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ABSTRACT

This paper analyzes the performance of the adaptive fu-

sion method for macroscopic diversity combination in the

wireless cellular environment when the error probability in-

formation from each base station detection is not available.

The performance analysis includes the derivation of the min-

imum achievable error probability. An alternative realiza-

tion with lower complexity of the optimal fusion scheme

by using selection diversity is also proposed. The selection

of the information bit in this realization is obtained either
from the most reliable base station or through the majority

rule from the participating base stations. The performance

comparison in Rayleigh fading and log-normal shadowing

shows that this method has much better performance over

convent ional macroscopic selection diversity.

1. INTRODUCTION

Spatial diversity is used to combat fading and shadowing
effects in wireless cellular communications. Usually, micro-

scopic spatial diversity is employed to reduce the fading ef-

fect by combining signals from different receiver elements of

the same base station. Since much larger spatial separation

is required to achieve shadowing decorrelation, macroscopic

spatial diversity, which is implemented among different base

station sites or ports, has been suggested to mitigate the

shadowing effect [1]. Several possible combination rules

have been proposed to achieve micro diversity [2], such as

maximal ratio combining, equal gain combining, and selec-

tion diversity. In selection diversity, only the most reliable

one is chosen among all the received signals, and all the oth-

ers are simply ignored. Compared with other combination

rules, selection diversity has poor performance, relatively

low complexity and bandwidth requirement. Macroscopic

diversity is, however, usually realized by selection diversity,

because large separation of received signals increases the

difficulty of bringing them together for better performance

combination. We have proposed an optimal fusion scheme

for macroscopic diversity combination based on the min-

imum error probability criterion for binary signals [3], [4].

There, fusion scheme was shown to have better performance
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than selection diversity. When the error probability of the

local detection in each base station is not available, an adap-

tive fusion algorithm was also proposed to handle the cellu-

lar CDMA handoff problem [5]. No attempt, however, has

been made to analyze the performance of the adaptive fu-

sion algorithm. The key contributions of thk+ paper include:

1) the derivation of several properties of the adaptive fusion

algorithm such as the minimum error probability that can

be achieved by the algorithm, 2) a simplified realization of

the optimal fusion scheme by using selection diversity, re-

ferred to as the ‘(improved macro selection diversity rule:

that has lower complexity and less bandwidth requirement

than the dkect realization, and 3) performance comparison

of the proposed fusion scheme with the conventional macro-

scopic selection diversity in an environment in which both

the Rayleigh fading and log-normal shadowing effects are

considered. The above contributions will be described in

Section 2, 3 and 4, respectively. Concludkg remarks are

summarized in Section 5.

2. PERFORMANCE ANALYSIS OF THE
ADAPTIVE FUSION ALGORITHM

The cell geometry shown in Figure 1 is the same as in

[5]. A simple sectored antenna is employed at each site with

each antenna sector covering 120° azimuth. The detection

is performed at each base station. The detection result is

sent through a separate link to a fusion (or switching) cen-

ter which, as symbolically shown in Figure 1, is shared by

three base stations. The final detection is made at the fu-

sion center by optimal fusion [6] based on the detected re-

sults from the three base stations covering the same area.
Let U = [tLl, t42,W] be the vector of detected bits for the

desired user. Here, w ~ {1, –l}, i = 1,2,3, is the local deci-

sion made by the ith base station. Synchronization among

the base stations is assumed, and thus, ui for i = 1,2,3
corresponds to the same information bit transmitted. The

final detection result at the fusion center for the same infor-

mat ion bit, denoted by Uf, is a function of local decisions.

The determination of uf can be viewed as a two-hypothesis

detection problem with individual local decisions being the

observations, and the two hypotheses

HI: The symbol +1 is transmitted,

HO: The symbol –1 is transmitted.

0-7803-4201-1/97/$10.00 (c) 1997 IEEE



When the minimum probability of error criterion is used,
for the binary symmetric channell (BSC) and equiprobable

source bits, we have [3]

{

+1, if ~=
E

aiui >0,
uf =f(UI, UZ, ti3)=

*=1

-1, otherwise,

(1)

where the optimal weights are:

1–PI 1–P2 1–P3

al=10g7T-’
C@= log —

P2 ‘ a3 = 10g P3 ‘
(2).,

and Pi, i = 1,2,3, is the error probability for each base

station for the same user. The estimated weights obtained

by the adaptive fusion algorithm [3] are:

l–ql
bl=log —,

l–q2
b2 = log —

l–q3
b3=log —,

91 92 ‘ 93

where qi is the est imat ion of Pi. The errors between the

estimated and optimal weights are:

eI =bl —al, e2 =bz —03, e3 = b3 –a3. (3)

According to [7], the minimal weights errors that can be

achieved are:

1 + ~l_Jl:P:)(l-P3) = log
1 2 7

1+X
7 3 l+z~’

&2 = log ~ + J:ll’TP3)

2

1+
P, P*P3

(1–P~)(l-P~)(l-P~)
= log

1+X
l–F’ )P*P~ (4)

1+3?*’
‘3 – 10g 1 + &_P:)(l-P2)

3

‘here x = (1- Pl)fi :P:)(l-P3) “ ‘he following propositions
1 2 3

leading to the derivation of the minimum error probability

show the relationship between the optimal and estimated

weights.

Proposition 1

If PI <0.5, PZ <0.5, and P3 < 0,5, then al > a2 >
a3==+bl>bz>b3.
The proof is given in Appendix A.

Proposition 2

If PL < 0.5, Pz < 0.5, and P3 < 0.5, then bl < b2 +
b3jbz < bl +b3, and b3 < bl +b2.
The proof is given in Appendix B.

Proposition 3

The minimum error probability using the adaptive fu-

sion algorithm is

Pm = P1P2 + PIP3 + P2P3 – 2PIPzP3.

1Implicit assumption is made that full interleaving is used.

Proofi
From Proposition 2, b z + b3 > bl, bl + b3 > bz, and

bl + bz > b3, implies that the vectors which make A >0 are

[1,1,1], [1, 1 –l], [1, –1, 1], and [–1, 1,1]. Thus, the error

probability when the adaptive fusion scheme is used and ui,
i = 1,2,3 is independent will be :

P(A > OIHO) =

P(UI = +1, U2 = +1,’U3 = +lIHO) +

P(I41 = –l, U2 = +1, U3 = +lIHO) +

P(U1 = +1, ?m = –l, U3 = +lIHO) +

P(U1 = +1, ?J2 = +1, U3 = -lIHO)

= P(ul = +lpIo)P(u2 = +lpTo)P(u3 = +lIHO) +

P(ul = -11 HO)P(U2 = +11 HO)P(U3 = +lIHO) +

P(ul = +lp70)P(u2 = –lpifo)P(7L3 = +lpo) +

P(UI = +11 HO)P(U2 = +11 HO)P(U3 = –lplo)

= PIPZ + P1P3 + PZP3 – 2PlP#3

= Pm. (5)

3. A REALIZATION OF THE OPTIMAL
FUSION SCHEME

FOR MACRO DIVERSITY

In current macroscopic diversity systems, when selection

diversity is used to form the final decision about the infor-

mation transmitted, the achievable bit error rate (BER) of

the final decision, Pj, is

Pf = min{Pl, F5, P3} (6)

where Pi, i = 1,2,3 as defined previously, is the BER of

the ith base station for the same information bit. When

the optimal fusion scheme (Eq. 1) is used for macroscopic

diversity combination, it has been proved [3] that

Pf = min{Pl, P2, P3, Pm}, (7)

where Pm = P1Pz +Pl P3+P2 P3 —2P1PzP3 as in Proposition

3. It has been shown that the fusion scheme has better

performance than selection diversity when only shadowing

is considered [5]. Whenever Pm is less than min{Pl, Pz, P3},

especially when differences between P1, Pz and P3 are small,

Pf in Eq. (7) is less than the Pf in Eq. (6). The drawback

of the fusion method is its higher complexity compared to
the selection diversity. All of the U1, uz and U3 have to

be transmitted to a switching or fusion center where the

optimal combination based on P1, Pz and P3 is performed

according to Eq. (1). In this paper, based on the analysis

resulting in Eq. (7), we propose a simplified realization of
the optimal fusion scheme that has lower complexity. In this

realization, the final detection of a transmitted information

bit, uf, will be an element selected from the binary data

set D = {u1, UZ,u3, Maj(ul, wz, u3)} with the smallest error

probability, where Maj (.) stands for the majority operator

defined by

Maj(’ul, uz, ‘us) =
{

+1 if741+w2+w3>0,

-1 iful+t42+u3 <0.
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When u~’s me mutually independent with respective BERs

Pi for z = 1,2,3, the BER for this majority operator is :

P(Maj(ul, ti2, u3) = +lIHo)

= F’(UI = +1,’az = +1,’U3 = +lpIo) +

P(’al = –1,’m = +1, U3 = +lpIo) +

P(w = +1,162 = –l, U3 = +lpo) +

P(’ul = +1, W2 = +1, U3 = –l[Ho)

= p@’2 + l’lp3 + p21’3 – ZP1P2P3

= Pm.

(8)

The above equation implies that the majority operator

yields a BER Pm. Therefore, the above realization imple-

ments the optimal fusion rule. The realization is much eas-

ier than the dkect realization according to Eq, (1), because

only selection and the majority operator are required. The

majority operator for macroscopic diversity has been pro-

posed in [8]. Another advantage of this realization is that

the entire U = {Ml, U2, U3} does not always have to be sent

to the switching center. Only when Pm < min{Pl, Pz, Pa},

all three elements of U are required at the switching cen-

ter for the majority operation. Otherwise, only the element

u, with the smallest BER is transmitted to the switching

cent er.

4. PERFORMANCE COMPARISON

In [5], we compzwed the performance of using the fusion

scheme with the selection diversity when only shadowing

distortion is considered. Here, both the shadowing and fad-

ing effects are taken into consideration. The flat Rayleigh

fading and shadowing effect modeled by log-normal distri-

bution are assumed. The error probability is considered as

the performance index. In addkion, as in a practical sys-

tem, we assume that the maximal ratio combiner is used

for the microscopic diversity to combat the fading dktor-

tion. According to [9], the instantaneous received power at
the output of the L-branch micro combiner is a chi-squaxe

distributed random variable with 2L degrees of freedom.

The conditional error probability for the fixed local mean

received power will be the instantaneous bit error proba-

bility averaged over fading channel statistics, which can be

written as follows

pi= [~(l-fli)]’~(‘-~+k ) [~(l+pt)]k,(9)

‘=0

where, by definition,

and -y~is the averaged signal to noise ratio (SNR) over fading

statistics for the ith base station (local mean of SNR). When

the shadowing effect is considered, the local mean of the re-

ceived power ‘is a log-normal dktributed random variable.

When the power spectrum density of thermal noise and in-
terference are assumed to be a constant, the local mean of

the SNR is also log-normal distributed. Thus the area-mean

BER, when no macroscopic diversity is employed, equals to

(lo)

where j(~) is the probability density function of ~, the local

mean of the SNR, at a base station. According to the previ-

ous discussion, ~(~1 ) is a log-normal function with a mean

(determined by the distance between the mobile user and

the base station, and the propagation environment ), and a

variance (determined by the power control scheme). When

the macroscopic selection diversity is used, the area-mean

BER is

where ~(~1, 72, 73) is the joint probability density function.

When the fusion based macroscopic diversity is implemented

for three base stations, the area-mean BER is

Pf =
///

min(pl, P2, P3, p~).f(w, 72, v3)d-yi@2@3.

(12)

Since base stations are faz away from each other, the ran-
dom variables -yl, -y2 and 73 can be regarded as independent

variables. When a mobile user is equidistant from the three

base stations, the local mean SNR have the same statistical

parameters, and thus

f(’Yl, 72, ’73)= f(’1’df(~2)f(~3).

Figure 2 shows the curve of the area-mean BER versus SNR

for the nonmacro diversity, selection macro diversity, and

fusion based macro diversity obtained, by numerically cal-

culating Eqs (10)-(12). The numerical results are derived

for L=3, and the standard deviation of the local-mean SNR

of 1.5 dB. From this Figure, it is shown that significant

improvement can be achieved by the fusion based macro di-

versity even in the presence of both fading and shadowing.

5. CONCLUSION

The performance of the adaptive fusion algorithm for

macroscopic diversity has been analyzed. The minimum er-

ror probability that can be achieved by the adaptive fusion

method equals to that by the majority rule. A less complex

realization of the optimal fusion scheme is also proposed.

The realization is equivalent to the combination of the con-

ventional macro selection diversity and a majority operator,

and is demonstrated to outperform the conventional macro-
scopic selection diversity when both fading and shadowing

are involved.

Appendix A: Proof of Proposition 1
al > az > a3 implies P3 > P2 > P1. From the condition

1> 2P3,

0-7803-4201-1/97/$10.00 (c) 1997 IEEE



we have

P2 – PI > 2p3(pz –pi).

Subtracting P1PZP3 from both sides and rearranging the

terms, we have

pz(l – p3) + (1 ‘PZ)P1P3 > Pl(l –P3) + (1 – Pl)P#3.

Dividing both sides by (1 – P3) >0,

~2 + (1 – P2)P1P3 > p, + (1 – P1)P2P3

1–P3 1–P3 “

Subtracting P1P2 fkom both sides and factoring out (1 -
PI )P, from the left side and (1 – P2)P1 from the right side,

the above inequality becomes

(1 - P,)P2[1 +
P2:::2;::P3)I ‘

(1 – P,)PZP3
(13)Pl(l - P2)[1 + pl(~_ pz)(l – PJ”

Since

‘1- ‘2)P’P3][1 + Plyy(::p,)]>0,P1P2[1 + p2(l – Pl)(l – P3)

(14)
dividing Eq. (13) by Eq. (14),

Multiplying both sides by 1+$ >0 and taking the logarithm

on both sides,

i–Pi
log —

1+X >

P1
+ log

l+z~

log
1–P2
~ + log

l+lX

1 + ~(1--:)’ ‘
2

According to Eqs. (2)-(4), the above inequality implies that

bl=al+el>b2=a2+E2.

bz > b3 can be similarly proved. Therefore, when P1 <0.5,
P2 <0.5, and P3 <0.5, then al > az > a3 =+ bl > b2 > b3.

Appendix B: Proof of Proposition 2

According to the condition

P3 < ;,

we have

P: < (1– P3)2.

Multiplying both sides by 1 – 2P2,

P;(1 – 2P,) < (1 – P3)2(1 – 2P2),

and

P;[(l – P2)2 – P;] < (1 – P3)2[(1 – P2)2 - P:].

Multiplying both sides by P1 (1 – Pl) and rearranging the

terms,

(1 – P2)2(1 – P,)P,P: + (1 – PI)(1 – P3)2P,P; <

Pl(l – Pl)(l – P2)2(1 – P3)2 + (1 – P1)PIP;P:.

Dividing both sides of the above inequality by (1 – P1 )(1 –

P2) (1 – P3), and after further manipulation,

[ 1[(l_ PL)P2 + (1 – p2)~,p3 P3 + # – P3)2 <

1–P3 p: 1
[PI(1 - P2)(1 - P3) + (~ - pl)p2~3] [1 + z].

Factoring out (1 – Pl)P#3 from the left side, and P1 (1 –
P,) (1 – P3) from the right side,

(1 ‘PI) P#3[l +3$1 ;~)z][~ +z(l ;~)z] <
2 3

Pl(l – P2)(1 – P3)[1 +$ ‘1 ;:)2][1 +%].
1

Dividing both sides of the above inequality by the following

factor,

P, P,P3[, +X(l;:)2][,+X(l;:)2][,+(E(l;~)2],
1 2 3

we get

(1 -P,) < (1 -P2)(1 -P3)[1 +x]

Pl[l + Zy] P#3[l + XIW][l +z~] ‘
3

Multiplying both sides by 1 + z and taking the logarithm

operation,

(i–Pi
log — .

1+X

P1
)

<
1+$~

(1–P2
log ~ .

1+X 1–P3 1+X.— .
l+x~ ~3

)

~ ; (1$)’ “

Again according to Eqs. (2)-(4), the above inequality im-

plies that

b~ < b, -tb3.

Similarly, we can prove that b, < bl + b3 , and b3 < bl + bz
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Figure 2: Performance of different macro diversity schemes.
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