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ICE: Intelligent Cell BrEathing to
Optimize the Utilization of Green Energy
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Abstract—This letter proposes Intelligent Cell brEathing (ICE)
to optimize the utilization of green energy in cellular networks by
minimizing the maximal energy depleting rate of the low-power
base stations powered by green energy. Minimizing the maximal
depleting rate is an NP-hard problem. ICE is thus proposed to
achieve low computational complexity. ICE, in each iteration,
finds the energy dependent set and the vector of beacon power
level decrements for low-power base stations in the set, and then
shrinks the coverage area of these base stations by reducing their
beacon power levels. The algorithm iterates until the optimal
solution is found. ICE balances the energy consumptions among
LBSs, enables more users to be served with green energy, and
therefore reduces the on-grid energy consumption.

Index Terms—Energy efficient communications, cellular net-
works, renewable energy.

I. INTRODUCTION

REENING is not merely a trendy concept, but is be-
G coming a necessity to bolster social, environmental, and
economic sustainability. Naturally, green communications has
received much attention recently. For cellular networks, the
base stations (BSs) account for more than 50 percent of the
energy consumption of the networks [1]. Therefore, reducing
the power consumption of BSs is crucial to achieve green
cellular networks. Heterogeneous cellular networks with a
mixted usage of high-power BSs (HBSs) and low-power BSs
(LBSs) can attain up to 50 percent reduction of the total
power consumption of BSs [2]. Owing to the worldwide
penetration of distributed electricity generation at medium and
low voltages, LBSs can be powered by distributed electricity
generators that utilize green energy drawn from renewable
sources such as solar and wind. In this scenario, how to
manage the green energy powered LBSs to maximize the
utilization of green energy is challenging because both the
user traffic and energy supplies are dynamic.

For the network powered by green energy, the fundamental
design issue is how to utilize the harvested energy to sustain
traffic demands of users in the network [3]. The optimal uti-
lization of green energy over a period of time depends on the
characteristics of the energy arrival and energy consumption
at the current stage as well as in future stages. Solving this
optimization problem involves at least two aspects. The first
aspect is the multi-stage energy allocation problem which
determines how much energy should be used at the current
stage, and how much energy is reserved for the future. To
solve the multi-stage energy allocation problem, parameters
such as the current energy arrival and consumption and the
estimations of future energy arrival and consumption should
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be considered. The energy arrival depends on the renewable
resources, and the energy consumption depends on the user
traffic demands. The second aspect is to maximize the uti-
lization of the allocated green energy at each stage. In this
letter, we propose Intelligent Cell brEathing (ICE) to minimize
the maximal energy depleting rates (EDRs) of LBSs, thus
maximizing the utilization of the green energy at each stage
(every time slot of cell breathing). Here, we assume each
LBS has a dedicated power generator, and the power is not
shared among LBSs. Owing to the limited energy storage,
the energy consumption of certain LBSs under the default
user-cell association algorithm may be larger than their energy
storage, and thus these BSs are not able to serve all the users
with green energy. As a result, users under their coverage
will switch to HBSs which consume the on-grid energy. ICE
balances the users among the BSs through cell breathing,
minimizes the maximal energy depleting rates of LBSs, and
therefore enables more users to be served with green energy.
The cell breathing techniques are recently applied to minimize
the energy consumption of the cellular networks [4]. However,
different from previous works, we are trying to maximize
the utilization of the green energy instead of minimizing
the total energy consumption of the cellular networks. The
total energy consumption including green energy and on-grid
energy under ICE may be larger than that of the default user-
cell association algorithm. However, ICE reduces the on-grid
energy consumption. Since green energy is renewable, ICE
maximizes the utilization of green energy to save the on-grid
energy.

II. PROBLEM FORMULATION

To simplify the problem formulation, we assume LBSs
update their cell size every 7 seconds by changing their beacon
power levles, and LBSs always have data transmission to
mobile users during the 7 seconds. The LBS EDR is the
normalized rate of energy consumption over the allocated
green energy for the LBS, and EDR of LBS ¢ equals:

(napi® + pi*")r

R =
E;

ey

Here, R; is EDR, n; is the number of associated users, pﬁz
is the transmit power, p;*®¥¢ is the static power consumption,
and E; is the allocated green energy for LBS ¢ at the current
stage. For simplicity, we use n;pi® to represent the dynamic
power consumption of LBS 7. Assume there are N LBSs in
the LBS set A, and M mobile users in the user set U. Then,
the problem can be formulated as follows:

min max{Ry, R, -+ ,Ry} 2)
b

subject to : kad?,jp(i,j) < pi*,
ie(1,2,---,N),je(1,2,---,M). (3)
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Here, b = (bi*,b5%, - bi® ... bi) is the beacon power
level vector of LBSs, p = (p{*, p&*, .-+, pt®, - - [ pi¥) is
the transmit power vector of LBSs, and d; ; is the distance
between LBS ¢ and user j. p” is the minimal receiving power
that satisfies users’ QoS requirements. p(i, j) is an indication
function which equals 1 if user j attaches to LBS ¢; otherwise,
it equals 0. We assume the signal from LBSs experiences
free space attenuation, which is inverse of the squares of
distances between the users and their associated LBSs, and &
is the path-loss factor which is a constant. The beacon power
level vector determines the user-LBS association, and thus
determines EDRs of LBSs. Each LBS has G beacon power
level, and b!* € (1,2,--- ,G). The mobile users attach to the
LBS with the largest receiving signal strength.

Theorem 1. The problem that minimizes the maximal power
depleting rate is NP-hard.

Proof: Consider a case of the problem with only two
LBSs. Each user v € U can be covered by both LBSs. If
the user w associates with LBS 1, the energy consumed by
this user on LBS 1 is s(u); if the user attaches to LBS 2,
the user consumes v(u) energy from LBS 2. Assuming both
LBSs have the same energy storage. Minimizing the maximal
power depleting rate equals to finding a subset U’ C U that

satisfies
Zs(u)z Z v(u). “)

uely’ ueU-uU’

By restricting the simple case of the problem to s(u) = v(u),
and assuming ) s(u) be evenly divisible by 2, the prob-
lem equals to the partition problem [5], which is a known
NP-hard problem. [ ]

III. THE ICE ALGORITHM

The most intuitive method to solve the above problem is
the greedy algorithm that assigns each LBS with the largest
transmit power, p™**, and then iteratively reduces the beacon
power level of the LBSs with the largest EDR until Constraint
(3) is violated. This greedy method may not yield the optimal
solution of the min-max problem. Taking the network shown
in Fig. 1 as an example, assume both LBSs have the same
energy storage, one unit, and each LBS has two transmit
power levels. The energy cost of the mobile users when they
associate with different LBSs are shown in the figure. For
the greedy method, LBS 1 will drop its transmit power level
in the first iteration because it has the largest EDR, then in
the second iteration, the LBS 2 will drop its transmit power
level for the same reason, and the user-LBS association returns
to the original status. Then, the greedy algorithm stops since
LBS 1 cannot drop its transmit power level anymore. This
algorithm achieves 0.5 as its optimal value, which is clearly
larger than 0.4 which is the result after the first iteration.
ICE resolves this problem by introducing energy dependent
set (EDS). Denote the largest EDRs at the current stage as ¢.
Let D’ = {a|R, > d§,a € A}. Let R/, be the EDRs of BSs
after the beacon power level reduction of LBSs in D’. Then,
the EDS D = {a|R, > d,a € A}.

Guideline 1. Every LBS in EDS has to reduce its beacon
power level in order to enable users switching from LBSs in
EDS to those outside EDS.

LBS 2
power level 2

LBS1
power level 1

original user-LBS association | user-LBS association after first iteration

Fig. 1. Tllustration of the failure of the greedy algorithm.

Guideline 1 engineers the design of ICE from two aspects:
1) to identify LBSs to reduce their beacon power levels in each
iteration, and 2) to determine the amount of beacon power
levels of each LBS to be reduced. Since the signals from
LBSs to individual users experience different path-loss, the
same amount of beacon power level reduction does not imply
the same amount of receiving power reduction for individual
users. Therefore, reducing the same amount of beacon power
level may trigger the users switching among the LBSs in
EDS; this violates Guideline 1. Given the user distribution,
the ICE algorithm, in each iteration, finds the EDS, and the
vector of beacon power level decrements, w, for LBSs in
EDS. The vector of beacon power level decrements determines
the amount of power level reductions for each LBS in EDS.
Then, ICE reduces the beacon power levels of LBSs in EDS
accordingly. The algorithm iterates until the optimal solution
is found. The pseudo code of ICE is shown in Algorithm 1.

Theorem 2. ICE always minimizes the maximal EDR .

Proof: ICE initializes all the LBSs with their maximal
beacon power level. Therefore, the maximal EDR, §, of the
network at the initial state is not less than that at the optimal
state. At every iteration, ICE attempts to reduce the maximal
EDR. Therefore, the maximal EDR at the current iteration will
not be larger than that at the previous iteration. ICE finds the
EDS and reduces the beacon level of all the LBSs contained in
EDS. According to Guideline 1, the users can only switch from
the LBSs within EDS to those outside EDS. As a result, EDRs
of LBSs within EDS do not increase. According to definition
of EDS, EDRs of LBSs outside EDS are strictly less than
0. Therefore, the iteration keeps reducing the maximal EDR.
ICE stops at the optimal solution. The algorithm stops in two
cases. The first one is D = A. In this case, all the LBSs are
in EDS. According to Guideline 1, reducing the beacon power
level of all LBSs does not change the user-LBS association.
Therefore, the maximal EDR cannot be reduced further. The
second one corresponds to the scenario that there exists at least
one LBS in EDS with its current beacon power level being less
than its beacon power level decrements. In the second case,
there exists LBSs in EDS whose beacon power level cannot
be reduced. Reducing the beacon power level of partial LBSs
in EDS violates Guideline 1, and therefore the maximal EDR
cannot be reduced further. ]

The computational complexity of ICE in the worst case is
O(GN*M). Theoretically, ICE is a pseudo polynomial time
algorithm. However, if any upper bound is imposed on the
number of beacon power levels, ICE becomes a polynomial
time algorithm [5].
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Algorithm 1 The ICE Algorithm
Initialize b!* = G, a € A;
OPT = FALSE;
while (OPT == FALSE) do
Calculate the EDR, R,,a € A
Find the largest EDR, J;
Find the set D such that R, > J,a € D;
while (D # D*) do
Initialize w, = 1, and w, = 0, a € D;
while (" # @) do
Reduce bff/ = bi" —w,, a € D;
Calculate R;, a € D;
W = w, update o to guarantee R; < R,,a € D;
end while
if (3a € D such that w, > b.*) then
D=A;
Break;
end if
Calculate R,,a € A — D;
Find a subset T C A — D such that R, > d,a € T;
D*=D,D=DUT,;
end while
if (D == A) then
OPT = TRUE;
else
Reduce b* by w,, a € D ;
end if
end while
Return b
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Fig. 2. The maximal EDR comparison (N=25).

IV. SIMULATIONS RESULTS

Simulations are set up as follows. A total of 25 LBSs
stations are located in a 5 by 5 grid. The distance between two
adjacent LBSs is 400 meters. Users are uniformly distributed
in the area. For simplicity, we assume the interferences among
the LBSs are well managed by frequency planning, and the
LBSs have complete knowledge of the users’ locations. In
the simulations, we compare our algorithm with the default
user-BSs association method called strongest-signal-first (SSF)
method which always associates a user to the BS with the
strongest received signal strength.

IEEE COMMUNICATIONS LETTERS, VOL. 16, NO. 6, JUNE 2012

1.2 -©-ICE, power levels: 15 |
’ —+ICE, power levels: 25
%7 SSF method
£
ko]
%
<
I
20
£ 0.8
w0
[an)]
=
'.
0.61 D
0 5 10 15 20 25
LBS index

The EDR comparison (N=25, M=600).

1.4 T T T T 1.4

Fig. 3.

IlNormalized energy storage
=@-User ratio under ICE
1.2r =¥ User ratio under SSF

IS

Normalized green energy storage

d
b

0.61

0.4

User ratio
o
@
: :
O
o [=d
(] e ]

““““llllllll
0 15 20 2

] .4
LBS index

)

Fig. 4. LBSs’ statuses (N = 25, M = 600, G = 25).

Fig. 2 shows the maximal EDR achieved by ICE and SSF.
In this simulation, we assume all the LBSs have the same
amount of energy allocation, and the users do not move during
the cell breathing interval, 7 seconds. As the number of users
is increasing, the maximal EDR is increasing. However, ICE
outperforms SSF by up to 20 percent in term of minimizing
the maximal EDR. ICE with 25 power levels achieve a better
solution than that with 15 power levels because when the
number of the beacon power levels increases, the search region
for ICE becomes larger. Therefore, ICE with a larger number
of power levels has more opportunities to balance the energy
consumption among the LBSs.

Fig. 3 shows the comparison of EDRs of LBSs between
ICE and SSF. In the figure, we sorts LBSs by their EDR from
the largest to the smallest, and the x-axis is the LBS index
while the y-axis is the energy depleting rate. For the SSF,
some LBSs experience large EDR while the EDR of the other
LBSs are small. This indicates the energy consumption among
LBSs is not balanced, with EDRs of the first 6 LBSs being
larger than 1. This means that these LBSs cannot serve the
associated users with green energy due to the limited green
energy storage. ICE minimizes the maximal EDR of LBSs
by offloading some users to their neighboring LBSs. In this
simulation, by applying ICE, EDRs of all LBSs are smaller
than 1, thus enabling all the users to be served by green energy.

Fig. 4 shows the green energy allocation at individual
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Fig. 5. The user outage percentage (N=25, G=20).

LBSs and the number of users who are associated with the
corresponding LBSs. The x-axis is the LBS index, and each
index represents a LBS. There are 25 LBSs in this simulation.
Here, we sort LBSs by the normalized green energy storage
from the largest to the smallest. The left y-axis represents the
user ratio, which is defined as the number of users associated
with individual LBSs determined by ICE and SSF over that
determined by SSF, respectively. The right y-axis is the
normalized green energy storage, which is derived by dividing
the green energy allocation on each LBS by the maximal
green energy allocation among the LBSs at current stage.
The normalized energy storage indicates the amount of green
energy allocated to each LBS, and is represented by green
bars in the figure. The user ratio reflects the number of users
associated with individual LBSs, and is represented by blue
and red curves in the figure. We can see that ICE associates
more users with the LBSs which have a larger amount of the
green energy allocation. This benefits the utilization of green
energy from two aspects. First, for the LBSs with a small
amount of energy allocation, ICE offloads users from these
LBSs, and enables the LBSs to serve users with their limited
energy allocation. Second, for the LBSs with a large amount
of energy allocation, ICE directs users to associate with these
LBSs, and avoids the waste of arrival energy at these LBSs
because of the finite battery capacity.

Fig. 5 shows the user outage under ICE and SSF, respec-
tively. The y-axis represents the user outage percentage, which
is referred to as the percentage of users who are not served
by green energy. Users may not be served by green energy
if their associated LBSs have less green energy allocations
than the energy demands. When the number of users is small,
both ICE and SSF achieve zero user outage. As the number of
users increases, user outage increases because of the limited
green energy allocations. However, when the number of users
is less than 660, ICE incurs much less user outage than SSF
does. In fact, when the number of users is less than 550, ICE
achieves almost zero user outage while SSF surfers from up to
15 percent of outage users. When the number of users is larger
than 660, SSF achieves better performance because there are
too many users in the networks, and most of LBSs do not have
sufficient amount of green energy to serve all the associated
users. Therefore, ICE may increase EDRs of the LBSs that
already have large EDRs. This may disable these LBSs from
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Fig. 6. The user outage percentage (M=600, 7 = 360s, N=25, G=20).

serving their associated users with green energy. Thus, the
user outage percentage is large. However, when the network
is not overloaded or the green energy is allocated properly,
ICE provides better performance in the term of user outage
percentage than SSF does.

Fig. 6 shows the user outage versus different green energy
arrival rates. In this simulation, we assume the amount of green
energy allocation at each time slot of cell breathing equals to
the amount of green energy arrival of the previous time slot
of cell breathing. Assume the energy arrival rate, e,, of each
time slot is identical for all the LBSs, then E; = e,7. As the
energy arrival rate increases, the user outage decreases. When
the energy arrival rate is larger than 800 mW/h, ICE achieves
almost zero user outage while SSF still surfers from about 20
percent user outage, and SSF requires energy arrival rate to
be more than 1100 mW/h to eliminate the user outages.

V. CONCLUSION

In this letter, we have proposed ICE to optimize the
utilization of green energy in future cellular networks, and
therefore to minimize the energy consumption from the main
grid. We have derived and demonstrated the low computational
complexity of ICE. Through simulations, we show that ICE
balances the energy consumptions among LBSs, enables more
users to be served with green energy, and reduces the user
outage.
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