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Abstract: In the paper, a new framework of active queue management, namely, edge-based active
queue management (EAQM), is proposed. Conventional AQM schemes are required to be
deployed at all routers in the network, and this involves significant upgrading to current drop-tail
routers. The new approach only needs to modify the edge routers and at the same time provides
similar or better performance as compared to conventional AQM schemes. Furthermore, EAQM
can reduce the throughput bias against TCP connections with longer round trip times, and this
cannot be achieved by current available AQM approaches.

1 Introduction

Active queue management (AQM) has been a very active
research area in recent years. Many AQMmechanisms have
been proposed, e.g., random early detection (RED) [1],
random exponential marking (REM) [2], PI controller [3],
adaptive virtual queue (AVQ) [4], state feedback control
(SFC) [5], and virtual queue and rate-based scheme (VQR)
[6]. The main goals of these schemes are to reduce and
stabilise queuing delay, avoid global synchronisation, and
achieve high link utilisation. RED is a standard queue
length based AQM that drops packets with probability
proportional to the current average queue length. AVQ is
a typical rate based scheme. REM, PI, and SFC use the
queue length and the aggregate flow rate to compute
the dropping probability. VQR uses both the virtual queue
length and aggregate flow rate to determine the dropping
probability.

AQM schemes have not been widely deployed in the
current Internet because all the proposed AQM schemes
need to be implemented in all routers (or at least bottleneck
routers), and this demands significant upgrading to routers
in the current networks. Another reason is that the
performance of these AQM schemes have not been fully
investigated and understood, and it is not clear which
scheme performs the best. Therefore, it is still risky to
deploy them in the entire network.

In this paper, we propose the framework of edge-based
AQM (EAQM). EAQM is only deployed at the network
edge, and the drop-tail core routers are kept unchanged.
Compared with traditional AQM schemes, it is able to
provide comparable or even better performance; thus, it is
more practical and economically feasible. It is well known
that TCP’s throughput is inversely proportional to the
round trip time (RTT); considerable unfairness occurs to
TCP connections with longer RTTs. As one of the key

features, EAQM alleviates this type of unfairness, while
current available AQM schemes fail to do so.

2 Framework of EAQM

In this paper, we use the term ‘aggregate’ to refer to all
the TCP connections, which enter the network at the
same ingress node and leave the network at the same egress
node. Note that any edge node can be the ingress or egress
node for multiple aggregates at the same time, and each
aggregate can be identified with one pair of ingress
and egress nodes uniquely. Each pair of ingress and egress
nodes in each aggregate exchange information about the
aggregate membership and network congestion condition
by sending feedback packets to each other. At ingress
nodes, packets are classified into aggregates. Based on the
received congestion information, ingress nodes compute
dropping probabilities for the corresponding aggregates,
and drop packets based on the computed probabilities. The
rest of this Section will explain the feedback protocol
between ingress and egress nodes, operations at ingress and
egress routers, and how the dropping probabilities are
computed.

We adopt a feedback protocol between ingress and egress
nodes similar to [7]. There are two types of feedback
packets: forward packets, which are sent from ingress nodes
to egress nodes, and backward packets, which are sent from
egress nodes to ingress nodes. Both types of packets contain
a timestamp field and aggregate information field. The
timestamp field serves to calculate the RTTs between
the two edge nodes, and the one-way queueing delay from
the ingress node to the egress node. Based on the variation
of RTTs, ingress nodes calculate the dropping probabilities.
Each ingress node fills in the aggregate information field
with necessary information about the TCP flows that enter
the network through itself. This allows the egress nodes to
know at which ingress node each TCP flow enters the
network. Similarly, the aggregate information field in
backward packets enables ingress nodes to know at which
egress node each TCP flow leaves the network. Based on the
information in backward packets, ingress nodes are able to
know to which aggregate each TCP flow belongs, and this
allows ingress nodes to classify TCP flows into the correct
aggregates.

In order to calculate RTTs and one-way queuing delays,
ingress nodes continue to send out forward packets after a
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certain time interval T. In this paper, we set T for each
aggregate to be 100ms. The timestamp field in the forward
packets is always available, but the aggregate information
field is optional. The aggregate information field is needed
only when a new flow enters the network through an ingress
node, or one existing flow becomes inactive. When an egress
node receives one forward packet, it immediately sends a
backward packet back to the corresponding ingress node.
The backward packet contains the original timestamp of the
forward packet, and the time the corresponding forward
packet was received. Again, the aggregate information field
of the backward packet is not always required, and it is
filled in only when the egress node detects new flows or an
existing flow becomes inactive. Figure 1 shows the
architecture of the ingress node in EAQM.

Upon arrival of a backward packet, each ingress node
uses its timestamp field to compute the RTT and one-way
queuing delay q for the corresponding aggregate. Then, the
average RTT is updated

RTTave  ð1� wRTT ÞRTTave þ wRTT RTT ð1Þ
where wRTT is the smoothing factor. One method to
compute the one-way queuing delay q is to use BaseRTT
to track the minimum RTT, and compute q as
q ¼ RTT � BaseRTT . This approach is implemented in
the current TCP Vegas, but the performance degrades
significantly when there is congestion in the reverse path
from the egress node to the ingress node. This disadvantage
was pointed out and the remedy was proposed in [8]. In this
paper, we adopt the same approach in [8] to compute the
one-way queuing delay, and interested readers are referred
to [8] for more details.

In EAQM, one simple approach to compute the
dropping probability p is

p / qave ð2Þ
where qave is the average one-way queuing delay. There is
similarity between this approach and RED. In RED, p is a
linear function of the queue length at each router, and (2)
indicates that p is proportional to the average one-way
queuing delay q. The throughput of TCP can be expressed
as [9]

R ¼ 1

d

ffiffiffiffiffiffi
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where d is the round trip time between the TCP sender and
receiver, and RTO is the retransmission timeout, which is set
to 4d in this paper. Note that d is slightly different from
RTTave, which is the round trip time between the two edge

routers of the corresponding aggregate. When the dropping
probability p is very small, (3) is reduced to

R ¼ 1
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s
ð4Þ

We can see that there is considerable unfairness against
TCP flows with longer round trip time from (3) and (4).
Our approach is based on the following intuition: if the
dropping probability is computed as a function of d so that
d can be cancelled in the right-hand side of (3), the TCP
throughput will no longer depend on d. Therefore, we adopt
the following way to compute the dropping probability p
such thatffiffiffiffiffiffiffiffiffiffi
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is satisfied, and thus eliminating the dependence on d.
Here, b is a constant. We can compute the dropping
probability p by solving (5). In (5), we use RTTave rather than
d, since only RTTave can be measured by the edge routers.
Note that if RTTave ¼ d, by substituting (5) into (3), the

throughput of TCP flows equal to
p
ð1=ðbqaveÞÞ, which is

independent of their round trip time. Thus, the unfairness is
eliminated. Since no explicit expression of p from (5) is
available, p has to be numerically determined, thus leading
to considerable computing overhead at each ingress node.
Hence, we adopt the following approximation by replacing

minð1; 3
p
ð3p=8ÞÞ with 3ð

p
ð3p=8ÞÞ and neglecting the p2

term in (5)ffiffiffiffiffiffiffiffiffiffi
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Thus, (6) can be reduced to a cubic equation of p, and p is
set to be the unique positive root of (6).

When p is very small, (6) can be simplified to

p ¼ 3bqave

2RTT 2
ave

ð7Þ

Substituting it into (4)

R ¼
ffiffiffiffiffiffiffiffiffiffi
1

bqave

s
� RTTave

d
ð8Þ

We make a reasonable assumption that the propagation
delay between TCP senders and the ingress node, and that
between the egress node and TCP receivers are much
smaller than the round trip time (RTTave) between the two
edge nodes. Therefore, we have RTTave=d � 1, and (8) can
be rewritten as

R �
ffiffiffiffiffiffiffiffiffiffi
1

bqave

s
ð9Þ

Thus, the throughput unfairness against TCP flows with
longer round trip times is eliminated. We will use
simulations to demonstrate this improvement in the next
Section.

In the next Section, we will study the performance of
EAQM and compare it with RED by simulations. The
reasons that we decide to compare EAQM with RED are
twofold: first, RED is one of the most classic and well
studied AQM schemes; second, both RED and EAQM are
core-stateless AQM schemes, and it is thus appropriate to
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Fig. 1 Architecture of the ingress node in EAQM
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compare their performances. We will show that EAQM can
provide similar or even better performance as compared to
RED in terms of queue length stability, responsiveness to
traffic dynamics, and TCP throughput fairness. There are
other possible ways in EAQM to compute the dropping
probability other than using (6), e.g., using both queuing
delay q and its changing rate _q. The focus of this paper is
the introduction of the EAQM framework, which can
potentially be adopted in enhancing current Internet, and
will prompt more relevant follow-up research activities.

3 Simulations

A simple network shown in Fig. 2 is adopted in this Section
for simulations. The link from node N1 to N2 is the only
bottleneck. There are two TCP aggregates, and each
consists of 30 long-lived TCP flows: the first aggregate is
from S1 to R1, and the second aggregate is from S2 to R2.
E1, and E2 are ingress nodes, and E3 and E4 are egress
nodes. TCP packet size is 500 bytes, and the buffer size at
N1 is 800. All simulations are 200 seconds long, and the
throughputs are computed based on the last 100 seconds of
the simulations.

In the Appendix, we provide the guideline to set
the parameters of EAQM to ensure stability. Here, the
parameters of EAQM are: b ¼ 0:015, wRTT ¼ 0:01, and
T ¼ 0:1 s. We follow the guideline in [10] to set the
parameters of RED to ensure it is stable: minth ¼ 50
packets, maxth ¼ 500 packets, pmax ¼ 0:1, and the weight
w for queue averaging is 10�6. All links except the
bottleneck link are drop-tails. In all simulations, we use
RED at the bottleneck link from N1 to N2 first; then
we enable EAQM at ingress and egress nodes (E1yE4)
and the bottleneck link from N1 to N2 is set back to simple
drop-tail.

In the first set of simulations, we compare the
performance between RED and EAQM with respect to
the queue length stability. The evolution of the queue length
at the bottleneck N1 is plotted in Fig. 3. We can see that the
instantaneous queue length under EAQM oscillates less and
is more stable.

In the second set of simulations, we investigate the
responsiveness of EAQM to the traffic dynamics. The
propagation delay between E2 and N1 and that between N2

and E4 are changed to 30ms. At time zero, 30 TCP
connections start in the first aggregate, and no traffics are in
the second aggregate. At the 100th second, 30 TCP
connections start in the second aggregate. The evolution
of the queue length is plotted in Fig. 4. It is clear that the
instantaneous queue length under RED fluctuates signifi-

cantly between the 100th and 140th seconds, while EAQM
is much less vulnerable to the traffic dynamics.

In the third set of simulations, we want to demonstrate
that EAQM is immune from the throughput bias against
TCP flows with longer round trip times. We keep the
propagation delay between E1 and N1 identical to that
between N2 and E3, and change their values from 10ms to
60ms. We calculate the fairness indices for both RED and
EAQM schemes. The fairness index F is defined as

F ¼ minðr1; r2Þ
maxðr1; r2Þ

ð10Þ

where r1 and r2 are the throughput of aggregate one and
two, respectively. The closer the index to one, the fairer
among all TCP flows. The results are shown in Fig. 5. We
can see that EAQM greatly reduces the unfairness.

We also conduct simulations based on the network with
two bottleneck links shown in Fig. 6. Each of S1, S2, and S3
represents 30 TCP senders, and R1, R2, and R3 are the
corresponding TCP receivers. The link between N1 and N2

and the link between N1 and N2 are the bottlenecks. We use
RED at the bottlenecks first; then we enable EAQM at
ingress and egress nodes (E1yE5) and the bottleneck links
are set back to simple drop-tail. All the RED and EAQM
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Fig. 4 Responsiveness to traffic dynamics of EAQM

IEE Proc.-Commun., Vol. 153, No. 1, February 2006 57



parameters are the same as before. We keep the propaga-
tion delay between E1 and N1 identical to that between N2

and E3, and change their values from 10ms to 60ms. We
calculate the fairness indices for both the RED and EAQM
schemes. The fairness index F is defined as

F ¼ minðr1; r2; r3Þ
maxðr1; r2; r3Þ

ð11Þ

where r1, r2, r3 are the throughput of aggregate one, two
and three, respectively. The results are shown in Fig. 7.

Again, it is clear that the fairness index of EAQM is
higher than that of RED. We can see that the fairness index
of EAQM in Fig. 7 is around 0.7 instead of 1.0 as in Fig. 5.
This is not because that EAQM does not eliminate the
throughput unfairness against TCP flows with longer
RTTs. It is because that aggregate one ( from S1 to N1)
traverses two bottleneck links and each of the remaining
two aggregates only traverses one bottleneck link. Thus,
aggregate one experiences more queuing delay, and as a
result, exhibits a larger dropping probability than that of
aggregate two and three. Owing to the symmetry, the
average queue length at each bottleneck, denoted as Qave, is
equal to each other. From (9), the throughput of aggregate
one is

R1;eaqm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2bQave

s
ð12Þ

and the throughput of aggregate two or three is

R2;eaqm ¼ R3;eaqm ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

bQave

s
ð13Þ

From (12) and (13), the fairness index for EAQM is

Feaqm ¼
R1;eaqm

R2;eaqm
¼ 1ffiffiffi

2
p � 0:707 ð14Þ

and this is very close to the result in Fig. 7.
A similar situation occurs if RED is adopted. Owing to

the symmetry, the equilibrium dropping probabilities at all
bottleneck links are the same, and we denote them as Pave.
Thus, the dropping probability for aggregate one is 2Pave,
and Pave for aggregate two and three. From (4)

R1;red ¼
1
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ffiffiffiffiffiffiffiffiffiffi
3

4Pave

s
ð15Þ
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1
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ffiffiffiffiffiffiffiffiffiffi
3

2Pave

s
ð16Þ

Here, d1, d2 and d3 ¼ d2 � d1 are the RTTs for aggregate
one, two and three, respectively. The fairness index is

Fred ¼
R1;red

R2;red
¼ d2

d1
ffiffiffi
2
p � 0:707

d2
d1

ð17Þ

Similarly, it can be shown that the factor 1=
p
2 also exists

under other traditional AQM schemes.

4 Conclusions

There exist some other AQM schemes such as flow random
early drop (FRED) [11] and core-stateless fair queuing
(CSFQ) [12], which address the fairness issue. However, all
of them require the deployment at both edge routers and
core routers. FRED is a core-stateful rather than a core-
stateless approach. In FRED, core routers need to maintain
qleni and strikei for every flow i. This drawback makes it
very difficult to implement FRED in the core routers.
CSFQ needs extra field in the IP header to encode traffic
rate of each flow and other necessary information, which
requires the introduction of new protocols.

In this paper, we have proposed a new framework of
AQM, namely, EAQM, which is only required to be
deployed at the edge of the network. It has been shown that
EAQM can achieve similar or better performance as
compared to the typical AQM scheme, RED. Furthermore,
EAQM can reduce the throughput bias against TCP
connections with longer round trip times. EAQM is a more
practical and economical approach to improve the current
Internet.
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7 Appendix

We follow the similar procedures and the criteria in [10] to
set the EAQM parameters b, wRTT and T. Consider N TCP
connections with propagation delay d0 in a single bottleneck
network. The linearised dynamic model in the Laplacian
domain is illustrated in Fig. 8. Readers are referred to [3, 10]
for more details on this model.

In Fig. 8, P(s) is expressed as

P ðsÞ ¼ 1

C
PtcpðsÞPqueueðsÞ ð18Þ

where

PtcpðsÞ ¼
RaveC2

2N 2

sþ 2N
R2

aveC

ð19Þ

and

PqueueðsÞ ¼

N
Rave

sþ 1

Rave

ð20Þ

Here, PtcpðsÞ and PqueueðsÞ represent the dynamics of TCP
and queue, respectively. Note that there is an additional
term 1/C in (18) compared to that in [10], and this is because
q in this paper is the queuing delay instead of queue length
used in [10]. Here, C is the capacity of the link. From (7)

p ¼ 3bqave

2RTT 2
ave

we have [10]

dp ¼ 3

2RTT 2
ave

1� 2qave
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� �
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dq ð21Þ

where K ¼ � ln ð1� wRTT Þ=T , wRTT is a smoothing factor
for RTT, and T is the time interval, after each of which the
ingress nodes send out forward packets to probe the one-
way queuing delay of each aggregate. Combining (18)–(21),
the frequency response for the open loop transfer function is

LðjoÞ ¼
3bRTTave

C
2N

� �2

1� 2qave

RTTave

� �
e�joRave

2
jo
K
þ 1

� �
joRTT 2

ave

2N
þ 1

� �
joRTTave þ 1ð Þ

ð22Þ
According to Nyquist Theorem [10], the above system is
stable if LðjoÞ crosses the real axis on the right hand side of
�1. Using the results of Proposition 1 and 2 in [10], we have

Proposition 1: If

3

2
bRþ

C
2N�

� �2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

g

K2
þ 1

s
ð23Þ

where og ¼ 0:1minf2N�=ðRþÞ2C; 1=Rþg, then the line-
arised feedback system is stable for N � N� and Rave � Rþ.
Furthermore, the above feedback system is also stable if
either RTTaveo15Rþ or N4ð1=5pÞN�.

C(s) P(s)e−sR0
�p �q

−

Fig. 8 Linearised model of TCP/AQM
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The proof of Proposition 1 is similar to the proofs of
Proposition 1 and 2 in [10], and it is thus omitted here.
Interested readers are referred to [10] for details.

In all simulations in this paper, we use N � 60, and
RTTave � 0:6 s. Let N� ¼ 60, Rþ ¼ 0:04 s, b ¼ 0:015,
wRTT ¼ 0:01, and T ¼ 0:1 s. Using Proposition 1, we

can verify that the linearised EAQM system is stable
with these parameter settings. We also show the
Nyquist plot of LðjoÞ with these parameter settings
in Fig. 9. We can see that LðjoÞ crosses the real axis
on the right hand side of �1. Therefore, stability is
guaranteed.
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