, i.e.,d < m.

Considern < N — P: By Lemma 2, sincem—n+N —P >
m forn < N — P, the number of distinct inputs d correspond-
ing to these m — n + N — P outputs must be greater than or
equaltom —n + N — P, i.e., greater than m. This contradicts
the above, and thus n > N — P.

Considern = N — P: By Lemma?2, sincem—n+N—P =
m forn = N — P, the number of distinct inputs d correspond-
ing to these m — n + N — P outputs must be greater than or
equaltom —n + N — P, i.e., d > m. On the other hand, d
must be less than or equal to m as shown above, which implies
that d must be equal to m. However, by Lemma 3, the cells
stored in these d = m inputs corresponding to the rows in A4;
are exclusively directed to the m outputs corresponding to the
m — n columns in block 4; and the N — P columns in block
G, thus resulting in n zero columns in block A;. This conflicts
with the condition that all diagonal elements in A; are nonzero.
Therefore, n is at least N — P + 1.

Noting that the elements below any residue matrix and the el-
ements below block G are always zero, the proof of the lemma
for a residue matrix constructed in any other iteration of the re-
cursive procedure is similar to that for the residue matrix con-
structed in the first iteration, and thus the lemma is proved. 0O

Theorem 2: Let k, where k > 1, be the number of effec-
tive moves within which the size of block A is guaranteed to
increase from P x P to (P + 1) x (P + 1) in SSF, where
P=0,1,2,---,N — 1. The following relation between k and
P holds for any traffic patterns satisfying Assumption 1.

E-(N+1)
k+1

(Ic—l)-(N+1)<P<
A <

Proof: According to Lemma 6, the number of nonzero
columns in a residue matrix is at least N — P + 1 if the
traffic pattern satisfies Assumption 1. The larger the number,
the smaller number of decompositions of the traffic matrix is
needed to guarantee that a nonzero element w; , in G corre-
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Fig. 8. Decomposition of a traffic matrix

sponding to a nonzero element w; ; in the residue matrix can
be found, i.e., a smaller number of effective moves are needed.
To derive the number of effective moves within which the size
of block A is guaranteed to increase by one, the worst case is
considered. Thus, we assume that there are N — P + 1 nonzero
columns in each residue matrix as shown in Fig. 8.

Note that the size of a residue matrix is (N — P+ 1) x (P —
(k—2)(N — P+1)), where k is the number of effective moves
required to move a nonzero element to the upper-left corner of
block D if a nonzero element w; 5 which is corresponding to a
nonzero element w; ; in the residue matrix can be found in G,
as shown in Fig. 8. Since there are N — P + 1 nonzero rows
in G and N — P + 1 nonzero columns in a residue matrix, if
the number of columns in the residue matrix is less than 2(V —
P+1)ie,P—(k—-2)(N-P+1)<2(N-P+1)o0r
equivalently, P < Uk]i#l at least one nonzero element wj,p,
corresponding to a nonzero element w; ; in that residue matrix
can be found in G. Thus, k effective moves are sufficient to
increase the size of block A by one if P < M,C—]{-T—ll Similarly,
k — 1 effective moves are sufficient to increase the size of block
Abyoneif P < w Thus, k effective moves are
necessary only if gk—_l)—kw < P. Therefore, k effective
moves are necessary and sufficient to guarantee to increase the
size of block A by one if =2 {VHD < p < BMED o

Theorem 3: The number of effective moves required to ob-
tain a perfect matching in SSF is bounded by N (In N + O(1)).
Proof: From Theorem 2, the size of block A is guaranteed to
increase by one within k effective moves if the number of rows
(columns) in block A satisfies the following condition,

(k—=1)-(N+1) kE-(N+1)
<P< 1
- k+1 M
Equation (1) can be rewritten as follows:
P N+1
<k<
N-P+1~- — N-P+1



Thus, the total number of effective moves f (V) required to
obtain a perfect matching in the worst case is Zg;; k which
is bounded by
= N+1

N-1
f(N) = Ekﬁ NP+l
P=0

P=0

@

Rewrite the right part of Equation (2) in terms of n, where n =
N-P+1.

N+1 4 N 4
V) < N+ ~<NY - 3)
n=2 n=1
Note that the sum of the Harmonic series is given by:
1
> = =ln+0(1)
k
k=1
Thus,
f(N) £ N(aN+0(1) @)

i.e., the number of effective moves required to obtain a perfect
matching is bounded by N(In N + O(1)). a

IV. Conclusions

In this paper, a novel scheduling algorithm, referred to as
Store-Sort-and-Forward (SSF), has been proposed to provide
QoS guarantees for input-queued switches. A framing strat-
egy is adopted in the SSF algorithm, in which the time axis
is divided into fixed length frame. SSF adopts a non-work-
conserving discipline, i.e., cells arrived during one frame are
only eligible for transmission in the next frame. By incorporat-
ing a bandwidth allocation strategy and a cell admission pol-
icy, SSF ensures that cells arrived at a switch during one frame
can be transmitted in the next frame. Therefore, strict sense
100% throughput is guaranteed, and the end-to-end delay time
and delay jitter are bounded. It has also been proved that a per-

fect matching can be obtained within N (In N 4 O(1)) effective
moves.
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