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Abstract

Research on wireless sensor networks (WSNs) has received tremendous attention in the past few years due to their potential appli-
cations and advances in the VLSI design. In WSNs with tiny sensors, mobility of a sink may provide an energy efficient way for data
dissemination. Having a mobile sink in WSN, however, creates new challenges to routing and sensor distribution modeling in the net-
work. In this paper, based on clustering and routing optimization algorithms, we propose a new scheme called K-means and TSP-based
mobility (KAT mobility). After clustering the sensor nodes, the proposed method navigates the mobile sink to traverse through the clus-
ter centers according to the trajectory of an optimized route. The mobile sink then collects the data from sensors at the visited clusters.
Simulation results have demonstrated that the proposed scheme can provide not only better energy efficiency as compared to those
obtained by conventional methods which assume random waypoint for the mobile sink, but also fault-resilience in case of malfunctions

of some sensors due to attacks.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A wireless sensor network consists of potentially thou-
sands of tiny wireless devices capable of taking various
environmental measurements, such as temperature, humid-
ity, vibrations, and luminance. Such immensity of sensing
has been promoting a plethora of emerging applications
in areas ranging from homeland security, healthcare, to
the military. Recent advances in MEMS (Micro-Electro-
Mechanical Systems) and nanotechnology have fueled the
development of super tiny wireless sensors such as “smart
dust” devices [1,2] for sensing and collecting data. Net-
working and communications among these sensors in dis-
seminating sensed data in an efficient, secured, and fault-
tolerant manner is a major challenge. This is attributed
to limited computational resources and power of the sen-
sors, limited bandwidth and open channel communications
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within the network, and collaborative and distributive con-
nectivity of a vast number of sensors. Power consumption
is usually dominated by signed transmissions, and it is thus
critical to design an energy efficient data collection scheme.
In general, sensors with different capabilities are deployed
to collect data in a hierarchical approach [3]. In particular,
a data collection node referred to as a sink, which is con-
nected to an existing wired network and/or is more
resourceful, is used to collect/gather the measurements
“sensed” by the sensors in a region. Sensors work together
to disseminate data to a sink by forwarding/relaying each
others data, more often, in a multi-hop fashion. Since this
mode of operation imposes large communication load on
sinks, sinks are provisioned with more resources, e.g., they
are rechargeable and programmable. Mobile sinks are
especially agile in gathering sensed data from sensors. Such
a mobile sink is referred to as a “MULE (Mobile Ubiqui-
tous LAN Extension)”; readers may refer to [4] for the
basic concept of MULEs. Mobile sinks move randomly
in the area of deployment of a sensor network; they pick
up data from sensors only when they are within the closest
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range. The primary advantage of deploying mobile sinks is
energy saving because mobile sinks are versatile and can
communicate with sensors as often as only required.

Routing of mobile sinks plays a significant role in
achieving the effectiveness of the data collection system.
As it is pointed out in [5], if a sink is given many roles, it
will become a very attractive target for attacks. Therefore,
routine trajectories, which are following the same path with
a fixed speed, should be avoided. Moreover, sensors may
be compromised or sabotaged for various reasons. It
remains a challenge to design the migration route of mobile
sinks in a way not only to minimize the consumed energy
on sensors but also to make them resilient to attacks, in
particular those that annihilate sensors. This paper takes
this challenge of determining the trajectories of mobile
sinks in the wireless sensor network that is fault-resilient.

In this paper, we propose a mobility model of mobile
sinks that can efficiently collect usable sensed data in a
wireless sensor network, even if some sensors are compro-
mised or annihilated. Our proposed scheme consists of two
modules: the K-means clustering algorithm and the
approximate solution for TSP (Traveling Salesman Prob-
lem). Sensors are first clustered by using the K-means clus-
tering algorithm, from which the cluster centers are
determined as anchor points. The migration route of
mobile sinks is determined as an approximate solution of
TSP. Accordingly, our new mobility is referred to as the
KAT mobility (the K-means and TSP based mobility).

The remainder of this paper is organized as follows. Sec-
tion 2 describes some related works. Section 3 presents the
system model and an overview of the proposed algorithm.
Simulation results are presented in Section 4. Finally, con-
cluding remarks are given in Section 5.

2. Related works

Several data gathering schemes in WSNs have already
been proposed [6-11], that can be categorized into flat
and hierarchical topologies. In general, the hierarchical
topology adopts clustering such as LEACH [12] and PEG-
ASIS [13] to fulfill various functionalities of WSNs. For
example, Ding et. al. applied the Ant Colony Optimization
(ACO) [14,15] to determine low-cost chains from a sink to
every sensor by optimizing the cluster centroids. In this
paper, we focus on mobile sinks where sinks move around
a monitoring area to collect data.

The three-tier architecture for deploying mobile sinks
(MULESs) in a sparse sensor network was first reported in
[4]. Fig. 1 denotes the abstraction of three-tier architecture.
Sensors belong to the lower tier provide the sensed physical
measurements. Access-points belong to the upper tier com-
mand the mobile sinks to start gathering information. They
can be remotely controlled from a distant place with the
Internet connectivity. Thus, mobile sinks belong to the
middle-tier, and they relay the gathered data from the sen-
sors to access-points by maneuvering through areas where
sensors are scattered.

Access Point

A

MULEs

Sensors

Fig. 1. Three-tier architecture.

Several applications of mobile sinks have already been
reported. For example, in ZebraNet [16], sensors, acting
as mobile sinks, are attached to animals (zebras), which
gather the sensed physical data by exploiting the natural
motion of the animals. Owing to the unpredictable move-
ments of the animals, it is difficult to control its motion
as a mobile sink. Wang et.al. [17] attempted to predict
movements of a sink by integer linear programming which,
however, incurs a tremendous computational overhead.
Such method is suitable for applications which can afford
off-line computation, such as initiating the route of a sink.
It is, however, too computational intensive for re-routing a
sink in real-time. The use of multiple controlled mobile
sinks was investigated in [18], wherein the proposed load
balancing technique indicates the potential of power sav-
ing. Our work focuses on exploiting mobility to achieving
graceful performance resilient and tolerant to faulty and
sabotaged sensors.

Reference [19] provides a survey on exploiting mobility
in ad-hoc networks, and more recently, advanced research
works have been reported in [20-23]. However, in the con-
text of sensor networks, if sinks are mobile, no immediate
end-to-end connection between two communicating nodes
can be established. Consequently, it is difficult to apply
these results on ad-hoc networks directly to sensor net-
works. According to some basic experiments by changing
mobile sink parameters (e.g. arrival rate), reported in
[4,24], the random walk mobility and other existing
mobility models achieved almost the same performance
in terms of the data collecting rate and latency. Yet, several
open issues regarding the mobility of the energy efficient
data collection remain.

In [25], performance of the data mobile sink model using
Mica2 Motes with the TinyOS system in urban environ-
ments was investigated, but this work mainly studied the
mobile sinks speed. The contributions of our proposed
work are two-folded: (1) a new migration routing of mobile
sinks is proposed to enhance the fault-resilient ability and
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the efficiency of the wireless sensor network in data collec-
tion, in which a new performance metric has been intro-
duced to quantify the efficiency of the system; (2) to
delineate the performance differences of mobility models
through extensive and detailed simulations of the sensor
network equipped with sensor-specified protocol and bat-
tery consumption model.

3. Data collection

We assume that an administrator distributes sensors to
monitor the targeted area, and sensors are scattered at ran-
dom positions and do not move afterwards. The adminis-
trator is assumed to be able to localize the actual
coordinates of scattered sensors, which acquire the moni-
tored data at their own positions. The amount of data
which they can acquire per unit time is fixed, and buffers
in which data can be stored temporarily are equipped.
The model of data collection follows those surveyed in
the “Query Processing System” [26], which also includes
Directed Diffusion [27], the most popular protocol stack
used in sensor networks [8,28]. We adopt the One Phase
Pull model [29] because it is the simplest scheme among
the versions of Directed Diffusion. For illustrative pur-
poses, consider the sensor network consisting of one sink
and six sources (seven nodes in total), as shown in Fig. 2.
In this example, the sink node collects the data monitored
at a certain source node, labeled “‘source”. The other five
sensors function as relay nodes in this case. Each sensor
maintains a symmetric connectivity with his neighbors, as
shown in Fig. 2(a). At first, the sink sends a query, referred
to as an interest message, to the network. These interest
messages are flooded through the network (Fig. 2(b)). That
is, the sensors act as relays forwarding the interest message
towards the source node. In reply to the interest message,
the source node sends a data message which is composed
of the buffered data.

Data messages are sent only through the route(s) in
which the interest message traversed (Fig. 2(c)). As a result,
sensors “‘construct” their networks by themselves, and the
sink is able to collect the monitored data. Fig. 2(d) shows
an example of the path, but this is the shortest case, since
we can consider the many paths by using Directed Diffu-
sion. Even though the sensed data may be out of the radio
range of the sink, they can be relayed to the sink in the
multi-hop fashion as described in Fig. 2.

Source Source

Sink Sink

(a) Topology (b) Interest

3.1. Mobile sink

In some strategic scenarios such as a battlefield, only
mobile sinks are allowed to identify and revoke compro-
mised sensors, and to collect data from sensors [5]. Since
a sink possesses this kind of privilege, it is essential to safe-
guard the sink from attacks. One of the realistic solutions is
by means of random trajectories [30]. By moving randomly
within a monitoring area and obtaining the data from
sources at random locations, it is possible to reduce the
threat of attacks. However, random mobility may compro-
mise the efficiency of data collection. Therefore, we need to
devise the migration trajectories for sinks with efficiency yet
preserving their random behavior. This means that the
mobile sinks have random speed so that the arrival timing
at each centroid can not be casily inferred by attackers.
Meanwhile, the change of trajectories depends on the sen-
sors that survived the attack. Furthermore, sensors located
in combat areas may be destroyed or malfunction. In these
scenarios, mobile sinks should be adopt to the environ-
ment, and reprogram their trajectories accordingly.

3.2. Conventional mobility models

For illustrative purposes, we make the following
assumptions:

e The monitoring area is 5 x 5 km?.

o The number of sensors is 200.

e The positions of mobile sinks are initialized at (0,0), as
shown, for example, in Fig. 3(a).

In the event of an attack, the geographical area affected
by the attack is a square in which x is between 0 and
1.5 km, and y is between 1.5 and 3.0 km, as shown by the
box of red lines in Fig. 3(b).

In this paper, we examine the following two conven-
tional mobility models: the random waypoint mobility
which is described in the following, and the deterministic
mobility which can be considered as the simplest mobility
model. These mobility models are specified by three param-
eters: minspeed, maxspeed and pausetime.

3.2.1. Random waypoint mobility

The random waypoint mobility [31] is a widely used
mobility model [19], in which a mobile sink chooses a

Source

Sink

(c) Data (d) Path

Fig. 2. Directed Diffusion (one phase pull) [27].



2378 H. Nakayama et al. | Computer Communications 30 (2007) 2375-2384

5000 0 -
00 Op: 00 (o0}
» O ‘o) €§E§ & lo) @
4000 o @)£ (o) Q
0 & dj &Y o
D 3 00
0@ © &0 B o 9
3000 o0.® 00 %0
%%O@ o © >° o 0’9
o o0
P o & Yo © é)c
o)
2000 &5
00 o @ B8O ° > Io)
1000 o [Bo °.0%° .°°
o & OO © C(pg %
00 o
0 BOO o, On 69 00 o

0 1000 2000 3000 4000 5000
(a) All ensors are alive.

5000 5 o
(o)) 00 00 (o0}
p O o] €57@ & o §
4000 o &£ @9 Q
0 ¢ dj & o
D o o8 ) 0 0
o ® &° o 9. 9
3000 0.®....Q %0
o 00 0 9%
00 009, @C
Q.
2000 & 5p S
@ gfd @
o o o)
1000 o o 0 .00 .e°
o
0] & o o (fza (625}
o0 o
0 SOO o On 09 ©0 o

0 1000 2000 3000 4000 5000
(b) Some sensors are dead.

Fig. 3. Sensor placements.

random destination in the monitoring area, and moves from
one waypoint to the next until it reaches the chosen destina-
tion. The speed of the mobile sink from one waypoint to
another is selected each time uniformly between [minspeed,
maxspeed]. Fig. 4(a) shows an example of the random
waypoint mobility. Note that the random walk mobility,
which used in prior work [4,24], is similar to the random
waypoint mobility especially when the pausetime is zero [19].

3.2.2. Deterministic mobility

Deterministic mobility refers to the fact that the trajecto-
ries are deterministically selected. For example, as shown in
Fig. 4(b), the four deterministic destinations of a mobile sink
are set at the four corners of a monitoring area. The sink
chooses the speed in the same way as that of the random way-
point mobility; i.e. the mobile sink travels from one destina-
tion to another at a speed selected from a uniformly
distributed random number. As reported in [5], we can think
of various types of trajectory (e.g., triangle, ellipse, etc.) as
the deterministic mobility. Here, we simply adopt the square
trajectory in proportion to the monitoring area.

3.3. Proposed KAT mobility

The trajectories of a mobile sink across the whole range
of the monitoring area shown in Fig. 4 by using the two

5000

L : '
Y

4000

3000

2000

1000

1000 2000 3000 4000 5000
(a) Random Waypoint

models described in Section 3.2. However, sensors are ran-
domly scattered with different densities; some areas are
sparse, some are dense as shown in Fig. 3(a). In addition
to the underlying nature of scattered sensors, when the
events of compromised sensors are invoked artificially,
the sensors are distributed disproportionately. From the
point of view of energy efficiency, if the administrator
can control mobile sinks like a pilotless drone plane, the
trajectory of mobile sinks can be optimized with relation
to the distribution dynamically. Consequently, we propose
the KAT mobility for a mobile sink, which is based on the
clustering algorithm [32] and the route optimization [33].
Denote x as a sensor, represented by a p-dimensional vec-
tor (i.e. location of the sensor), and y; (i = 1,...,K) the i-th
sink (in the context of clustering, the i-th cluster).

3.3.1. Clustering algorithm

Clustering is a procedure to divide the set U of sensors
into the K clusters Cj,...,Ck. Let total number of sensors
be N =|UJ; in general N > K. With respect to clustering,
a sink is in rough proximity of a group of sensors [34],
and thus the cost of clustering can be evaluated as an
approximation error d(x,y;) between a sink and sensors.
While dividing the set U into the K clusters, the affiliation
of sensor x with the i-th cluster C; is represented by

5000 1

4000

3000

2000

1000

o il i

0 1000 2000 3000 4000 5000
(b) Deterministic

Fig. 4. Conventional mobility models.
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The sum of approximation errors is
K
D= Z Z{Uw‘ ~d(x,y;)}. (2)
x =l

The final target is to configure C; such that D is minimized.
In this paper, we set p =2 because the coverage area is
2-dimensional, and position of each sensor as well as the
sink is represented by X-Y coordinate.

In K-means method [35], the cost can be evaluated as
the Euclidian-distance between the sensor x and the i-th
sink y;.

2
d(x,y;) = lx =yl (3)
We propose to minimize the energy of the actual communi-

cations by clustering to decrease the consumption of each
sensor’s battery, which is proportional to d(x,y;) [12].

3.3.2. Route optimization

The route optimization of mobile sinks is analogous to
the TSP (Traveling Salesman Problem). If the sink is
mapped to the traveling salesman, and each sensor to a
city, the route optimization of the mobile sink to visiting
every sensor once and just once is equivalent to finding
the shortest trip of the traveling salesman to visiting every
city once. Ultimately, when the number of sensors equals
to the number of clusters, a mobile sink(x) will visits all
sensors(y;), in which case the distance Vi d(x,y;) becomes
zero. However, the TSP is NP-hard [36] so that finding
the optimal tour is computationally infeasible. Fortunately
for sensor networks, sensors can communicate with each
other, and mobile sinks do not need to visit all sensors.
After clustering the sensors as described in Section 3.3.1,
we need only to optimize the routes among cluster cent-
roids. Using the same expression formula discussed in
[37], our goal is to find the ordering & of the centroids that
minimizes the tour lengths

K—1

Z AV Vaiirr)) T dWri)s Vo)) (4)
=0

where the initial position of each mobile sink is y,. We
implemented a simple local search algorithms called
2-Opt and Or-Opt, which is based on the heuristics modifi-
cation of a current solution to TSP. Readers are referred to
the references [37,33] for details.

3.3.3. Proposed procedure

Our proposed KAT mobility scheme consisting of two
modules are overviewed in Fig. 5. Determination of the tra-
jectory of a mobile sink can be summarized as follows:

Step 1. Initialize the position y; randomly, ¢ = 0.
Step 2. Define the threshold “Thr’, as the stopping crite-
rion, for the following iterative process.

--»: Route of mobile sink

X : Clustering centroids

Fig. 5. Overview of proposed modules.

(1) When d(x,y) <d"(x,yj), Vj#i, assign a sensor
xeCy.
(2) Set sinks position to the center of each cluster.

yl(t+1) _ Z X

xECl(.I)

(3) Calculate the sum of errors D"V at time ¢ + 1, and if

(t+1) _ ()
|D DY

D0 > Thr

is true, we can update ¢ and continue this iteration.
Otherwise, the final centroid is set to y{™" and
break this iteration.

Step 3. Minimize the tour length by using the 2-Opt and
Or-Opt algorithm, and find that the local optimal
TSP solution which is the ordering m of the
centroids.

Consequently, mobile sinks trace the trajectory of the
local optimal TSP solution. Our proposed method assumes
that each mobile sink knows a priori the positions of its
member sensor nodes. The mobile sink may lose communi-
cations with its faulty or sabotaged member sensors, in
which case the sink can stay at the centroid point of its
cluster and discover broken sensors by applying the statis-
tical anomaly detection [38,39]. The trajectory of the sink
can then be recalculated/updated as soon as the sink
reaches the access point. Fig. 6(a) shows an example of
the migration route of a mobile sink. With compromised
sensors, the route of the sink obtained (optimized) by the
proposed procedure is shown in Fig. 6(b).

4. Evaluation

We have used the Qualnet simulator (Ver. 3.9.5) and its
extension [40,41] to study and demonstrate the effectiveness
of KAT mobility for data collection in a wireless sensor
network.
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Fig. 6. KAT mobility.

4.1. Simulation setup

Fig. 7 shows an overview of the sensor and mobile sink
architecture. A sensor node functions as a source, and a
mobile node functions as a sink. Both the sensor node
and the mobile sink node perform according to a sensor-
specified network protocol. The energy consumption of a
sensor node uses the LCP-based battery model, and the
mobile sink node travels using the three mobility models
described in previous section.

4.1.1. Network model

We adopt a layered architecture similar to that of the
TCP/IP protocol stack. The application and the network
layer are described in Section 3. The link layer and the
physical layer meet the global standard IEEE 802.11b in
wireless networks. The transmission rate is 11 Mbps and
the corresponding range is about 272 m, which is computed

| Application(Source) |

!

i
1
|
| Network Layer(Diffusion) | E
|
i
1
i

!

| Link Layer(802.11b) |
Y
17 |

| Physical Layer(802.11b) |<l“—|=l>‘

Battery Model
(LCP-based)

Network

Wireless
! Channel

by the formula of the free space propagation loss from
receive sensitivity and transmission power.

4.1.2. Battery model

In this paper we use the analytical high-level battery
model proposed in [42,43], which is widely used in sensor
network simulations [44-46]. This model assumes that the
LCP (load current profile) is approximated by an N-step
staircase function. Here, ¢ is the time that the battery has
been discharged for, and the battery charge consumption
p(t) is described by

N-1
p(t)zzlk'F(tvskysk+5k7ﬂ) (5)
k=0
where I is the k-th LCP, and s, and 0, denote the start
time and the duration of the k-th step in LCP, respectively.

Further, f is a constant and F is the non-linear function
defined as:

Mobile Node

| Application(Sink) |

!

i
1
i
1
|
1 | Network Layer(Diffusion) |
1
1
i
1
i
1

| Link Layer(802.11b) |

. !

Mobility Model
(Deterministic)
(Random Waypoint)
(KAT)

Fig. 7. Sensor node and mobile sink node architecture.
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F(x,y,z,ﬁ) =z=)
+2i exp {—f'm*(x —z)} —exp {—f'm*(x —y)} (6)

pm?

where M is the censored order. If the capacity of the bat-
tery is o, then the remaining energy is o — p(t). Following
[47], the two constant parameters are as follows:

o =40,375, p=0.273.

We have simulated the Compaq Itsy Pocket Computer
[48,49], equipped with an Orinoco wireless card. This card
consumes 805 mW in the listening mode, 950 mW in the
receiving mode, and 1,600 mW in the transmitting mode;
these parameters are the same as used in [50].

4.2. Parameter settings

The simulation time is fixed to 30 min and the area is the
5x 5 km? square field. In this area sensors are randomly
placed and then remain fixed in their respective positions.
Mobile sinks are first placed in zero point and moved
according to the sensor mobility. The mobility schemes
are described in Sections 3.2 and 3.3. The mobile sinks
velocity varies from 10 m/s to 30 m/s randomly, and the
pause time is 20 s. Each sensor is equipped with a buffer
of 10 MB, and can generate a constant rate of data of
512 B/s. When a mobile sink transmits the interest message
and once a sensor receives it, then the sensor immediately
transmits the data message, which is held in its buffer.
The results presented were averaged over ten random sim-
ulations with different seeds.

4.3. Performance metrics

We are concerned with how much data the system can
collect. The average received bytes R of the data collection
system per device (sensor, mobile sink) is defined by

(Received Bytes by all mobile sinks) )
NxM ’

where N is the number of all sensors, and M is the number of
mobile sinks. R means the volume of traffic per device.
Another relevant parameter is the consumed energy of the
system. The average consumed energy C of the data collection
system normalized by the number of mobile sinks is defined as

R [KB] =

C [mWhi] = (Consumed Energy by all sensors). (8)
M

Note that only a mobile sink can send a query request to

sensors. Finally, we introduce the following metric E to

quantify the efficiency of the system:

E [KB/mWhr] :g

(Received Bytes by all mobile sinks)
(Consumed Energy by all sensors) x N~

©)

That is, this metric indicates the amount of data collected
from one sensor per unit energy. Besides, since the number
of mobile sinks M has no direct effect on E, this becomes
significantly useful for the evaluation of the data collection
system, in case of wireless sensor network.

4.4. Experimental results

Fig. 8 shows the performance comparisons among the
three mobility models, when the number of mobile sink is 1
(M =1) and the number of clusters is 10 (K = 10). In the
deterministic mobility, the average efficiency increases in
proportion to the number of sensors. This is because more
data could be collected through easily constructed relayed
paths, due to the increase in number of sensors. In the ran-
dom waypoint mobility, the average efficiency also increases
proportionally. Positioning of more mobile sinks close to
sensors in the sensing area produces considerable improve-
ment. The KAT mobility takes into account the closest
position to sensors. From Fig. 8§ we can see that when the
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Fig. 8. Performance comparisons among the three mobility models.
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number of sources are small (e.g., from 20 to 60), KAT
mobility provides greater efficiency compared to the deter-
ministic mobility and the random waypoint mobility. This
is because the sensors are distributed sparsely. In these cases,
the conventional mobility models have difficulty in finding
sensor nodes for path connectivity and therefore, KAT
mobility performs the best among the three mobility schemes.

When some sensors are dead in a certain area, due to
fault devices or attacks, the trajectory of the KAT mobility
dynamically changes, as mentioned in Section 3.3. The tra-
jectories obtained by the conventional methods remain the
same. Fig. 9 shows the performance comparisons among
three mobility models with dead sensors. Again, as
expected, the proposed scheme is significantly more effi-
cient than the conventional methods.

Next, we assumed when some sensors are dead ran-
domly in the sensing area. This for example could be the
case when some sensor nodes have insufficient resources
or affected by attacks. It is proved again that the trajectory
of the KAT mobility changes dynamically. Figs. 10-12
show the average efficiency when the percentage of sabo-
tage sensors are 1%, 5% and 10%, respectively. The perfor-
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Fig. 12. Performance comparison with dead sensors (10% dead).

mance differences between our proposed and the
conventional methods are significant. These simulations
have been demonstrated the robustness of KAT mobility
against faulty sensors.

5. Conclusion

In this paper, a new data collection scheme for wireless
sensor networks has been proposed. In this scheme, in
addition to normal sensor nodes, some mobile sinks are
also assumed. Mobile sinks use a certain mobility pattern
in the sensing area. The novelty of the proposed scheme
in comparison with the conventional schemes is that in
the proposed scheme the mobile sinks could be considered
as independent sensors from regular sensor nodes, and
therefore they can be recharged and reprogrammed to
acquiesce to the updated trajectory. The trajectory of the
migration of a sink is assumed random in order to mitigate
malicious attacks. Realizing the fact that the conventional
random waypoint mobility would not necessarily be energy
efficient, in the proposed KAT mobility scheme we use the
K-means clustering algorithm and the TSP-derived migra-
tion route for the mobile sinks. The tradeoff between the
throughput and energy consumption is considered as the
efficiency metric in our evaluation. Meanwhile, the pro-
posed KAT mobility can calculate the optimal route for
the sink to circumvent the damaged area or malfunctioned
sensors caused by attacks while still preserving its random
behavior, i.e., the mobile sinks move at random speeds so
that the arrival timing at each centroid cannot be easily
inferred by attackers. Simulation results demonstrated that
the proposed scheme can provide better energy efficiency
and fault-resilience compared with conventional methods
that assume random waypoint model for the mobile sink.
Proper distribution of sensors may further improve the
proposed scheme by assigning the appropriate number of
clusters and number of mobile sinks needed. In addition,
self-regulating technique [51] for assuring service level can
also be combined with the proposed method to provide a
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better and practical solution. These are left as our future
research endeavor.
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