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Abstract: Random exponential marking (REM) is an attractive adaptive queue management
algorithm. It uses the quantity known as ‘price’ to measure the congestion in a network. REM can
achieve high utilisation, small queue length, and low buffer overflow probability. Many works have
used control theory to provide the stable condition of REM without considering the feedback
delay. Recently, sufficient conditions for local stability of REM have been provided when the
sources have a uniform one- or two-step feedback delay. Nevertheless, no work has been done for
the case of arbitrary uniform delay. The authors propose a continuous time model to generalise the
local stable condition for REM in a multilink and multisource network with arbitrary uniform
feedback delay.

1 Introduction

TCP is one of the major transport protocols over the
current Internet. TCP provides end-to-end congestion
control by dynamically adjusting the transmitting rate
based on the congestion feedback. In the network, packets
are either dropped or marked when congestion happens.
Before random early detection (RED) [1] was proposed, the
major congestion control scheme was DropTail, which
suffers from synchronisation of the senders and oscillation
of buffer occupation. RED tries to overcome the short-
comings of DropTail by dropping packets in a probabilistic
manner before the buffer overflows. Explicit congestion
notification (ECN) [2] notifies users of congestion by
marking the packets probabilistically instead of dropping
them. The users react to the marked packets as if packet
loss is detected.

To achieve the desired properties, such as maintaining
fairness among users and stabilising queue length in the
network, packet marking or dropping schemes should
be designed very carefully. Adaptive queue management
(AQM) schemes [3–7] have been proposed to mark or
drop packets intelligently. One of the major challenges
faced by AQM is how to achieve a stable system. Recent
works [8, 9] have discussed the dynamic behaviour of
TCP-AQM within the framework of a feedback control
system. It has been shown [8] that TCP-RED can exhibit
chaotic behaviour when the RED parameters fall into a
certain region. It has also been demonstrated [9] that
instability of TCP-RED is the inevitable result of the
scheme itself.

REM [7] is a very attractive AQM scheme in terms of
achieving high link utilisation, stable queue length and low
packet loss. REM distinguishes itself from other AQM
schemes by introducing the concept of ‘price’. The ‘price’ is
the measurement of congestion at each link. Unlike in
RED, the ‘price’ is decoupled from performance measures

such as loss, queue length or delay. At each link, REM
continuously updates the value of the price (the update
scheme is explained in Section 2) and marks packets with
exponential probability. Readers are referred to [7] for more
details.

Like other AQM algorithms, REM has to address
the stability problem. Extensive simulations have
shown that REM exhibits highly stable behaviour in a
wide range of network configurations. In [7], the local
stable condition was studied under the discrete time
model without considering feedback delay. In [10] and
[11], global stability was proved for zero feedback delay in
continuous and discrete time models, respectively. In [12],
for the first time, the local stability of REM with feed-
back delay was investigated. Nevertheless, Yin and Low [12]
used the discrete time model and only presented the
analytical result of one- and two-step uniform feedback
delay.

The major contribution of this paper is derivation of the
local stable conditions of REM with any value of uniform
feedback delay in a multilink and multisource network by
using the continuous time model. To the best of our
knowledge, this problem results has not been addressed
before.

2 Background and problem formulation

Consider a network with L links, each with capacity Ci (i ¼
1, 2,yL). Assume there exist S TCP sources, which share
the L links. The routing policy is expressed by an L� S
matrix A with elements aij defined as

aij ¼
1 if source j uses link i
0 otherwise

�
ð1Þ

The following notation is adopted:
piðtÞ non-negative price for link i at time t. The

corresponding vector form is pðtÞ ¼ ðp1ðtÞ; p2ðtÞ;
. . .pLðtÞÞ

qiðtÞ queue length of link i at time t. The corresponding
vector form is qðtÞ ¼ ðq1ðtÞ; q2ðtÞ; . . . qLðtÞÞ

xjðtÞ rate of source j at time t, ðj ¼ 1; 2 . . . ; SÞ
riðtÞ total rate of all sources crossing link i
yjðtÞ total price of all links used by source j
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For the sake of brevity, the variable t in the above
notation is omitted in subsequent discussions.

From the above notation, we have

ri ¼
XS
j¼1

aijxj ð2Þ

and

yi ¼
XL
i¼1

aijpi ð3Þ

According to [10], the TCP source j adjusts its sending rate
by maximising UjðxjÞ � pjxj; here, UjðxjÞ is the utility
function of source j and is strictly concave increasing. The
utility function of TCP Reno is [9]

UjðxjÞ ¼
ffiffiffi
2

p

dj
arctan

djxjffiffiffi
2

p
� �

ð4Þ

and for TCP Vegas [9].

UjðxjÞ ¼ logðxjÞ ð5Þ

In both versions of TCP, source j can be modelled to
adjust its transmission rate in a smoothed version of the
following adjustment [7, 13, 14]:

xjðtÞ ¼½U 0
j	
�1ðyjðt � djÞÞ

¼½U 0
j	
�1

XL
i¼1

aijpiðt � djÞ
 !

ð6Þ

where ½U 0
j 	
�1 is the inverse function of the derivative

of utility function U 0
j (it exists since U 0

j is strictly

concave-increasing). As in [7], we assume that the
forward delay is zero and the backward delay is dj. To
simplify our analysis, we only consider the case of
homogeneous delay, implying that dj ¼ d for all j. Thus,
(6) is reduced to

xjðtÞ ¼ ½U 0
j	
�1

XL
i¼1

aijpiðt � dÞ
 !

ð7Þ

We adopt the continuous time model [10] to describe the
dynamics of REM

dqiðtÞ
dt

¼ ri � Ci if qiðtÞ40
½ri � Ci	þ if qiðtÞ ¼ 0

�
ð8Þ

dpiðtÞ
dt

¼ gðaqi þ ri � CiÞ if piðtÞ40
g½aqi þ ri � Ci	þ if piðtÞ ¼ 0

�
ð9Þ

where ½z	þ9maxð0; zÞ, and g and a are positive constants.
Equations (7)–(9) can be interpreted as a gradient projection
algorithm used to solve an optimisation problem. There is a
trade-off between the selection of large a and small a: a
small a leads to a high link utilisation at the cost of a
large transient queue length; on the other hand, a large a
allows a small transient queue length and a low
link utilisation. g corresponds to the step size of the gradient
algorithm. Readers are referred to [7, 10, 12] for detailed
discussion on g and a. It is difficult to analyse the

above system due to the nonlinear terms ½�	þ. In the next
Section, we will linearise them so that the analysis becomes
tractable.

3 Cost model and performance evaluation

Equations (8) and (9) define a nonlinear dynamic system.
Assume rankðAÞ ¼ L. Let ðp�; q�Þ be the equilibrium of the

original system. It can be shown [7, 11, 12] that

x�j ¼½U 0
j	
�1ðy�

j Þ ¼ ½U 0
j 	
�1

XL
i¼1

aijp�
i

 !
;

r�j ¼ Ci and q�i ¼ 0

ð10Þ

at the bottleneck link. To simplify our analysis, we
develop a linearised version of the original system. With
the above properties of the equilibrium, (8) and (9) can be
rewritten as

dðqlðtÞ � q�l Þ
dt

¼ rlðtÞ � Cl ð11Þ

dðplðtÞ � p�
l Þ

dt
¼ g½aðqlðtÞ � q�l Þ þ rlðtÞ � r�l 	 ð12Þ

Here, we only keep the linear terms in the
above equations. Following the similar procedure in [7],
we use the first-order Taylor expansion around ðp�; q�Þ
to further simplify the system. ½U 0

j	
�1ðyjÞ can be expressed

as

½U 0
j	
�1ðyjÞ ¼½U 0

j	
�1ðy�

j Þ þ ½½U 0
j 	
�1	0ðy�

j Þðyj � y�
j Þ

¼½U 0
j	
�1ðy�

j Þ þ
1

U 00
j ðx�j Þ

ðyj � y�
j Þ ð13Þ

Thus, we have

riðtÞ ¼
XS
j¼1

aijxjðtÞ

¼
XS
j¼1

aij½U 0
j	
�1yjðt � dÞ

¼
XS
j¼1

aij½U 0
j	
�1ðy�

j Þ

þ
XS
j¼1

aij
1

U 00
j ðx�j Þ

ðyiðt � dÞ � y�
i Þ ð14Þ

According to the property r�i ¼ Ci at the bottleneck link, we
have

Ci ¼
XS
j¼1

aijx�j ¼
XS
j¼1

aij½U 0
j	
�1ðy�

j Þ ð15Þ

Combining (14) and (15),

riðtÞ � Ci ¼
XS
i¼1

aij
1

U 00
j ðx�j Þ

ðyjðt � dÞ � y�
j Þ ð16Þ

According to (3),

yjðt � dÞ � y�
j ¼

XL
l¼1

aljðplðt � dÞ � p�
l Þ ð17Þ

Combining (16) and (17),

riðtÞ � Ci ¼
XL
l¼1

XS
j¼1

aijalj
1

U 00
j ðx�j Þ

ðplðt � dÞ � p�
l Þ ð18Þ

Denote Zj ¼ �1=U
00
j ðx�j Þ and define the diagonal matrix

K ¼ diagfZ1; Z2 . . . ; ZSg ð19Þ
and the following new variables:

�qqiðtÞ ¼ qiðtÞ � q�i ð20Þ

�ppiðtÞ ¼ piðtÞ � p�
i ð21Þ
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Using (17)–(21), (11) and (12) can be rewritten in the
following matrix forms:

d�qqðtÞ
dt

¼ �AKAT�ppðt � dÞ ð22Þ

d�ppðtÞ
dt

¼ g½a�qqðtÞ � AKAT�ppðt � dÞ	 ð23Þ

Taking the Laplace transforms of (22) and (23)

s�qqðsÞ ¼ �e�sdAKAT �ppðsÞ ð24Þ

s�ppðsÞ ¼ g½a�qqðsÞ � e�sdAKAT �ppðsÞ	 ð25Þ
Substituting (24) into (25)

s�ppðsÞ ¼ �ge�sd 1 þ a
s

� 	
AKAT �ppðsÞ ð26Þ

or equivalently

sI þ ge�sd 1 þ a
s

� 	
AKAT

h i
�ppðsÞ ¼ 0 ð27Þ

To have a nontrivial solution of �ppðsÞ, it is required that

det sI þ ge�sd 1 þ a
s

� 	
AKAT

h i
¼ 0 ð28Þ

which is called the characteristic equation. Since A is an
L� S matrix with rank L, and K is an S � S diagonal

matrix, AKAT is an L� L positive definite matrix. There-
fore, we can conclude that 0ol1 � l2 � . . . � lL, where

l1,l2, ,y, lL are the eigenvalues of AKAT . Let
L ¼ diagðl1; l2; . . . ; lLÞ. Equation (28) is equivalent to
(theorem 7.23 of [15])

det sI þ ge�sd 1 þ a
s

� 	
L

h i
¼ 0 ð29Þ

or

sþ ge�sd 1 þ a
s

� 	
lk ¼ 0 k ¼ 1; 2 . . . L ð30Þ

To have a stable system, all of the L roots of (30) should be
on the left-half plane. Next, we shall derive the stable
conditions for the above system.
Theorem 1: If the feedback delay d is zero, the system is
always stable.
Proof: If d is zero, from (30) we have

s2 þ gsþ galk ¼ 0 ð31Þ
Solving this equation, we obtain

s ¼ �g�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 4galk

p
2

ð32Þ

It can be seen that s is always on the left-half plane
regardless of the value of g. This completes the proof.
Theorem 2: If the feedback delay d satisfies doD, the
system is stable. Here

D ¼
p
2
� arctan

a
y

� 	
y

y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2l2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g4l4 þ 4g2a2l2

q
2

vuut
l ¼max

k
flkg

Proof: For a fixed value of k, let ~ddkbe the smallest number
such that the root for (30) stays right on the imaginary axis.
According to theorem 1, when d is zero, the roots of (30) are

all on the left-half plane. Therefore, if domin
k

~ddk, then all

the roots of (30) are on the left-half plane. Next, following
the similar procedure of the proof of theorem 2 in [6], we

first determine ~ddk.
Let the root of (30) be sk ¼ jyk; here, j is the unit of the

imaginary number instead of the index used before. Since
the roots on the imaginary axis are complementary, we only
consider yk40. Hence, (30) becomes

ge�jy~ddk 1 þ a
jy

� �
lk

jy
¼ �1 ð33Þ

There are two conditions on the magnitude and angle,
respectively

ge�jy~ddk 1 þ a
jyk

� �
lk

jyk

��������

��������
¼ 1 ð34Þ

and

ff
ge�jy~ddk 1 þ a

jyk

� �
lk

jyk
¼ ð2nþ 1Þp;

n ¼ 0;�1;�2 . . .

ð35Þ

The condition on the magnitude in (34) leads to

yk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2l2

k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g4l4

k þ 4g2a2l2
k

q
2

vuut
ð36Þ

From (35),

yk~ddk þ arctan
a
yk

� �
þ p

2
¼ ð2nþ 1Þp;

n ¼ 1; 2; . . .

ð37Þ

Taking n ¼ 0 in (37),

~ddk ¼

p
2
� arctan

a
yk

� �
yk

ð38Þ

It can be verified that dk is an increasing function of lk.
Therefore

min
k

~ddk ¼ min
k

p
2
� arctan

a
yk

� �
yk

8>><
>>:

9>>=
>>;

¼
p
2
� arctan

a
y

� 	
y

ð39Þ

where

y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2l2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g4l4 þ 4g2a2l2

q
2

vuut
ð40Þ

Finally,

D ¼ min
k

~ddk ¼ min
k

p
2
� arctan

a
yk

� �
yk

8>><
>>:

9>>=
>>; ð41Þ

This completes the proof.
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4 Discussion of results

According to theorem 2, the system is stable if doD. We
can rewrite this condition as

adoaD ¼ a
y

p
2
� arctan

a
y

� 	n o
¼ 1

x
p
2
� arctan

1

x

� �� �
ð42Þ

where

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgl=aÞ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgl=aÞ4 þ 4ðgl=aÞ2

q
2

vuut

Figure 1 shows the local stable regions for REM based on
(41). The horizontal axis is gl/a; the vertical axis is ad.
If the system falls into the region below the curve, it is
locally stable. Otherwise, it is not stable. We can see that
the local stability of REM depends on four parameters: g, a,
d and l. g and a are parameters set by the REM algorithm;
l and d are parameters determined by the network topology
and the routing policy, which may not be controlled by
the REM algorithm. In other words, although some pairs of
g and a lead to local stability under some network
conditions, they can cause instability under other network
conditions. Therefore, the values of g and a should be set
very carefully.

5 Conclusions

We have used the continuous time model to investigate the
local stable conditions for REM in the multilink and

multisource network, in which all sources have the same
feedback delay. Our study shows that the local stability of
REM depends on both the algorithm parameter settings
and the network conditions.

There are still several aspects which need to be
investigated. First, our approach is based on the linearisa-
tion of a nonlinear system, like other research on AQM.
However, [8] has demonstrated the important role of the
nonlinearity in AQM. Therefore, exploration of the
nonlinearity effect is critical to the full understanding of
the performance of REM and other AQM schemes.
Secondly, our approach assumes the homogeneity of the
feedback delay. In the real world, different users can
experience different propagation delay and queueing delay.
As a result, the feedback delay can exhibit significant
heterogeneity. The investigation of this effect will be
reported at a later date research.
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