Core-Stateless Proportional Fair Queuing for AF Traffic

Gang Cheng, Kai Xu, Ye Tian, and Nirwan Ansari

Advanced Networking Laboratory, Department of Electrical and Computer Engineering,
New Jersey Institute of Technology, Newark, NJ 07102, USA

Abstract— Proportional fair queuing is to ensure that a flow passing
through the network only consumes a fair share of the network resource
that is proportional to its committed rate or other service level agreement
(SLA). It is of great importance in differentiated services (DiffServ)
networks as well as other price incentive network services. In this paper,
we propose a simple core-stateless proportional fair queuing algorithm
(CSPFQ) for the assured forward (AF) traffic in DiffServ networks. We
first develop our algorithm based on a fluid model analysis and then
extend it to a realizable packet level algorithm. We prove analytically
and instantiate through simulations that our algorithm can achieve
proportional fair bandwidth allocation among competing flows without
requiring routers to estimate flows’ fair share rates. Our simulation
results also demonstrate that our algorithm outperforms the weighted
core-stateless fair queuing (WCSFQ) in terms of proportional fairness.

I. INTRODUCTION

Since data traffic in the current Internet is inherently bursty, and
end-to-end congestion control is not always deployed in all transport
or application protocols, some form of active queue management
(AQM) at network routers is thus necessary to protect well-behaving
flows from irresponsive ones by fairly allocating bandwidth among
the flows. Proportional fair queuing is to ensure that a flow passing
through the network only consumes its fair share of the network
resource that is proportional to its committed rate or other metrics
defined in its service level agreement (SLA). Proportionally fair
bandwidth allocation is an important mechanism for implementing
price incentive QoS services.

Active queue management schemes for fair bandwidth allocation
can be classified into two distinct categories, the core-stateful ap-
proach and core-stateless approach. The core-stateful approach, such
as weighted fair queuing (WFQ) [1] and flow random early drop
(FRED) [2], requires the core routers to maintain per-flow state
information, and is thus lacking the scalability simply because of
the large number of flows at the network core. In contrast, in the
core-stateless queue management approach, core routers do not need
to maintain per-flow state information. Instead, per-flow information
is encoded in the packet headers by the edge routers. Core-stateless
queuing schemes such as core-stateless fair queuing (CSFQ) [3] and
rainbow fair queuing (RFQ) [4] can also achieve comparable fair
bandwidth allocation as that of using core-stateful approaches.

The key idea behind CSFQ [3] is to keep per-flow state at less
aggregated edge routers and carry that information in packets to
the core. Specifically, edge routers estimate each flow’s arrival rate
and label the packets of a flow with its corresponding arrival rate.
Core routers estimate the flow fair share and probabilistically drop
packets with labels (arrival rate) larger than their estimated fair shares
of the bandwidth. Extensive simulations show that CSFQ offers
considerable improvement of fairness over RED [5] and FIFO. Cao et
al. proposed RFQ [4], in which each flow is divided into a set of layers
based on its rate, and packets in a flow are marked at edge routers with

' This work has been supported in part by the New Jersey Commission on
Science and Technology via NJWINS.

IEEE Communications Society
Globecom 2004

732

a layer label (color). Core routers maintain a color threshold and drops
layers whose colors exceed the threshold. RFQ outperforms CSFQ in
terms of goodput while achieving the comparable fairness of CSFQ.
Weighted CSFQ, or WCSFQ, is a natural extension to the original
packet labeling scheme by associating each flow with a weight [3].
WCSFQ can be used to realize proportional fair bandwidth allocation.

Differentiated services [6], [7], [8], or DiffServ, is one of the
recent proposals to provisioning QoS for IP networks, particularly,
the Internet. The goal of the evolving IETF DiffServ framework
is to provide a means of offering a spectrum of services in the
Internet without the need for per-flow state and signaling in every
router. DiffServ differentiates its service priorities by classifying
flows into the Expedited Forwarding (EF), the Assured Forwarding
(AF), and the best effort forwarding classes through service contracts.
Usually, multiple random early drop (MRED) is recommended for
the management of queues that handle AF traffic. Although MRED
stabilizes the router queue, and eliminates network synchronization
by randomization, MRED cannot provide fair bandwidth allocation
among flows. In order to guarantee the committed rates for AF flows,
packet marking schemes such as in [9] are proposed.

In this paper, we propose a new simple core-stateless proportional
fair queue management scheme taht is scalable, effective, and robust
in allocating proportionally fair bandwidth among competing AF
flows.

II. CORE-STATELESS PROPORTIONAL FAIR QUEUING FOR AF
TRAFFIC

In this section, we propose a core-stateless proportional fair
queuing (CSPFQ) algorithm for handling the AF traffic in DiftServ
networks. We start with a fluid model analysis, and then extend it
to a packet based algorithm. We define a network as an over-loaded
network if there exists a link on which the sum of the committed
rates of flows sharing the link is larger than the link capacity. A
well-loaded network is referred to as a network in which the sum of
the committed rates of flows on any link equals to the link capacity.
For any other network that is neither over-loaded nor well-loaded,
we call it an under-loaded network. A DiffServ network does not
likely result in an over-loaded network since service providers have
the control of contracting committed rates to their clients. Hence,
we propose our AF queue management under the assumption that
networks are either well-loaded or under-loaded.

A. Fluid Model Algorithm

In a typical DiffServ network, a single FIFO at a core router
is shared by many flows belonging to the same AF traffic class,
each of which is assigned its own committed rate. It is thus critical
that the core router distributes its output bandwidth fairly among
the flows and at the same time guarantees their committed rates. In
the context of assured forwarding in DiffServ networks, we define
the fairness as follows. A router allocates to a flow a share of

0-7803-8794-5/04/$20.00 © 2004 IEEE

the excess bandwidth that is proportional to the flow’s assigned
committed rate. In particular, assume n AF flows are contending
for an output link of bandwidth C' at the core router. The committed
rate, arrival rate, and allocated bandwidth of flow iare r;, a; and ;,
respectively. Apparently, in a well-loaded or under-loaded network,
we have Y " | r; < C. We claim that the bandwidth allocation is
fair if the following conditions are met.

_f min (o,), Y0 >C o
LA N if)" a0 <C 7
where ¢ = 1,2, ...,n and A satisfies
Z min (o, Ar;) = C. ?2)
i=1

Now, we introduce Theorem 1, which enables us to develop the
core-stateless proportional fair queuing (CSPFQ) algorithm using a
fluid model.

Theorem 1: Assume Y7, o; > C (i.e., a congested link), and
each bit of flow is encoded with a label max (wa; — 73, 0)/r;, Where
m is a random variable uniformly distributed in [0,1]. Each flow
achieves its fair share rate if the bits with labels larger than A\ — 1
are dropped.

Proof: Since we assume that the link is congested and the
network is either well-loaded or under-loaded, by (2) we have A > 1.
Therefore,

Pr{max (mra; — 7;,0)/r; > A =1} =Pr{ma; > Ar;}. (3)
First, let us consider the case where a; < Ar;. We have
Pr{mra; > Ar;} = 0; “)

no bits of flow are dropped, and, according to (1), its allocated
bandwidth ¢; is equal to its arrival rate and is still «;, which is
also its fair share of the bandwidth. Second, we consider the other
case where «; > Ar;. We have

Pr{ma; > Ar;} =Pr{mr > Ari/a;} =1 — Ari/a. 5)

Thus, by dropping the bits with labels larger than A — 1, the arrival
rate of flow ¢ is decreased to

a; [1 — Pr{max (ro; — r4,0) /1 > A — 1}] = ;. (6)

Therefore, the arrival rate of flow ¢ is its fair share rate
w; = min(ay,Ar;) if each bit is encoded with the label
max (wa; — 7i,0)/7;, and the bits with labels larger than A — 1 are
dropped. |

It seems that computing the fair share rate for each flow is
necessary to implement Theorem 1. However, as illustrated in Fig.
1, when congestion occurs, we can fairly allocate bandwidth among
flows by iteratively dropping the bits with the largest labels until
the rate of aggregated traffic is decreased to the bandwidth of the
output link, by which each flow can also achieve its fair share. Note
that labels only depend on the committed rates and the arrival rates.
We can compute them at the edge routers. Hence, our fluid model
CSPFQ queue management algorithm for the AF traffic consists of
the following two procedures.

1) Each bit of a flow is assigned a label of max (ma — r,0)/r by
edge routers, where r is the committed rate of the correspond-
ing flow, « is its arrival rate estimated by the router, and 7 is
a random variable uniformly distributed in [0,1].

2) At the core router, when congestion occurs, bits with the
largest labels are iteratively dropped until the arrival rate of

IEEE Communications Society
Globecom 2004

733

the aggregated traffic is decreased to the router’s maximum
output rate.

flow 1 flow 2 - - - flow n

Fig. 1. Bits of each flow are sorted by their labels and piled. The bits with
larger labels are above the bits with smaller labels.

B. Packet Level Realization of CSPFQ

We now extend the fluid model algorithm to a packet level
realization. In our algorithm, edge routers label the packets of a
flow based on the flow’s arrival rate and committed rate. In practice,
flow arrival rates are not known to the edge routers, but can be
estimated by the edge routers. We adopt the exponentially weighted
moving average as presented in [3] to estimate the flow arrival rates.
Specifically, upon the arrival of packet pj of size i at time tj, the
estimated arrival rate of the flow that this packet belongs to is updated
as

ap = (1 — eiTk/w> le/T + 67Tk/w05k—17)

where Ty = tx — tk_1, w is a constant, and o _1 is the estimated
arrival rate upon the arrival of the previous packet prp_i. Similar
to [3], we can directly extend our fluid model queue management
algorithm to a packet level implementation. The two procedures of
our algorithm become

1) Upon the arrival of a packet, the estimated arrival rate of the
corresponding flow is updated at the edge router, and this packet
is encoded with a label of [= max (ma — 7,0) /7, where 7 is
the committed rate of this flow, « is its estimated arrival rate,
and 7 is a random variable uniformly distributed in [0,1].

2) Each core router maintains a threshold, and drops the packets
whose labels exceed the threshold. The threshold is a function
of the current queue size and the sum of the committed rates
of all flows sharing the queue. Specifically, we drop a packet
with label [> 0 if

> PGmax,and (8)
> Bqmax, 9

where o, (3, and p are three constants, s is the sum of the committed
rates of flows sharing the queue, geurrent is the current queue size,
and gmax is the maximum queue size. Note that, by (9), packets are
dropped only when the current queue size is larger than a threshold
(Bgmax); otherwise, packets in the queue may be easily drained
before the new packets arrive, and the network throughput is not
unnecessarily decreased. In our simulations, we set 5 = 0.2. ¢ is
set to the average round trip time of flows because it takes about a
round trip time for a responsive flow such as a TCP flow to throttle
its sending rate upon a packet loss. p is a constant related to specific
networks. In some networks, traffic distortion is high; even a flow
containing packets all with small labels can still be very bursty.
Hence, in order to guarantee the committed rates of flows, we always
leave a portion of the queue to accommodate packets with label 0 so
that it is never dropped except when the queue is full. Moreover, p is
also the dominant parameter that determines the average queue size.

sl + Qcurrent

QCu'r"rent

0-7803-8794-5/04/$20.00 © 2004 IEEE

III. SIMULATIONS

We have implemented our proposed CSPFQ algorithm in the
ns-2 network simulator. In this section, we evaluate, through a
series of simulations, the performance of our algorithm in terms of
proportionally and fairly allocating bandwidth among competing AF
flows. To provide a comparison basis, we also run the same set of
simulations using the weighted CSFQ, or WCSFQ as introduced in
[3]. CSFQ achieves max-min fairness by labeling packets with the
corresponding flow’s arrival rate and probabilistically dropping the
packets whose label is greater than the estimated fair share rate. The
dropping probability in CSFQ is max (0,1 — «/r;), where « is the
core router’s estimation of fair share rate for all contending flows, and
r; is the edge router’s estimation of the arrival rate of flow ¢, which is
also the label stamped in the packet header (see [3] for details). CSFQ
relies on two estimates, the flow arrival rate estimation at the edge
routers and the fair share rate estimation at the core routers. WCSFQ
is a natural extension of CSFQ by associating each flow with a weight
w;. As introduced in [3], WCSFQ achieves fair bandwidth allocation
such that all contending flows would have the same value for r; /w;,
and hence it can be used to implement differential services.

As compared to WCSFQ, our CSPFQ is designed with the goal
of proportional fairness and is simpler than WCSFQ in that the
core router does not need to estimate the flows’ fair share rates.
Throughout our simulations, all weights in WCSFQ are set to the
flows’ committed rates. In all the simulations reported here, packet
size is set to 1000 bytes; and buffer spaces of various links are set to
be the bandwidth-delay-product of the end-to-end paths. Simulations
A through D use the network topology as shown in Fig. 2.

source a

_g

source b

0 &

router 2

router 1

router 3 router 4

destination

source ¢

Fig. 2. Three sources sending data to a single destination. Routers 1 and 2
are edge routers and routers 3 and 4 are core routers. Propagation delays for
link 1, 2, and 3 are 5ms.

A. TCP Flows in a Well-loaded Network

In this simulation, all sources are sending TCP bulk data transfer
traffic to the destination. The committed rates for flows sent from
source a, b, and ¢ are 4Mbps, 1Mbps, and 5SMbps, respectively.
The link capacities of the network are provisioned to be 5Mbps,
10Mbps, and 10Mbps, for links 1, 2, and 3, respectively, hence
a well-loaded network. The simulation time is 100 seconds. Fig.
3 and Fig. 4 show the bandwidth allocation results by using our
CSPFQ and that by using WCSFQ. It is observed that CSPFQ does
achieve fair bandwidth allocation among competing AF traffic flows
such that the allocated bandwidth for a flow is proportional to the
flow’s committed rate. WCSFQ with weights set to individual flows’
committed rates can also achieve certain proportional fairness but
with larger allocation errors.

B. TCP Flows in an Under-loaded Network

This simulation has the same parameter settings as the previous
simulation, except for the link capacities of the network. In this
case, the network is provisioned to be under-loaded. Specifically,
capacities of links 1, 2 and 3 are 6Mbps, 10Mbps and 12Mbps.

IEEE Communications Society
Globecom 2004

734

Proportional Bandwidth Allocation in Well-Loaded Network Using
CSPFQ

8000
Flow I (4Mbps) ———

Flow 2 (IMbps) -~
Flow 3 (5Mbps) ----a--- |

7000

6000

5000 $- i

o
4000 A

3000

TCP Throughput (Kbps)

2000

1000 — S = e o s

0
10 20 30 40 50 60 70 80 90 100

Simulation Time (sec)
Fig. 3. Bandwidth allocation for TCP flows in a well-loaded network using

CSPFQ.

The purpose of this simulation is to evaluate whether our proposed
algorithm allocates the excessive bandwidth proportionally to each
flow. We also run the simulation twice, once using our CSPFQ,
and the other using WCSFQ. The results plotted in Fig. 5 show
that CSPFQ does allocate the excessive link bandwidth to each flow
according to the proportionality of their committed rates. Throughputs
of TCP flows exhibit very little variation throughout the simulation
time. As a comparison, Fig. 6 plots the results obtained by running
the simulation using WCSFQ. Although WCSFQ can also maintain
the rough proportionality among the allocated bandwidths, all TCP
flows show quite a large amount of variation in their throughputs.

Proportional Bandwidth Allocation in Well-Loaded Network Using
Weighted CSFQ

8000
Flow 1 (4Mbps) —+—
Flow 2 (IMbps) - -~
7000 Flow 3 (SMbps) -
6000 - ; &
B | T N
S 5000 ot T R . _
£ 4000 /\/\\//_/\ /\\w s I\ o
= 3000
e
2000
e °
o o AN 2 .
1000 P+ o o e S > R
SN A W | % o
0 o ©
10 20 30 40 50 60 70 80 90 100

Simulation Time (sec)

Fig. 4. Bandwidth allocation for TCP flows in a well-loaded network using
WCSFQ.

Proportional Bandwidth Allocation in Under-Loaded Network Using
CSPFQ

8000
Flow T (4Mbps) —+——

Flow 2 (IMbps) --o--

Flow 3 (5Mbps) -----a-

7000

6000

000 P R

4000

TCP Throughput (Kbps)

3000

2000

1000

o
10 20 30 40 50 60 70 80 90 100

Simulation Time (sec)

Fig. 5. Bandwidth allocation for TCP flows in an under-loaded network
using CSPFQ.

C. UDP Flows in a Well-loaded Network

In this simulation, we investigate the CSPFQ performance in the
environment where flows are not responsive to packet drops. The
network provision and the flows’ committed rates are the same as
those in simulation 1, except that instead of using TCP flows, here we
are experimenting with UDP flows. All sources are sending constant

0-7803-8794-5/04/$20.00 © 2004 IEEE

Proportional Bandwidth Allocation in Under-Loaded Network Using
Weighted CSFQ
8000
Flow 1 (4Mbps) ———
Flow 2 (IMbps) -=-©--
7000 |4, Flow 3 (5Mbps) --a-- |
0000 . » A e
£ 5000 ﬁ\ \/\\\/ /\/ Py —_ /\ .
£ P
5 4000
2 / N Y
£
& 3000
S
= a
2000 B R
. ; A ® A
P U L AR AN
1000 =3 o -
; Pl o.-0--0
y - " ¥
0
10 20 30 40 50 60 70 80 90 100

Simulation Time (sec)

Fig. 6. Bandwidth allocation for TCP flows in an under-loaded network
using WCSFQ.

bit rate (CBR) flow of data to the destination using the UDP protocol.
The sending rates of all CBR sources are set to be 10Mbps. As
shown in Fig. 7 and Fig. 8, both CSPFQ and WCSFQ achieve
very satisfactory performance in terms of bandwidth allocation that
is fair among the competing flows and proportional to each flow’s
committed rate. Compared to the results for TCP flows, throughputs
of UDP flows appear to be smoother than those of TCP flows. This is
because the CBR sources are not responsive to packet drops. Unlike
the TCP sources, they do not actively adjust their sending rates.

Proportional Bandwidth Allo

8000

Flow 1 (@Mbps) ———
Flow 2 (IMbps) --©-~
F oo |

7000 low 3 (SMbps) -----a----

6000

5000 = . - s e

4000 e s

3000

UDP Throughput (Kbps)

2000

1000 fs-ore .

o

10 20 30 40 50 60 70 80 90 100

Simulation Time (sec)

Fig. 7. Bandwidth allocation for CBR flows in a well-loaded network using
CSPFQ. Bottleneck is 10Mbps. CBRs are sent at 10Mbps.
Proportional Bandwidth Allocation in Well-Loaded Network Using
Weighted CSFQ
8000
Flow I (4Mbps) ———
Flow 2 (1Mbps) -
7000 Flow 3 (SMbps)
6000
_%é‘:' 5000 & = i R
B
5 4000 S— g e
E 3000
=
g
2000
1000 gy - o
[
10 20 30 40 50 60 70 80 20 100
Simulation Time (sec)
Fig. 8. Bandwidth allocation for CBR flows in a well-loaded network using

WCSFQ. Bottleneck is 10Mbps. CBRs are sent at 10Mbps.

D. UDP Flows in an Under-loaded Network

This simulation has the same settings as simulation C, except that
the capacity of link 3 is set to 15Mbps to make the network under-
loaded. Fig. 9 and Fig. 10 show the results of CSPFQ and WCSFQ,
respectively. Similar to the results from simulation C, both algorithms
perform fairly well. All bandwidth allocations are proportional to the
flows’ committed rates.

E. Mix of TCP and UDP Flows in a Well-loaded Network

In the next two simulations, we evaluate the performance of
our proposed CSPFQ algorithm in the environment where there

IEEE Communications Society
Globecom 2004

735

Proportional Bandwidth Allocation in Under-Loaded Network Using
CSPFQ

9000
Flow I (4Mbps) ———
Flow 2 (IMbps) ===
8000 - L Flow 3 (5Mbps)
7000
= I
£ 6000
=3
_g 5000
£
£ 4000
S
&
S 3000
2000
oo R W s SRS S oo 000 g O
1000
0
10 20 30 40 50 60 70 80 90 100

Simulation Time (sec)

Fig. 9. Bandwidth allocation for CBR flows in an under-loaded network
using CSPFQ. Bottleneck is 15Mbps. CBRs are sent at 10Mbps.

Proportional Bandwidth Allocation in Under-Loaded Network Using
Weighted CSFQ

9000

Flow 1 (4Mbps) ———
Flow 2 (1Mbps) -
Flow 3 (5Mbps)

8000 |

7000

6000 et

5000

4000

3000

UDP Throughput (Kbps)

2000

1000

o
10 20 30 40 50 60 70 80 90 100

Simulation Time (sec)

Fig. 10. Bandwidth allocation for CBR flows in an under-loaded network
using WCSFQ. Bottleneck is 15Mbps. CBRs are sent at 10Mbps.

are a large number of heterogeneous flows contending for a single
bottleneck. Specifically, as depicted in Fig. 11, the network contains
four routers, of which routers 1 and 2 are edge routers and routers
3 and 4 are core routers. There are 40 sources sending AF traffic
to a single destination. Flows are numbered from 1 to 40. Flow i is
assigned a committed rate of 100¢ Kbps, where ¢ = 1,2, ...40, i.e.,
flow 1 is committed to 100Kbps rate, flow 2 to 200Kbps rate, and so
on. Flows 1~10 and 21~30 are CBR flows, of which the sources are
sending at twice of the corresponding committed rates, i.e., source
of flow 1 sends at 200Kbps rate, flow 2 at 400Kbps rate, and so on.
Flows 11~20 and 31~40 are TCP flows. We group these 40 flows
in such a way that flows 1~10 are aggregated with flows 31~40 into
router 1; flows 11~20 are aggregated with flows 21~30 into router
2. Therefore, the aggregated committed rates from link 1 and link
2 are both 41Mbps. The capacity of the bottleneck link, link 3, is
provisioned to be 82Mbps, hence a well-loaded network.

Again, we run the simulation twice, using CSPFQ and using
WCSFQ, and compare the results. Fig. 12 plots the average through-
put of each flow. In the figure, the solid diagonal line represents the
ideal proportionally fair bandwidth allocation, and the two dashed
diagonal lines represent £25% of the ideal fairness line.

We observe from the figure that our CSPFQ algorithm can achieve
fairly satisfactory result in such an environment. All flows’ average
throughputs are roughly proportional to their committed rates and
allocation errors are within +25% region. It is clear that irresponsive
CBR flows can steal the bandwidth from drop sensitive TCP flows
when two types of flows coexist. This is partly attributed to the
feedback delay in TCP’s congestion control. Overall, CSPFQ can
protect the well-behaving TCP flows from the persistent CBR flows
and still maintain proportionality in its bandwidth allocation.

On the other hand, WCSFQ, while exhibiting comparable perfor-
mance in the environments of homogeneous flows, does not result
in a satisfactory bandwidth allocation. Under WCSFQ, too much
of the bottleneck bandwidth is allocated to the CBR flows and

0-7803-8794-5/04/$20.00 © 2004 IEEE

the throughputs of all TCP flows are suppressed far below their
committed rates.

Flows# 1~10 Router 1
(UDP)
<
Flows# 31~40 ’9(
(TCP) ~ Router 3 Router 4
Flows# 11~20, ot fink 3 destination
S
(TCP) 3
Flows#21~30@”” Router 2
(UDP)

Fig. 11. 40 heterogeneous AF flows compete for a single bottleneck. Each
flow has committed rate of 1007 Kbps, where ¢ is the flow id.

Comparison of Bandwidth Allocation in a Well-Loaded Network Using
CSPFQ and Weighted CSPFQ

7000

Fairness Line
Fairness +/-25% -------

SFQ &
6000 | . CSPE .
5000
o
@
4000 =

3000 T o g

Flow Throughput (Kbps)
.

2000

1000

gaa

[

20 25 30 35 40
Flow ID

Fig. 12. Comparison of bandwidth allocation of 40 heterogeneous AF flows
using CSPFQ and WCSFQ in a well-loaded network. CBR flows send at twice
of their committed rates.

F. Mix of TCP and UDP Flows in an Under-loaded Network

Here, we repeat simulation E in an under-loaded network. Instead
of 82Mbps bottleneck, we set the capacity of the bottleneck link to
100Mbps, which is 18Mbps larger than the total of the committed
rates. Also, different from simulation E, all CBR flows are sending at
three times of their committed rates. Fig. 13 shows that our CSPFQ
can still maintain the proportionality in fair bandwidth allocations
among flows. For WCSFQ, the TCP flows have gained some band-
width as compared to Fig. 12, but the bandwidth distribution among
the flows is certainly not proportional to the flows’ committed rates.
The proportionality, or the lack of it, is more evident in the following

Comparison of Bandwidth Allocation in an Under-Loaded Network Using
CSPFQ and Weighted CSFQ

7000

6000 |

5000

4000 o

3000

Flow Throughput (Kbps)
.
‘

2000

1000

0 =
5 10 15 20 25 30 35 40

Flow ID

Fig. 13. Comparison of bandwidth allocation of 40 heterogeneous AF flows
using CSPFQ and WCSFQ in an under-loaded network. CBR flows send at
three times of their committed rates.

figures. Fig. 14 is a combination of plots from Fig. 12 and Fig. 13 for
the CSPFQ case. It shows that under CSPFQ, as the network changes
from well-loaded to under-loaded, every flow’s throughput increases
proportionally to the flow’s committed rate. Fig. 15 is a combination
of plots from Fig. 12 and Fig. 13 representing the results using
WCSFQ in well-loaded and under-loaded networks, respectively. The
results of using WCSFQ in an environment of heterogeneous flows
do not show a clear proportionality.

IEEE Communications Society
Globecom 2004

736

Proportional Bandwidth Allocation Using
CSPFQ

7000

Achieved Throughput (under-loaded network) - -
Achieved Tl (well-loaded network) - - -
6000
= 5000
5 4000 P e -
é 3000 v"‘. 5 =2 "ﬁq o
s p .
= 2000 - .
1000 _’0"‘. \‘e.eﬁv.; h
LestE
0 5 10 15 20 25 30 35 40
Flow ID
Fig. 14. Comparison of bandwidth allocations using CSPFQ in both well-

loaded and under-loaded networks.

Proportional Bandwidth Allocation Using
Weighted CSFQ

7000
‘Achieved Throughput (under-loaded network) -
Achieved TI (well-loaded network) ----©-
6000
v!’s"
-
_ 5000 -
3 -
S 4000 ¥
£ i
H i -
£ 3000 A
z e
= 2000 g ="l LT =
- Ak -
! T | g
1000 2
- Lo e
0 s 10 15 20 25 30 35 40
Flow 1D
Fig. 15. Comparison of bandwidth allocations using WCSFQ in both well-

loaded and under-loaded networks.

IV. CONCLUSIONS

Aiming to provision proportional fair bandwidth allocation for AF
flows in DiffServ networks, we have proposed a new simple core-
stateless proportional fair queuing scheme, CSPFQ. We have proven
analytically that our scheme is fair using the fluid model. We have
also shown, through a series of simulations, with comparisons, that
the packetized implementation of CSPFQ is effective in achieving
proportional fairness and is robust in handling different combinations
of flow types. As compared to WCSFQ, our algorithm eliminates the
need for core routers to estimate flows’ fair shares.

REFERENCES

[11 A. K. Parekh and R. G. Gallager, “A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The Single-
Node Case,” IEEE/ACM Transactions on Networking, vol. 1, no. 3, pp.
344-357, 1993.

[2] D. Lin and R. Morris, “Dynamics of Random Early Detection,” in ACM
SIGCOMM 1997, 1997, pp. 127-137.

[3] L. Stoica, S. Shenker, and H. Zhang, “Core-Stateless Fair Queueing:
A Scalable Architecture to Approximate Fair Bandwidth Allocations in
High-Speed Networks,” IEEE/ACM Transactions on Networking, vol. 11,
no. 1, pp. 3346, 2003.

[4] Z. Cao, Z. Wang, and E. Zegura, “Rainbow Fair Queuing: Fair Bandwidth
Sharing Without Per-flow State,” in I[EEE INFOCOM 2000, 2000, pp.
922-931.

[5] S. Floyd and V. Jacoboson, “Random Early Detection For Congestion
Avoidance,” IEEE/ACM Transactions on Networking, pp. 397—413, 1993.

[6] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
Architecture for Differentialed Services,” IETF RFC 2475, 1998.

[71 K. Nichols, S. Blake, K. Baker, and D. Black, “Definitions of the
Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers,”
IETF RFC 2474, 1998.

[8] D. Grossman, “New Terminology and Clarifications for DiffServ,” IETF
RFC 3260, 2002.

[9] J. Heinanen and R. Guerin, “A Two Rate Tree Color Marker,” IETF RFC
2698, 1999.

0-7803-8794-5/04/$20.00 © 2004 IEEE

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

