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Fair Quantized Congestion Notification in Data

Center Networks

Yan Zhang, Student Member, IEEE, and Nirwan Ansari, Fellow, IEEE

Abstract—Quantized Congestion Notification (QCN) has been
developed for IEEE 802.1Qau to provide congestion control
at the Ethernet Layer or Layer 2 in data center networks
(DCNs) by the IEEE Data Center Bridging Task Group. One
drawback of QCN is the rate unfairness of different flows
when sharing one bottleneck link. In this paper, we propose an
enhanced QCN congestion notification algorithm, called fair QCN
(FQCN), to improve rate allocation fairness of multiple flows
sharing one bottleneck link in DCNs. FQCN identifies congestion
culprits through joint queue and per flow monitoring, feedbacks
individual congestion information to each culprit through multi-
casting, and ensures convergence to statistical fairness. We ana-
lyze the stability and fairness of FQCN via Lyapunov functions
and evaluate the performance of FQCN through simulations in
terms of the queue length stability, link throughput and rate
allocations to traffic flows with different traffic dynamics under
three network topologies. Simulation results confirm the rate
allocation unfairness of QCN, and validate that FQCN maintains
the queue length stability, successfully allocates the fair share rate
to each traffic source sharing the link capacity, and enhances TCP
throughput performance in the TCP Incast setting.

Index Terms—Data Center Network (DCN), Quantized Con-
gestion Notification (QCN), congestion notification.

I. INTRODUCTION

Data centers, typically composed of storage devices, servers

and switches for interconnecting servers, are becoming in-

creasingly important to provide a myriad of services and

applications to store, access, and process data. Owing to the

inherent merits of Ethernet, such as low cost, ubiquitous con-

nectivity, and ease of management, Ethernet has become the

primary network protocol to provide a consolidated network

solution for data center networks (DCNs). However, Ethernet

was originally designed for best-effort communications in a

local area network (LAN) and not optimized for DCNs. The

Data Center Bridging Task Group [1] in the IEEE 802.1 Eth-

ernet standards body thus aims to enhance classical switched

Ethernet to provide more services for DCNs. Project IEEE

802.1Qau is concerned with specifications of the Ethernet

Layer or Layer 2 congestion notification mechanism for DCNs.

Several congestion notification algorithms have been pro-

posed and developed to reduce or eliminate packet drops at

the congestion switch in DCNs, e.g., Backward Congestion

Notification (BCN) [2, 3], Forward Explicit Congestion Noti-

fication (FECN) [4], the enhanced FECN (E-FECN) [5], and

Quantized Congestion Notification (QCN) [6–8]. It has been

shown that BCN achieves only proportional fairness but not
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max-min fairness [9]. FECN and E-FECN can achieve perfect

fairness, but the control message overhead is high. QCN can

effectively control link rates to resolve switch congestions in

several round trips, i.e., several hundred micro seconds with

10 Gbps link capacity in today’s typical DCNs. However, one

drawback of QCN is the rate unfairness of different flows

when sharing one bottleneck link. Such rate unfairness also

degrades the TCP throughput in synchronized readings of

data blocks across multiple servers [10]. We thus propose

an enhanced QCN congestion control algorithm, called fair

Quantized Congestion Notification (FQCN) [11], to improve

fairness of multiple flows sharing one bottleneck link. The

main idea of FQCN is to distinguish congestion culprits and

feedback the global and per-flow congestion information to all

culprits when the switch is congested. In this paper, we extend

the original FQCN algorithm [11] by introducing the weighted

rate allocation. We also provide theoretical analysis on the

stability and fairness of the proposed FQCN algorithm via

Lyapunov functions. Moreover, we conduct more simulations

to evaluate the performance of FQCN in terms of the queue

stability, link throughput and rate allocations to traffic flows

with different traffic dynamics under three network topologies.

The rest of the paper is organized as follows. In Section II,

we summarize the related works. In Section III, we overview

the QCN algorithm. Then, we describe the proposed FQCN

congestion notification mechanism and analyze FQCN analyti-

cally via Lyapunov method in terms of stability and fairness in

Sections IV and V, respectively. The performance evaluation

of the proposed FQCN is provided in Section VI. Finally,

Section VII concludes the paper.

II. RELATED WORKS

BCN [2, 3], FECN [4], E-FECN [5] and QCN [6–8] are all

queue sampling based congestion notification algorithms. They

all assume that the switches detect congestion by sampling

the queue and generate the feedback congestion notification

messages to the sources based on the calculated congestion

parameter. The rate regulators at the sources adjust the rates of

individual flows according to congestion notification messages

received from the switches.

Both BCN [2, 3] and QCN [6–8] are rate-based closed-

loop feedback control mechanisms between the rate regulator

located at a source and a switch. In BCN, a switch feeds back

not only negative information regarding congestion but also

positive rate increasing information, and the rate regulator in

BCN adjusts its rate by using a modified Additive Increase and

Multiplicative Decrease algorithm. In QCN, only negative con-

gestion feedback is used. Thus, the control overhead of QCN is
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smaller than that of BCN. Since there is no positive feedback

in QCN, the rate regulators in QCN provide mechanisms

to recover the lost bandwidth and probe for extra available

bandwidth voluntarily. Moreover, the sampling probability is

constant in BCN while it is proportional to the congestion

parameter in QCN.

To ensure scalability, one of the main requirements and de-

sign rationales of IEEE 802.1 for QCN is to enforce the QCN

enabled switch to be “no state”, i.e., not storing any per flow

state. This requirement also prevents QCN from providing any

fairness stronger than proportional fairness, such as max-min

fairness. An enhancement to QCN, called approximate fairness

QCN (AF-QCN) [12], was proposed to improve the fairness

allocation of link capacity among all sharing sources. AF-QCN

extends the functionality of QCN with an approximate fairness

controller to provide weighted fairness on a per-flow or per-

class basis. For each incoming flow, the Ethernet switch with

AF-QCN estimates its arrival rate, calculates its fair share, and

derives its dropping probability.

FECN [4] is a close-loop end-to-end explicit rate feedback

control mechanism. Each source periodically probes the con-

gestion condition along the path to the destination. The rate

field in the probe message is modified along the forward path

by the switch if the available bandwidth at the switch in the

forward path is smaller than the value of the rate field in the

probe message. When a source receives the probe message

returned back from the destination, the rate regulator adjusts

the sending rate as indicated in the received message. All flows

are treated fairly in FECN since the same rate is advertised

by the switch. E-FECN [5] enhances FECN by allowing

the switches feedback to the source directly under severe

congestion. Reference [13] provides a more detailed discussion

on the Ethernet layer congestion notification algorithms for

DCNs.

III. QUANTIZED CONGESTION NOTIFICATION

The QCN algorithm is composed of two parts as shown in

Fig. 1(a): switch or congestion point (CP) dynamics and rate

limiter (RL) dynamics. At CP, the switch buffer attached to an

oversubscribed link samples incoming packets and feeds the

congestion severity level back to the source of the sampled

packet. At one traffic source, RL decreases its sending rate

based on the congestion notification message received from

CP, and increases its rate voluntarily to recover lost bandwidth

and probe for extra available bandwidth. The rate control

mechanism and the operations of RL in QCN are summarized

in Fig. 1(b) and (c), respectively. In order to ease the under-

standing, a list of all symbols used in the paper is summarized

in Table I.

A. The CP Algorithm

The goal of CP is to maintain the buffer occupancy at a

desired operating point, Qeq , which is the queue threshold

for equilibrium. At time t, CP samples the incoming packets

with a sampling probability p(t), and computes the congestion

feedback value Fb(t). The sampling probability is initialized

to 1%, and is updated after computing the congestion feedback

value Fb(t) at each sampling event. Denote Qlen(t) and
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Fig. 1: QCN overview

Qlen(t − τ) as the instantaneous queue length in bits of the

current sampling event at time t and last sampling event at

time t− τ , respectively, where τ is the time interval between

two adjacent sampling events. The congestion feedback value

Fb(t) consists of a weighted sum of the instantaneous queue

offset Qover(t) = Qlen(t)−Qeq and the queue variation over

the last sampling interval Qδ(t) = Qlen(t)−Qlen(t− τ), as

defined below:

Fb(t) = −(Qover(t) + w ∗Qδ(t)) (1)

where w is a non-negative constant, taken to be 2 for the

baseline implementation. In fact, Qover(t) indicates queue-size

excess while Qδ(t) indicates rate excess. If Fb(t) is negative,

either the buffer or the link or both are oversubscribed and

a congestion notification message containing the value of

quantized |Fb(t)|, denoted as Ψ(Fb(t)), is sent back to the

source of the sampled packet; otherwise, no feedback message

is sent.

At each sampling event, the sampling probability is updated
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as a function of Fb(t) as follows:

p(t) =

{

(1 + 9
64Ψ(Fb(t)))% (Fb(t) < 0)

1% (Fb(t) ≥ 0)
(2)

From the above equation, we can see that if there is no

congestion (Fb(t) ≥ 0), CP checks the congestion status with

a probability of 1%; otherwise, the sampling probability is

increased as a linear function of the quantized congestion

feedback value Ψ(Fb(t)). In the default implementation, the

congestion feedback value Fb(t) is quantized to 6 bits and the

maximum quantized value of Fb(t) is 64, and therefore, the

maximum sampling probability is 10%.

B. The RL Algorithm

As shown in Fig. 1 (c), RL adjusts the sending rate of the

associated traffic source by decreasing the sending rate based

on the quantized congestion feedback value contained in the

congestion notification message, and increasing the sending

rate voluntarily to recover lost bandwidth and probe for extra

available bandwidth.

1) Rate decrease: when a congestion notification message

is received, the current sending rate RC(t) is set as the target

rate RT (t) and the current rate is reduced by a factor of

Rd(t) = RC(t)Gd ×Ψ(Fb(t)) as follows:

RT (t) = RC(t)
RC(t) = RC(t)(1−Gd ×Ψ(Fb(t)))

(3)

where the constant Gd is chosen to ensure that the sending rate

cannot decrease by more than 50%, and thus Gd∗Ψ(Fbmax) =
1
2 , where Fbmax denotes the maximum of Fb(t). In the default

implementation, the maximum quantized value of Fb(t) is 64;

thus, Gd is configured to 1/128.

2) Rate increase: Two modules, Byte Counter (BC) and

Rate Increase Timer (RIT), are introduced in RL for rate

increases. BC is a counter for counting the number of bytes

transmitted by the traffic source, which is used to increase

the sending rate by RL. Based on BC only, it will take

a long time for a low rate source to increase its sending

rate; this might result in low bandwidth utilization if there is

tremendous available bandwidth. Moreover, the unfair sharing

of bottleneck bandwidth can be observed when a low rate flow

competes for the bandwidth with a high rate flow. In order to

enable fast bandwidth recovery, rather than getting stuck at a

low sending rate for a long time, RIT is introduced in RL to

increase the source’s sending rate periodically instead of based

on the amount of data transferred as BC does.

BC and RIT work in two phases, Fast Recover (FR) and

Active Increase (AI). At the FR phase, BC counts data bytes

transmitted and increases the BC cycle by 1 when BL bytes are

transmitted. After each cycle, RL increases its rate to recover

some of the bandwidth it lost at the previous rate decrease

episode. After the CT cycle (where CT is a constant chosen

to be 5 cycles in the baseline implementation), BC enters the

AI phase to probe for extra bandwidth on the path. In the AI

phase, RL counts the data bytes transmitted and increases the

BC cycle by 1 when BL/2 bytes are transmitted. BC is reset

every time a rate decrease is applied and enters the FR state.

RIT functions similarly as BC. In the FR phase, RIT

completes one cycle with T ms duration. After it counts out

TABLE I: Description of Symbols

Symbols Description

Network and Traffic Parameters

L The set of links.

Cl The capacity of link l.

S The set of sources.

Sl The set of sources using link l.

SL
l

The set of low rate flows on link l.

SH
l

The set of high rate flows on link l.

SR
l

The set of overrated flows on link l.

Ri(t) The rate of source i.
−−→
R(t) The vector of rates of all sources.

al,i The fraction of traffic from source i over the link l.

fl(t) The total amount of traffic over link l.

Queue Parameters

Qlen(t) The instantaneous queue length at time t.

Qeq The queue threshold for equilibrium.

Qover(t)
The excess queue length that exceeds the equilibrium Qeq

at time t.

Qδ(t) The queue variation over the last sampling interval.

QCN Parameters

Fb(t) The congestion feedback value calculated at time t.

Ψ(Fb(t)) The quantized congestion feedback value of Fb(t).

w
The weight parameter for the queue growth rate Qδ(t) in
computing the congestion feedback value Fb(t).

Gd The multiplicative decrease parameter of rate.

p(t)
The time varying sampling probability with which the CP
samples the incoming packets.

CT
The cycle threshold to determine the state of byte counter
or rate increase timer, in the FR or AI phase.

BL Bytes transmitted to complete one byte counter cycle.

T The Rate Increase Timer period in milliseconds.

RC(t) The current sending rate.

RT (t) The target sending rate

RAI
The sending rate incremental parameter when one cycle of
Byte Counter or Rate Increase Timer completes in AI phase.

RHAI

The sending rate incremental parameter when one cycle of
Byte Counter or Rate Increase Timer completes in HAI
phase.

FQCN Parameters

Bi(t) The byte counts of flow i at time t.

Wi The weight coefficient for flow i.

Mi(t) The fair share for flow i on link l at the sampling time t.

MF
i (t)

The fine-grained fair share for high rate flow i ∈ SH
l

on
link l at the sampling time t.

ΨF
Fb

(i, t) The quantized congestion feedback value calculated with
FQCN for the overrated source i at time t.

Analysis Parameters

pl(fl(t))
The probability of generating a negative QCN congestion
notification message from link l with load fl(t) at time t.

Pl(t)
The cumulative probability of generating a negative QCN
congestion notification message from link l at time t.

P (
−−→
R(t))

The cumulative probability of generating a negative QCN

message from all links at time t with vector of rates
−−→
R(t).

JA
(−→
R
)

The Lyapunov function of vector
−→
R .

To ease the reading and analysis, bits and bits/s are used as the units of queue
length and transmission rate, respectively.

CT cycles of T ms duration, it enters the AI phase where

each cycle is set to T/2 ms long. It is reset when a congestion

notification message arrives and enters the FR phase.

RL works in the FR, AI or Hyper-Active Increase (HAI)

phase depending on the state of BC and RIT. BC and RIT

jointly determine rate increases of RL, when either BC or

RIT completes one cycle of data transfer. When a rate increase

event occurs, the update of the current rate RC(t) and target
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rate RT (t) in different RL state is summarized as follows:

a) RL is in FR if both BC and RIT are in FR. In this case,

when either BC or RIT completes a cycle, the target rate RT (t)
remains unchanged while the current rate RC(t) is updated as:

RC(t) =
1

2
(RC(t)+RT (t)) = Rc(t)+

1

2
(RT (t)−Rc(t)) (4)

b) RL is in AI if either BC or RIT is in AI. In this case, when

either BC or RIT completes a cycle, the current rate and target

rate are updated as:

RT (t) = RT (t) +RAI

RC(t) = 1
2 (RC(t) +RT (t))

(5)

where RAI is a constant sending rate increment for RL in

the AI state, and it is set to be 5 Mbps in the baseline

implementation.

c) RL is in HAI if both BC and RIT are in AI. In this case,

the target rate and current rate are updated as:

RT (t) = RT (t) + α ∗RHAI

RC(t) = 1
2 (RC(t) +RT (t))

(6)

where RHAI is a constant sending rate increment for RL

in the HAI state, and is set to 50 Mbps in the baseline

implementation, and α is the minimum cycle count of BC

and RIT in the AI state.

IV. FQCN ALGORITHM

One drawback of QCN is the rate allocation unfairness of

different flows when sharing one bottleneck link, which can be

seen clearly in our simulation results shown in Section VI. To

improve the fair allocation of link capacity among all sharing

sources in QCN, the proposed fair Quantized Congestion No-

tification (FQCN) feeds the congestion notification messages

back to all flow sources which send packets at rates above their

fair shares of the bottleneck link capacity. FQCN differs from

QCN at the CP algorithm. As we can see from Eq. (1), QCN

randomly samples the traffic packets at CP and feedbacks a

global congestion status sequentially to a single traffic source

deemed as the congestion culprit. This random congestion

feedback in QCN prevents the sending rates from converging

to statistical fairness. FQCN addresses these deficiencies: 1) it

identifies the overrated flows, which are deemed as congestion

culprits and whose sending rates are larger than their fair

share rates; 2) through joint queue and per flow monitoring, it

feedbacks individual congestion status to each culprit through

multi-casting, thus ensuring convergence to statistical fairness.

A. Congestion Culprits Identification

Consider a network consisting of a set L = {1, · · · , L} of

links of capacity Cl (l ∈ L). The network is shared by a set

S = {1, · · · , S} of sources.
−−→
R(t) = [R1(t), · · · , RS(t)] is the

vector of rates of all sources with Ri(t) denoting source i’s
sending rate. Sl is the set of sources using link l.

In each sampling period, which is the time interval between

two adjacent packet sampling events, the switch monitors the

queue length, the number of arriving and departing packets

to calculate the congestion feedback value using Eq. (1) as

in QCN. The switch also monitors the number of total bytes

received for each flow Bi(t) (i ∈ Sl), which shares one

bottleneck link l within one sampling interval at time t.
The switch identifies congestion culprits by using a two-step

approach, which removes the influence of low rate flows to

enable precise identification of congestion culprits.

Step 1: Identify high rate flows. The fair share for each flow

i ∈ Sl on link l at the sampling time t can be estimated as:

Mi(t) = Wi∑
i∈S

l
Wi

∑

i∈Sl
Bi(t) (7)

where Wi is the weight coefficient for flow i, which can be
determined by traffic class, source address, destination address,

etc. Thus, the traffic flows can be classified into two categories

by comparing Bi(t) with Mi(t) (i ∈ Sl). A traffic flow i
from which the total number of bytes received at the switch

Bi(t) is smaller than its estimated fair share Mi(t) (Bi(t) <
Mi(t)) will be assigned to the low rate source set SL

l = {∀i ∈
Sl|Bi(t) < Mi(t)}. Otherwise, it will be assigned to the high

rate source set SH
l = {∀i ∈ Sl|Bi(t) ≥ Mi(t)}.

Step 2: Identify congestion culprits in the high rate flow set

SH
l . The fair share can be fine-grained among the high rate

source set SH
l as:

MF
i (t) = Wi∑

i∈SH
l

Wi

∑

i∈SH

l

Bi(t) (8)

Similar to the identification of high rate flows, the congestion
culprits can be identified by comparing Bi(t) with MF

i (t)
(i ∈ SH

l ). The source in the high rate source set SH
l with

the total number of bytes received at the switch equal to or

larger than its fine-grained fair share MF
i (t) is considered as

an overrated flow, which is deemed as a congestion culprit.

All of overrated flows form an overrated flow set SR
l = {i ∈

SH
l |Bi(t) ≥ MF

i (t)}.

B. Per Flow Congestion Parameter Calculation

If the calculated congestion feedback value Fb(t) using Eq.

(1) is negative, the congestion notification message will be sent

back to all identified overrated flows through multi-casting. For

each overrated flow i ∈ SR
l , the quantized congestion feedback

value ΨFb
(i, t) in the congestion notification message to the

source of the overrated flow i ∈ SR
l is calculated as follows:

ΨFb
(i, t) = Bi(t)/Wi∑

k∈SR
l

Bk(t)/Wk

×Ψ(Fb(t)) (9)

From the above equation, we can see that the quantized
congestion feedback value ΨFb

(i, t) in each congestion no-

tification message is proportional to Ψ(Fb(t)) and the total

number of bytes received at the switch normalized by its

weight coefficient Bi(t)/Wi, while the sum of the conges-

tion feedback values for all congestion culprits is equal to

Ψ(Fb(t)). Moreover, ΨFb
(i, t) is also quantized to 6 bits

because Fb(t) is quantized to 6 bits.

Fig. 2 describes the FQCN system model with three source

flows. In this example, sources 1 and 3 are identified as

congestion culprits, and the congestion notification message

with the quantized congestion feedback values ΨFb
(1) and

ΨFb
(3), calculated according to Eq. (9), are fed back to

sources 1 and 3, respectively.

FQCN differs from QCN as well as AF-QCN in computing

the congestion feedback value. QCN does not distinguish flow-

dependent congestion information and feedbacks the same
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congestion status to the source of the randomly sampled

packet, while the congestion feedback value in the congestion

notification message in both AF-QCN and FQCN is flow-

dependent. FQCN distinguishes from QCN as well as AF-

QCN by sending QCN congestion notification message to the

sources of all congestion culprits rather than to the source of

the randomly sampled packet in QCN and AF-QCN. Thus,

the switch congestion is resolved much faster with FQCN

than that with QCN or AF-QCN. Moreover, the signaling

overhead of FQCN is lighter than that of QCN and AF-QCN

because congestion messages could also be received by low

rate sources, which are not the real congestion culprits. That

is, throttling low rate sources are not as effective as throttling

high rate sources in mitigating congestion. AF-QCN increases

the congestion control algorithm complexity with arrival rate

estimation, fair share calculation, and dropping probability cal-

culation for each flow. AF-QCN can also identify congestion

culprits, but it still feeds congestion information only back to

the source of the randomly sampled packet.

V. ANALYSIS OF FQCN

The stability and fairness of FQCN can be analyzed via

the Lyapunov method [14], which is an important tool to

determine the stability of the equilibrium solution of a system

of ordinary differential equations (ODEs). In this section, we

analyze a simplified FQCN, in which RIT is disabled.

As introduced in Section IV, the FQCN control mechanism

can be separated into two parts: CP control and RL control. At

the switch, by assuming that the queue length is differentiable,

the switch dynamics are given by:

dQlen(t)

dt
=

∑

i∈Sl

Ri(t)− Cl (10)

Based on Eq. (1), the congestion feedback value Fb(t)
generated by link l can be calculated by:

Fb(t) = −(Qlen(t)−Qeq)−
w

Cl∗p(t)
(
∑

i∈Sl

Ri(t)− Cl)

(11)

where p(t) is the time-varying sampling probability at the

switch. This equation is the continuous version of calculating

the congestion feedback value of Eq. (1). If Fb(t) is negative,

each congestion notification message is sent back to individual

sources of the overrated flows with congestion parameter

calculated by Eq. (9).

RP adjusts the sending rate by performing additive increase

and multiplicative decrease (AIMD). At each rate increase

event, the sending rate is increased by (RT
i (t) − Ri(t))/2,

and the rate increase interval is 8BL/Ri(t) with BC, where

RT
i (t) and Ri(t) are the target and current sending rate of

source i, respectively. Therefore, the expected rate increase

per unit time is
(RT

i
(t)−Ri(t))Ri(t)

16BL
.

Denote pl(fl(t)) as the probability that a congestion mes-

sage will be sent to each overrated source i ∈ SR
l at each

packet sampling event when the load on link l is fl(t). This

probability is a monotonically increasing and differentiable

function of the load [15], fl(t) =
∑

j∈Sl
al,jRj(t), where

al,j = {0, 1} indicates whether the traffic from source j
flows on link l (al,j = 1) or not (al,j = 0). Note that

the splitting of traffic over multiple parallel paths is not

considered because the split traffic flows between the same

source and destination pair can be treated as multiple flows

independently. When a negative congestion message is re-

ceived by RP at source i, it will reduce the sending rate

by GdΨFb
(i, t)Ri(t). The expected interval between succes-

sive congestion messages received at an overrated source is

equal to K/(Cl

∑

l∈L
pl(fl(t)), where K is the packet size

in bits. Therefore, the expected rate decrease per unit time

is GdΨFb
(i)Cl

∑

l∈L
pl(fl(t)Ri(t)/K , where ΨFb

(i) is the

expected congestion feedback value received at source i.
Hence, an ODE describing the expected rate change at

source i can be expressed as:

dRi(t)

dt
=
(RT

i (t)−Ri(t))Ri(t)

16BL
× (1−

∑

l∈L

pl(fl(t)))

−
GdΨFb

(i)ClRi(t)

K
×
∑

l∈L

pl(fl(t)) (12)

In order to study the attractors of the ODE Eq. (12), we

identify a Lyapunov function for this ODE [14–16] as follows:

∑

l∈L

pl(fl(t)) =
∂

∂Ri(t)

∑

l∈L

Pl(fl(t)) =
∂P

(−−→
R(t)

)

∂Ri(t)
(13)

where Pl(t) is a primitive of pl(
−−−→
Rl(t)) defined by

Pl

(−−−→
Rl(t)

)

=
∫ fl(t)

0 pl(u)du

and

P
(−−→
R(t)

)

=
∑

l∈L

Pl (fl(t))

Here, Pl(fl(t)) is the cumulative probability of generating a

negative QCN congestion notification message from link l with

the link load fl(t), and P (
−−→
R(t)) is the cumulative probability

of generating a congestion notification message from all links

with the vector of rates
−−→
R(t).

We can then rewrite the ODE Eq. (12) as:

dRi(t)

dt
=
Ri(t)[αi −KRi(t)]

16KBL

×

{

K(RT
i (t)−Ri(t))

αi −KRi(t)
−

∂P (
−−→
R(t))

∂Ri(t)

}

(14)

where αi = KRT
i + 16BLClGdΨFb

(i).
The Lyapunov function for the ODE Eq. (14) is identified as:

JA
(

−→
R
)

=
∑

i∈S

Φ
(

Ri

)

− P
(

−→
R
)

(15)
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with

Φ
(

Ri

)

=

∫ Ri

0

K(RT
i − vi)

αi −KRi(t)
dvi

= Ri +
16BLClGdΨFb

(i)

K
log (1−

K

αi
Ri) (16)

The Lyapunov function Eq. (15) for the ODE Eq. (14) can be

transformed to:

JA
(

−→
R
)

=
∑

i∈S

Ri +
∑

i∈S

16BLClGdΨFb
(i)

K
log (1 −

K

αi
Ri)− P

(

−→
R
)

(17)

Similarly, following the same procedures as above by replacing

the expected interval between successive congestion messages

received at source i with K/(Ri(t)
∑

l∈L
pl(fl(t))), a Lya-

punov function JB(
−→
R ) can also be identified for a QCN

system as:

JB
(

−→
R
)

=
K

K − η

∑

i∈S

[Ri +
ηRT

i

K − η
log (1−

K − η

KRT
i

Ri)]− P
(

−→
R
)

(18)

with η = 16BLGdΨFb
, where ΨFb

is the expected congestion

feedback value.

A. Stability analysis

Proposition 1: The strictly concave function JA(
−→
R) is a

Lyapunov function for the differential equation of the FQCN

system Eq. (14), which is stable, and the unique value
−→
R

that maximizes JA(
−→
R) is an equilibrium point of the system,

to which all trajectories converge and maximize the link

utilization.

Proof: From Eq. (17), it is easy to see that JA(
−→
R) is strictly

concave over the bounded region (
−→
R � 0) with an interior

maximum, and therefore the value of
−→
R that maximizes

JA(
−→
R) is unique. The equilibrium rates

−→
R that maximizes

JA(
−→
R) can be identified by setting the following derivatives

to zero:

∂JA(
−−→
R(t))

∂Ri(t)
=

K(RT
i (t)−Ri(t))

αi −KRi(t)
−

∂P (
−−→
R(t))

∂Ri(t)
(19)

Further, along any solution of
−−→
R(t), we have:

d

dt
JA(

−−→
R(t)) =

∑

i∈S

∂JA(
−−→
R(t))

∂Ri(t)

dRi(t)

dt

=
∑

i∈S

Ri(t)[αi −KRi(t)]

16KBL
(
∂JA(

−−→
R(t))

∂Ri(t)
)2 (20)

Thus, JA(
−−→
R(t)) is strictly increasing with t, unless

−−→
R(t) =

−→
R ,

the unique
−→
R that maximizes JA(

−→
R). The function JA(

−→
R)

is thus a Lyapunov function for the differential equations of

the FQCN system Eq. (14). The maximization of JA(
−→
R) is

constrained by the link capacity, and hence the equilibrium

rates
−→
R maximize the link utilization. Since the equilibrium

rates are stable, the queue is also stable. Similar results can

be observed with the Lyapunov function JB(
−→
R) for the QCN

system. Hence, both FQCN and QCN are stable, and the rate of

each source converges to an equilibrium point that maximizes

the link utilization.

B. Fairness analysis of FQCN

Proposition 2: With multiple sources sharing a link, FQCN

is closer to max-min fairness than to proportional fairness.

Proof: As shown in [15], the expectation of the congestion

feedback pl(fl) at link l is close to a Dirac function in the

limiting case as:

δCl
(fl) =

{

0 if (fl < Cl)
+∞ if (fl ≥ Cl)

Thus, following the method in [15], the rates with FQCN are

distributed so as to maximize:

FA(
−→
R) =

∑

i∈S

16BLClGdΨFb
(i)

K
log (1−

K

αi
Ri) (21)

subject to the constraints:
∑

l∈L

al,iRi ≤ Cl, ∀l ∈ L

Similarly, in a QCN system, the rates are distributed to

maximize:

FB(
−→
R) =

Kη

(K − η)2

∑

i∈S

RT
i log (1−

K − η

KRT
i

Ri) (22)

At an equilibrium point, Ri is very close to RT
i . Hence,

we can observe that in a QCN system, the weight given

to Ri is close to Kη/(K − η)2RT
i log (η/K) for large Ri,

while the weight given to Ri in a FQCN system tends

to −16BLGdΨFb
(i)Cl/K log (1 + 16BLGdΨFb

(i)/K) as Ri

tends to Cl. Thus, FQCN is closer to max-min fairness than to

proportional fairness. This conforms to the intuition of FQCN:

low rate sources are less likely to receive QCN congestion

notification messages, while overrated flows will decrease the

sending rate according to the quantized congestion feedback

value in the congestion notification messages.

VI. PERFORMANCE EVALUATION

In this section, we evaluate FQCN with different traffic

dynamics by using NS2 [17] under three network topologies,

namely, the dumb-bell topology, parking-lot topology and a

simple and representative TCP Incast network topology. We

compare the performance of FQCN with that of QCN and AF-

QCN in terms of fairness and convergence, and the effects of

these congestion notification algorithms on TCP Incast. The

default QCN configuration is used in our evaluations: w=2,

Gd=1/128, T=15 ms, CT = 5, BL = 150 KB, RAI=5 Mbps

and RHAI=50 Mbps when the link capacity of the switch is

10 Gbps, while RAI=0.5 Mbps and RHAI=5 Mbps when the

link capacity of the switch is 1 Gbps.

A. Simulation Topologies

The dumb-bell and parking-lot topologies are shown in Fig.

3(a) and 3 (b), respectively. In these two topologies, all the

links have 10 Gbps link capacity and 50 µs round-trip time

(RTT) delay unless otherwise stated. 150 kilobytes (KB) of

switch buffers are used and the equilibrium queue length Qeq

is set to 33 KB. Furthermore, we simulate the application

performance with synchronized reads over TCP in NS2 to

model a typical striped file system data transfer operation to
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(c) A simple and representative TCP Incast network setting
with one client requesting data from multiple servers through
synchronized reads.

Fig. 3: Simulation topologies.

test the effects of QCN, AF-QCN and FQCN on the TCP

Incast problem.

TCP Incast [18, 19], also called TCP throughput collapse,

has been observed in many data center applications, e.g., in

cluster storage [20], when storage servers concurrently respond

to requests for a data block, in web search, when many workers

respond near simultaneously to search queries, and in batch

processing jobs like MapReduce [21], in which intermediate

key-value pairs from many Mappers are transferred to ap-

propriate Reducers during the “shuffle” stage. TCP Incast is

attributed to having multiple senders overwhelming a switch

buffer, thus resulting in TCP timeout due to packet drops at

the congestion switch as analyzed in [19, 22, 23]. A simple and

basic representative network topology in which TCP through-

put collapse can occur is shown in Fig. 3(c). Data is stripped

over a number of servers, and stored as a server request

unit (SRU) on each server. In order to access one particular

data block, a client needs to perform synchronized readings:

sending request packets to all of the storage servers containing

a fragment of data block for this particular block. The client

will not generate data block requests until it has received all

the data for the current block. Upon receiving the requests, the

servers transmit the data to the receiver through one Ethernet

switch almost concurrently. Small Ethernet buffers may be

exhausted by these concurrent flood of traffic, thus resulting in

packet loss and TCP timeouts. Therefore, TCP Incast may be

observed during synchronized readings for data blocks across

an increasing number of servers. In this testing scenario, all

the links have 1 Gbps link capacity and 100 µs RTT delay

and the switch buffer size is 64KB. In order to validate the

simulation results, all of these experimental parameters are

configured as the same as one of those experiments conducted

in [19], which explored the TCP Incast problem with various

configuration parameters, such as buffer size, SRU size, and

TCP variants.

B. Simulation Results

1) Backlogged Static Traffic: We conduct several experi-

ments with static backlogged flows in the dumbbell topology

and parking-lot topology to validate the fairness improvement

and queue length stability of FQCN. The static backlogged

traffic sources in our evaluations are simulated with constant

bit rate (CBR) traffic flows carried by User Datagram Protocol

(UDP), unless otherwise stated.

In the first experiment, four static flows are initiated si-

multaneously to traverse through the single bottleneck in the

dumb-bell topology. The total simulation time is 6 seconds,

and the switch service rate is reduced from 10 Gbps to 1

Gbps and changed back to 10 Gbps at 2 and 4 second of

the simulation time, respectively. The flow rates of individual

flows and the switch queue length for QCN, AF-QCN and

FQCN are shown in Fig. 4. Note that the four sources achieve

very different rates by QCN, showing the unfairness of QCN.

In this experiment, AF-QCN and FQCN can allocate their

equal fair share rates successfully while maintaining the queue

length stability. The sending rates with FQCN stabilize to their

fair share rates faster and smoother than those of AF-QCN.

The standard deviation of sending rates for AF-QCN are 3-4

times larger than that of FQCN.

In the parking-lot topology, six static source flows are

initiated one after another at an interval of 1 second. The

sending rates of each individual flow with QCN, AF-QCN

and FQCN are shown in Fig. 5. All of these experiments

further confirm the successful allocation of fair share rates with

AF-QCN and F-QCN while the queue length stability is also
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Fig. 4: The average throughput of 4 simultaneous static

sources (left) and switch queue length (right) in the dumb-

bell topology.
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Fig. 5: The average throughput in the parking-lot topology.

maintained which is not shown here owing to the space limit.

Again, the flow sending rates with FQCN stabilize to their fair

share rates faster and smoother than those with AF-QCN. All

of these experiments validate our propositions in Section V

that FQCN is stable and the rates converge to maximize the

link utilization.
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Fig. 6: The average throughputs for individual flows of mix

traffic in the dumb-bell topology.

2) Mix of Static and Dynamic Traffic: Fig. 6 (a) shows the

average throughput of mix traffic of three static flows and two

ON-OFF burst traffic flows in the dumb-bell topology. The

average offered traffic loads for these two ON-OFF burst traffic

flows are 1 Gbps and 5 Gbps, respectively. All the static flows

are initiated at 0 second and the burst traffic flow is initiated at

1.0 second. The “ON” period of burst traffic flow is determined

by completing 10 KB data transfer, and the “OFF” period is

chosen to meet the average burst traffic load. The average

throughput of the burst flow with lower load is equal to its 1

Gbps burst traffic load since its offered load is lower than its

fair share. If the offered burst traffic load is larger than its fair

share, its throughput will be limited to its fair share. As seen

in the experiment with 5 Gbps burst traffic load, the average

throughput for this burst flow is limited to its fair share 2.25

Gbps. The simulation results in this experiment also validate

again that the left over capacity is shared by other three static

flows unfairly with QCN and almost equally fairly with AF-

QCN and FQCN, and the average throughput is more stable

to reach its fair share with FQCN than that with AF-QCN.

Fig. 6 (b) shows the average throughput of mix traffic of

backlogged static flows and dynamic flows, whose arrival rates

are Poisson distributed, in the dumb-bell topology with eight

source-destination pairs under different congestion notification

algorithms. The first four sources are backlogged static flows,

and the other four dynamic sources are built up with [8 8 4

2] connections at the flow arrival rates of [250 125 125 125]

Mbps and the flow size with Pareto distribution with a mean of

10 KB and a shape parameter of 1.1, respectively. Thus, these

four dynamic sources offer [2.0 1.0 0.5 0.25] Gbps traffic load

in total, respectively. Simulation results show that the average

throughput for each individual dynamic flow is around [1.6 1.0

0.5 0.25], respectively. The average throughput for dynamic

source with 2.0 Gbps total traffic load is overloaded and is

limited to its fair share 1.65 Gbps. The other dynamic sources

are light-loaded sources whose traffic loads are smaller than

their equal fair shares, and therefore the average throughput for

these light-loaded dynamic sources are equal to their offered

load. Note that FQCN successfully allocates the residual ca-

pacity, left over from the light-loaded dynamic sources, equally

fair among four backlogged static sources and one overloaded

dynamic source, and each individual source quickly converges

to and stays stably at its fair share.

3) Effect of Congestion Notification Algorithms to TCP In-

cast: Fig. 7 depicts the TCP throughput collapse for a synchro-

nized read application performed on the network shown in Fig.

3 (c). As a comparison, TCP goodput without any congestion

control is also shown in the same figure. In this simulation, a

SRU size of 256 KB is chosen to model a production storage

system, the default Minimum Timeout Retransmission (RTO)

is 200 ms, TCP NewReno implementation with the default

packet size of 1000 bytes is used in the simulation, and the

equilibrium queue size is set to 14 KB. From the simulation

results, we can see that without any congestion control, TCP

goodput drops very quickly with the increase of the number

of servers. Note that QCN and AF-QCN perform poorly in the

TCP Incast setup (Fig. 3 (c)). QCN can delay the occurrence

of TCP Incast, but the TCP goodput also decreases with the
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Fig. 7: TCP throughput for a synchronized reading application.

increase of the number of servers, reducing to around 500

Mbps with 16 servers. AF-QCN achieves a TCP goodput

of 50 Mbps more than QCN. On the other hand, FQCN is

able to mitigate TCP Incast superbly without much goodput

degradation, maintaining a high goodput of around 900 Mbps

even with a large number of servers, as shown in Fig. 7.

The poor performance of TCP throughput with QCN and

AF-QCN is attributed to the rate unfairness of different flows.

We examine the rate fluctuation of different flows within one

synchronous reading request with QCN and confirm that some

traffic flows have higher allocated sending rates than other

flows. After these high rate flows finish the data transfer,

other traffic flows attempt to increase their sending rates to

recover the available bandwidth previously utilized by high

rate flows. It takes several milliseconds to recover this part of

available bandwidth by other traffic flows; during this period,

the bandwidth is not fully utilized. Hence, the unfair rate

allocation with QCN results in poor TCP throughput in this

TCP Incast setting.

Similar unfair rate allocation to different flows in this TCP

Incast setup with AF-QCN can also be observed, but with

smaller sending rate variations among different traffic flows

and smaller time interval between the first and last server

in completing the data transfer than that with QCN in one

synchronous reading request. We further examine what cause

the rate unfairness of different flows in TCP Incast setup

with AF-QCN. Similar to QCN, AF-QCN only feeds the

congestion notification message back to the source of the

sampled packet. It takes some time to let all sources receive

the congestion information, and so the later the source gets

the congestion notification message, the more likely the source

experiences packet drops. As a transmission control protocol,

TCP exercises a congestion control mechanism itself. When

packet drops occur, TCP slows down its sending rate by

adjusting the congestion window size and slow start threshold.

AF-QCN only regulates Layer 2 sending rate and attempts

to allocate bandwidth fairly among all sources by taking

into account of the flow-dependent congestion information in

the congestion notification message. However, TCP does not

take any flow-dependent congestion information to adjust its

congestion window size and slow start threshold. This causes

the rate unfairness of different flows in TCP Incast setup with

AF-QCN eventually.

We also examine the rates of all flows within one barrier

synchronous reading request with the FQCN congestion con-

trol algorithm, which facilitates fair sharing of the link capacity

among all the source flows since all the overrated flows receive

the congestion notification messages at almost the same time.

4) Different Traffic Weights: FQCN can also allocate

weighted fair share rates as well as AF-QCN. The flows rates

in the dumb-bell topology with FQCN and weight coefficient

settings [4, 3, 2, 1] for 4 static simultaneous flows are shown in

Fig. 8. The larger the weight coefficient, the larger share rate

will be allocated to the flow. In this simulation, the maximum

sending rate for the first flow whose weight coefficient is set

to 4 will be cut down from 10 Gbps to 1 Gbps at the third

second of the simulation time. From the simulation results,

we can see that before the maximum sending rate changes,

the flow rates are allocated fairly consistent to their weight

coefficients. After the third second, the sending rate of the

first flow is limited by its maximum sending rate of 1 Gbps,

and the leftover link capacity is shared by other traffic flows

fairly consistent to their weight coefficients.

VII. CONCLUSION

We have proposed an enhanced QCN congestion notification

algorithm, called FQCN, to improve fairness allocation of

bottleneck link capacity among all sharing sources. We have

evaluated the performance of FQCN with different traffic

dynamics by simulations under three network topologies,

namely, the dumb-bell topology, parking-lot topology and a

simple and representative TCP Incast network topology, and

compared the performance of FQCN with that of QCN and

AF-QCN. The simulation results have shown that FQCN can

successfully allocate the fair share rate to each traffic source

while maintaining the queue length stability. As compared to

AF-QCN, the flow sending rates with FQCN are more stable

with respect to the fair share rates. FQCN can also provide

weighted fair share allocation of the bottleneck link capac-

ity. Moreover, FQCN significantly enhances TCP throughput

performance in the TCP Incast setting, and achieves better
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TCP throughput than QCN and AF-QCN. FQCN performance

under other traffic conditions will be further studied in the

future.

Finally, millions of flows co-existing in a DCN may raise the

scalability problem for FQCN due to the need of estimating

per-flow information. A distributed flow monitoring system

can be helpful to solve this problem, which is left for our

future work.
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