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Abstract - It is estimated thai video traffic will be increasingly
occupying a major portion of future network bandwidth, and thus traf-
fic modeling plays an important role for network design and manage-
ment. In this paper, we propose Markov modulated self-similar pro-
cesses to model MPEG video sequences that can capture the LRD (long
range dependency) characteristics of video ACF (auto-correlation func-
tion). The basic idea behind this modeling is to decompose an MPEG
compressed video sequence into three parts according to different mo-
tion/change complexity. BEach part can individually be described by a
selfesimilar process. In addition, Beta distribution is used to character-
ize the marginal cumulative distribution (CDF} of the video traffic. To
model the whole data set, Markov chain is used as a dominating pro-
cess to govern the transitions among these three self-similar processes.
Initial simulations on a real MPEG compressed movie sequence of Star
Wars have demonstrated that our new model can capture the LRD of
ACF and the marginal CDF very well. Video traffic synthesis using cur
model is presented. Further research in this direction is discussed.

INTRODUCTION

The trend to transmit video over network, especially over ATM, is emerg-
ing. Traffic models are important to network design, performance evaluation,
bandwidth allocation algorithm design, and bit-rate control. It was, however,
observed that traditional models fall short in describing the video traffic be-
cause video traffic is strongly auto-correlated and bursty [1]. To accurately
model video traffic, auto-correlations among data should be taken into consid-
eration. A considerable amount of effort on video modeling has been reported.
These models can be categorized into two classes: short range dependency
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(SRD) models and long range dependency (LRD) models. They are used to
capture two statistical quantities: marginal distribution and auto-correlation
function of traffic arrival times.

Most of the work in video source modeling has been largely confined to a
short period of video sequences and video conference sequences, where frames
with sudden scene change or large motion are rare. That is not the case,
however, in full length movies. There has been some effort to model full
length movies, such as M/G /oo [2] and LRD model. These models, however,
are based on JPEG compressed video sequences, which are seldom used in
practice.

Markov modulated TES (Transform Expand Sample) model was used to
model JPEG and MPEG encoded motion pictures {3]. One of the drawbacks
of TES is that the ACF of a TES process for lags beyond one cannot be
derived analytically. It can only be obtained by searching in the parameter
space, and thus good results can hardly be guaranteed. One of the important
tasks of traffic modeling is to obtain an analytical model so that the network
performance can be evaluated analytically. TES model fails to provide such
an analytical model.

In this paper, we propose to model MPEG compressed video sequences by
Markov modulated self-similar processes. This model is analytical in nature.
The motivation of our proposed model is illustrated in the next section.

MOTIVATION BEHIND THE PROPOSED NEW MODEL

The empirical data used in our work are MPEG-I coded data of Star Wars!,
which contains materials ranging from low complexity /motion scenes to those
with high and very high actions. The ACF of frame size vs. frame lags of
MPEG coded Ster War is shown in Fig. 1, and it is quite different from
that of JPEG coded movies Star Wars (see Fig. 2). Specifically, the ACF
of MPEG coded data fluctuates around three envelopes, reflecting the fact
that, after the use of motion estimation techniques, the dependency between
frames is reduced. This characteristic should be taken into consideration in
meodeling MPEG coded video sequences.

It is known that a self-similar process is a kind of LRD process. Since
empirical video traffic exhibits self-similarity and long range dependency, it
is natural to use self-similar process to model video traffic [4]. The above-
mentioned observation, however, tells us it is not suitable to model the MPEG
coded data with a single self-similar process. Several different self-similar
processes with different ACFs should be used to model the fluctuation of
ACFs. We therefore divide the sequence into three different subsequences,
each modeled by a separate self-similar process. The transition among these
three processes is governed by a Markov chain, whose transition matrix can

1The MPEG-I coded data were the courtesy of M. W. Garrett of Bellcore and M. Vetterli
of UC Berkeley
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Figure 1: ACF of MPEG video. Figure 2: ACF of JPEG video.

be obtained from empirical data.

DECOMPOSITION OF MPEG DATA

From the above analysis, we suggest to divide the traffic data into three
different parts — inactive part, active part, and very active part. Suppose f(3)
is the number of bits in the #th frame. The video traffic can be classified as
follows:

LI fe+1}/f(i) > T, i =2,3,--+, then f(¢ + 1} belongs to the non-
inactive parf; otherwise, f(i + 1) belongs to the inactive part, where T
is a threshold.

2. Similarly, the non-inactive part can be classified into active and very
active parts.

Taking these three data sets as three different random processes, we can
calculate their ACFs.

MODELING OF DECOMPOSED DATA

The ACF of each sub-process is quite different (as shown in Figs. 3, 4,
and 5) from that of the original sequence. The fluctuation is no longer that
big. We have used k~#, e=#* and e #V*, corresponding to the ACFs of a
self-similar process, Markov process, and M /G /oo inpui process, respectively,
to approximate the ACF of the decomposed empirical data. It is apparent
that &7 is a better approximation of ACFs of these decomposed data, and
we therefore use self-similar processes s1, sq, and s3 to model these processes,
respectively.

Using the least squares method, we obtainred g = 0.3321, 0.3069, and
0.4396 for the inactive, active, and very active part, respectively. The corre-
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Figure 3: ACF of the inactive part. Figure 4; ACF of the active part.
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Figure 5: ACF of the most active Figure 6;: CDFs of the inactive part
part. and its model.

sponding Hurst parameters for these processes are H = 0.8339, 0.8465, and
0.7802, respectively.

Beta distribution is proposed to model the marginal distributions of these
processes. Owing to its versatility, Beta distribution can model random pro-
cesses with quite different shapes of marginal distributions. The marginal
distribution of a Beta distribution process has the following form

1 T'(v+m ( T—po )7—1(1 _ m—pg )n—l
#1—po T(T{m) ‘ p1— 1o #1140
FQes,m, po, ) = o <z < p,0<y,0<y (1)

0 otherwise,

where -y and 5 are the shape parameters.
The marginal distributions of the empirical data and the corresponding
Beta distributions are shown in Fig. 6, 7, and 8, respectively.
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MODELING OF MPEG DATA

To model the whele data set, we need a process to govern the transition
among the processes sy, s2, and s3 obtained above. We choose to use Markov
chain as the dominating process because of its simplicity. Our model for
MPEG video traflic can thus be described by the state diagram drawn in
Fig. 9.

51, Sz, and 93 correspond to the three respective self-similar processes.
At state S;, bit rates are generated by process s;. The transition probability
from S; to S; can be estimated from the empirical data as follows:

N. .
Pij = MNE: (2)

N; is the total number of times that the system goes through state S;, and
N;; is the number of times that system transits to state S; from state S;. For
the Star Wars video, the following transition matrix

) 0.0002 0.9998 0
P= 01174 0.5232 0.3594
0.0209 0.9791 0

was obtained. This matrix is useful for the synthesis of video traffic.

VIDEO TRAFFIC SYNTHESIS

To synthesize video traffic using our model requires a self-similar traffic
generator. We have used asymptotically self-similar fractional auto-regressive
integrated moving-average (F-ARIMA) method to generate three self-similar
processes. Since these processes are Gaussian, they can be mapped into Beta
distribution by the following formula:

Y = F51 (Fn(Xi)) k>0, {3)

where X} is a self-similar Gaussian process, Fy is the cumulative probability
of the Normal distribution, and Fy ! is the inverse cumulative probability
function of Beta mocdel.

After the generation of three self-similar processes, video traffic can be
synthesized by combining the three processes via a Markov process, whose
transition matrix was given in the previous section.

FUTURE WORK

Network performance issues such as cell loss rates with sources generated
by our proposed model and those from empirical data are under investigation.
More MPEG compressed video sequences will be applied to our proposed
model to test its performance.
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Figure 7: CDFs of the active part Figure 8: CDFs of the most active

and its model. part and its model.
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Figure 9: A Markov modulated
self-similar process model.
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