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A Semidefinite Relaxation Method for Source
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Abstract—Localization by a sensor network has been exten-
sively studied. In this paper, we address the source localiza-
tion problem by using time-difference-of-arrival (TDOA) and
frequency-difference-of-arrival (FDOA) measurements. Owing to
the nonconvex nature of the maximum-likelihood (ML) estimation
problem, it is difficult to obtain its globally optimal solution with-
out a good initial estimate. Thus, we reformulate the localization
problem as a weighted least squares (WLS) problem and perform
semidefinite relaxation (SDR) to obtain a convex semidefinite
programming (SDP) problem. Although SDP is a relaxation of
the original WLS problem, it facilitates accurate estimate without
postprocessing. Moreover, this method is extended to solve the
localization problem when there are errors in sensor positions
and velocities. Simulation results show that the proposed method
achieves a significant performance improvement over existing
methods.

Index Terms—Frequency difference of arrival (FDOA), local-
ization, semidefinite programming (SDP), sensor network, time
difference of arrival (TDOA).

I. INTRODUCTION

THE WIRELESS sensor network has been a hot research
topic in recent years [1]–[6]. In particular, localization by

a sensor network has attracted much attention since it has found
wide applications in many fields, such as surveillance, navi-
gation, target tracking, and others [6]. Among all localization
problems, passively locating a source is extremely important
in military applications. To passively locate a source with high
accuracy, time-difference-of-arrival (TDOA) measurements can
be utilized. If there is relative motion between the sensors
and the source, frequency-difference-of-arrival (FDOA) mea-
surements can also be utilized to further improve localization
performance. Furthermore, TDOAs can only be used to lo-
cate a stationary source, i.e., to determine the position of the
source. If the source is moving, both TDOAs and FDOAs
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are to be employed to determine both the position and the
velocity of the source. In practice, TDOAs can be measured by
mutual correlation of the received signals at different sensors.
Hence, TDOAs are particularly useful for localization of high-
bandwidth sources. On the other hand, FDOAs are actually the
differences in received Doppler frequency offsets; thus, FDOAs
are more suitable for localization of low-bandwidth sources. By
combining TDOA and FDOA measurements, the source can be
accurately located in a wide spectrum of bandwidth.

Unlike TDOA-based localization, which has been exten-
sively studied [7]–[14], the study of TDOA/FDOA-based
localization has seldom been reported in the literature. The
challenges of locating a source using TDOA/FDOA measure-
ments lie in the high nonlinearity and nonconvexity of the
maximum-likelihood (ML) problem and the coupling of the to-
be-estimated parameters (i.e., the source position and velocity)
in the measurement models. Recently, some effort has been
devoted to solve this difficult problem. The traditional solution
to this nonlinear ML problem is to iteratively linearize it using
Taylor series expansion [15]. However, this method needs an
initial estimate, and it cannot guarantee convergence to the
global solution of the ML problem. To circumvent this draw-
back, some closed-form solution methods have been proposed
[16]–[19]. Ho et al. [16] proposed the well-known two-step
weighted least squares (WLS) method, which linearizes the
nonlinear measurement equations by introducing two nuisance
parameters and solves the subsequent linear equations in the
WLS sense. Extensions to this method have been reported in
[17] and [18]. In particular, the sensor position and velocity
errors are taken into account in [17], and the multiple-source lo-
calization problem is studied in [18]. Wei et al. [19] proposed a
multidimensional scaling (MDS) method, in which the classical
MDS framework is extended to be amenable to this particular
localization problem. Closed-form solution methods do not
have the divergence problem and are very computationally effi-
cient. Moreover, their performance can attain the Cramer–Rao
lower bound (CRLB) at sufficiently low noise levels. Re-
cently, a quadratic constraint solution (QCS) method [20] and
a semidefinite relaxation (SDR) method [21] have been pro-
posed. The former finds two Lagrange multipliers by Newton’s
method and uses them to obtain the source position and velocity
estimate, whereas the latter relaxes the ML problem to obtain
a convex semidefinite programming (SDP) problem and further
refines the SDP solution using local search algorithms. Both
methods show superior performance over the two-step WLS
method. However, current methods usually either cannot obtain
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good performance at high noise levels or have local conver-
gence problems, which may degrade their performance.

Recently, convex relaxation techniques have been applied to
many applications in communications and signal processing,
such as source and sensor network localization [12], [13],
[21]–[23], multiple-input–multiple-output (MIMO) detection
[24], [25], joint source and relay power allocation for MIMO
relay systems [26], [27], and transmit beamforming [28]. In
this paper, the single-source localization problem using line-
of-sight TDOA and FDOA measurements is addressed, and the
SDR technique is applied to solve this problem. Unlike the SDR
method in [21], in which SDR is performed to the original ML
formulation, we reformulate this localization problem based on
the WLS criterion and solve this WLS problem in two steps.
We first approximate the weighting matrix by using an initial
estimate of the source position and velocity in the first step and
then apply SDR to the approximate WLS problem in the second
step. The contributions of this paper include the following.

1) The WLS problem is shown to closely approximate the
original ML problem.

2) The proposed SDP solution does not require postprocess-
ing and avoids local convergence.

3) The proposed SDR method has lower complexity than the
existing SDR method [21].

The accuracy of the SDP solution is guaranteed due to the
facts that 1) the WLS problem is not sensitive to the approx-
imation of the weighting matrix (see the simulation results in
Section VI), and 2) SDR is possible to find the solution of the
approximate WLS problem, i.e., SDR is tight (see the discus-
sions at the end of Section III-B). Therefore, postprocessing
techniques are not needed to refine the SDP solution, and local
convergence is thus avoided. This is extremely important since
local convergence may result in significant performance degra-
dation. Furthermore, the proposed SDR method is extended to
the localization case in the presence of errors in sensor positions
and velocities.

The remainder of this paper is organized as follows. In
Section II, the TDOA and FDOA measurement models are
given. Subsequently, the SDR methods for solving the local-
ization problems without and with errors in sensor positions
and velocities are presented in Sections III and IV, respectively.
Complexity analysis is given in Section V, and simulation
results are illustrated in Section VI. Finally, conclusions are
drawn in Section VII.

The following notations are adopted throughout this paper.
Boldface lowercase letters and boldface uppercase letters de-
note the vectors and matrices, respectively. a(i) denotes the ith
element of vector a, and a(i : j) denotes the subvector of a
composed by the ith to jth elements of a. A(i, :) denotes the
ith row of the matrix A, A(i, j) denotes the (i, j)th element
of A, and A(i : j, k : l) denotes the submatrix of A formed
by rows i to j and columns k to l. 1k and Ik denote the
k × 1 all-one column vector and the k × k identity matrix,
respectively, and 0k and Ok×l denote the k × 1 zero column
vector and the k × l zero matrix, respectively. tr(A) means
the trace of A, and A � B means that A−B is positive
semidefinite. xo (ẋo) and soi (ṡoi ) represent the true positions

(velocities) of the source and the ith sensor, respectively. x (ẋ)
represents the unknown source position (velocity) variable in
optimization problems, and s̄oi (¯̇s

o
i ) represents the estimated

position (velocity) of the ith sensor. To clarify the notations,
we use the following rules: The notations (�)o, (�), (�̄)o, and
(�̄) have the same form, but (�)o contains xo (ẋo) and soi (ṡ

o
i ),

(�) contains x (ẋ) and soi (ṡoi ), (�̄)
o contains xo (ẋo) and s̄i

(¯̇si), and (�̄) contains x (ẋ) and s̄i (¯̇si).

II. MEASUREMENT MODELS

Consider a scenario of N moving sensors and one moving
source in a 3-D space. The position and velocity of the ith
moving sensor are known and denoted by soi (i = 1, . . . , N)
and ṡoi (i = 1, . . . , N), respectively, and the position and ve-
locity of the source are unknown and denoted by xo and ẋo,
respectively. The range difference measurements and their rates
are, respectively, given by [16]

di1 = ‖xo − soi ‖ − ‖xo − so1‖+ ni1

ḋi1 =
(xo − soi )

T (ẋo − ṡoi )

‖xo − soi ‖
− (xo − so1)

T (ẋo − ṡo1)

‖xo − so1‖
+ ṅi1

i = 2, . . . , N (1)

where ni1 and ṅi1 (i = 2, . . . , N) are the measurement noise.
The TDOA and FDOA measurements are then denoted by [16]

τi1 = di1/c fi1 = f0ḋi1/c, i = 2, . . . , N (2)

where c is the signal propagation speed, and f0 is the carrier
frequency. To simplify, we derive the proposed method by using
the range difference measurements and their rates in (1).

Collect the measurement noise ni1 (i = 2, . . . , N) and
ṅi1 (i = 2, . . . , N) into vectors n and ṅ, and let Δα =
[nT ṅT ]T . Assume that Δα follows a Gaussian distribution
with zero mean and covariance Qα, i.e., Δα ∼ N (0,Qα). Fur-
thermore, we assume that Qt = E[nnT ] and Qf = E[ṅṅT ].
Note that n and ṅ are not necessarily uncorrelated.

By defining the following notations:

d = [d21, d31, . . . , dN1]
T , ḋ = [ḋ21, ḋ31, . . . , ḋN1]

T

ro = [ro1, r
o
2, . . . , r

o
N ]T

= [‖xo − so1‖ , ‖xo − so2‖ , . . . , ‖xo − soN‖]T

ṙo = [ṙo1, ṙ
o
2, . . . , ṙ

o
N ]T

=

[
(xo − so1)

T (ẋo − ṡo1)

‖xo − so1‖
,
(xo − so2)

T (ẋo − ṡo2)

‖xo − so2‖

. . . ,
(xo − soN )T (ẋo − ṡoN )

‖xo − soN‖

]T

(3)

we can rewrite (1) as

d =Gro + n

ḋ =Gṙo + ṅ (4)
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where G = [−1N−1 IN−1]. Letting d̃ = [dT ḋ
T
]T , G̃ =

Diag{G,G}, and θo = [roT ṙoT ]T , we can further rewrite
(4) as

d̃ = G̃θo +Δα. (5)

In Sections III and IV, we develop the SDR methods to locate a
moving source without and with errors in sensor positions and
velocities, respectively. It is worth noting that the SDR methods
can be easily tailored to locate a stationary source.

III. SEMIDEFINITE RELAXATION METHOD FOR SOURCE

LOCALIZATION WITHOUT SENSOR POSITION

AND VELOCITY ERRORS

A. ML Estimation Without Sensor Position and Velocity Errors

To simplify the following derivations, we denote the true
source position and velocity as φo = [xoT ẋoT ]T . According
to (5), the ML estimation of φo can be formulated as

min
φ

(d̃− G̃θ)TQ−1
α (d̃− G̃θ). (6)

Evidently, the ML problem (6) is nonconvex, implying that
there exist multiple local minima and the global minimum can
hardly be obtained. Indeed, using any local search algorithm
runs the risk of being trapped in local minima, thus potentially
resulting in quite inaccurate solutions.

B. Semidefinite Relaxation

Here, we present an SDR method to approximately solve
the ML problem (6). To this end, we will first derive a WLS
problem that is a close approximation to (6) and then apply SDR
to this approximate WLS problem.

Proposition 1: The ML problem (6) can be approximated by
the following WLS problem:

min
φ

[
B−1(Ay − b)

]T
Q−1

α

[
B−1(Ay − b)

]
= (Ay − b)TQ−1(Ay − b) (7)

where

A = 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(so2 − so1)
T OT

3 d21 0
...

...
...

...
(soN − so1)

T OT
3 dN1 0

(ṡo2 − ṡo1)
T (so2 − so1)

T ḋ21 d21
...

...
...

...
(ṡoN − ṡo1)

T (soN − so1)
T ḋN1 dN1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

b = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d221 − ‖so2‖2 + ‖so1‖2
...

d2N1 − ‖soN‖2 + ‖so1‖2
2d21ḋ21 − 2ṡoT2 so2 + 2ṡoT1 so1

...
2dN1ḋN1 − 2ṡoTN soN + 2ṡoT1 so1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

Q =BQαB
T

y = [xT ẋT r1 ṙ1]
T

B =

[
B1 O(N−1)×(N−1)

Ḃ1 B1

]
(9)

with B1 = 2diag{r2, . . . , rN} and Ḃ1 = 2diag{ṙ2, . . . , ṙN}.
Proof: The proof is motivated by the derivations in [16].

See Appendix A for details. �
From the derivations in Appendix A, we see that (7) is

obtained by neglecting the second-order noise terms in (36)
and (38), shown below, which are far less than the first-order
noise terms. For this reason, (7) is a very close approximation
to (6). To our best knowledge, the nonlinear WLS problem is
formulated for the first time that is a close approximation to the
original ML problem.

Note that (7) is still a nonconvex problem. However, as
compared with the original ML problem (6), it is much easier
to apply the SDR technique to solve (7). In the following, we
will apply this technique to relax the nonconvex problem into
convex SDP, which can then be solved efficiently.

We solve (7) in two steps. Assume that we have an initial

estimate of φo: φ̂0
Δ
= [x̂T

0
ˆ̇x
T

0 ]
T (the way of obtaining φ̂0

is shown in Section III-C). In the first step, we substitute x̂0

and ˆ̇x0 into B to obtain an estimate of B: B̂. Replacing B
with B̂ in Q to obtain an approximate weighting matrix Q̂ =

B̂QαB̂
T

, we have the following approximate WLS problem:

min
φ

(Ay − b)T Q̂
−1
(Ay − b). (10)

Problem (10) can be equivalently written as

min
y=[xT ẋT r1 ṙ1]T

(Ay − b)T Q̂
−1
(Ay − b)

subject to y(7) = ‖y(1:3)− so1‖

y(8) =
(y(1:3)− so1)

T (y(4:6)− ṡo1)

y(7)
.

(11)

The objective function of (11) can be written as

(Ay − b)T Q̂
−1
(Ay − b) = tr

{[
Y y
yT 1

]
F

}
(12)

where

Y = yyT , F =

[
AT Q̂

−1
A −AT Q̂

−1
b

−bT Q̂
−1
A bT Q̂

−1
b

]
. (13)

The constraints in (11) can be rewritten as

Y (7, 7) = tr {Y (1 : 3, 1 : 3)} − 2soT1 y(1 : 3) + ‖so1‖2

Y (7, 8) = tr {Y (1 : 3, 4 : 6)} − ṡoT1 y(1 : 3)

− soT1 y(4 : 6) + ṡoT1 so1. (14)

Moreover, by the Cauchy–Schwartz inequality, we have

|y(8)| ≤ ‖(y(1 : 3)− so1)‖ ‖(y(4 : 6)− ṡo1)‖
‖y(1 : 3)− so1‖

= ‖(y(4 : 6)− ṡo1)‖ (15)
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which is equivalent to

Y (8, 8)≤tr{Y (4 : 6, 4 : 6)}−2ṡoT1 y(4 : 6)+‖ṡo1‖2 . (16)

Now, the optimization problem (11) can be equivalently
written as

min
Y ,y

tr

{[
Y y
yT 1

]
F

}
subject to

Y (7, 7) = tr {Y (1 : 3, 1 : 3)} − 2soT1 y(1 : 3) + ‖so1‖2

Y (7, 8) = tr {Y (1 : 3, 4 : 6)} − ṡoT1 y(1 : 3)

− soT1 y(4 : 6) + ṡoT1 so1

Y (8, 8) ≤ tr {Y (4 : 6, 4 : 6)} − 2ṡoT1 y(4 : 6) + ‖ṡo1‖2

Y = yyT . (17)

In the second step, we perform SDR to problem (11). It can be
easily verified that the last constraint Y = yyT is equivalent
to Y � yyT and rank(Y ) = 1. By dropping the rank-1 con-
straint and establishing the equivalence between Y � yyT and[
Y y
yT 1

]
� 0 [29], we obtain the following SDP:

min
Y ,y

tr

{[
Y y
yT 1

]
F

}
subject to

Y (7, 7) = tr {Y (1 : 3, 1 : 3)} − 2soT1 y(1 : 3) + ‖so1‖2

Y (7, 8) = tr {Y (1 : 3, 4 : 6)} − ṡoT1 y(1 : 3)

− soT1 y(4 : 6) + ṡoT1 so1

Y (8, 8) ≤ tr {Y (4 : 6, 4 : 6)} − 2ṡoT1 y(4 : 6) + ‖ṡo1‖2

[Y y;yT 1] � 0 (18)

which can be solved very efficiently by using the interior-point
methods.

Assume that the solution of (18) is denoted by {Ŷ , ŷ},
and the rank of Ŷ is rank(Ŷ ) = m. According to [30], m
satisfies the following relationship: m(m+ 1) ≤ 2u, where u
is the number of equality constraints. In (18), the number of
equality constraints is u = 4. Hence, the rank of Ŷ is m = 1
or m = 2. Although Ŷ is not guaranteed to have rank 1, we
find in our simulations that rank(Ŷ ) = 1 can be frequently
satisfied, indicating that SDP can frequently find the solution
of the approximate WLS problem (10). Furthermore, similar to
[16], the approximation of the weighting matrix Q̂ (and, hence,
F ) has an insignificant effect on the final estimation accuracy.
Our simulation results to be discussed in Section VI also verify
this conclusion. Recall that (7) is a close approximation to
the original ML problem (6), and from the above analysis, we
conclude that the SDP (18) can provide good estimates.

C. Obtaining the Initial Estimate

In Section III-B, we have assumed that an initial position and
velocity estimate φ̂0 is obtained. Here, we propose a simple

method to obtain this initial estimate: We will first estimate the
source position using TDOA measurements and then use the
position estimate to estimate the source velocity using FDOA
measurements. Note that this has a lower computational cost
than that of estimating the position and velocity simultaneously.
In addition, we use a different initial estimate from that in
[16]. Here, we use the second-order cone programming method
presented in [14] to obtain the source position estimate, which
is denoted by x̂0. Substituting x̂0 into the FDOA measurement
model in (1), we have

ḋi1 ≈ (x̂0 − soi )
T (ẋo − ṡoi )

‖x̂0 − soi ‖
− (x̂0 − so1)

T (ẋo − ṡo1)

‖x̂0 − so1‖
+ ṅi1

=

(
x̂0 − soi

‖x̂0 − soi ‖
− x̂0 − so1

‖x̂0 − so1‖

)T

ẋo

−
(
(x̂0 − soi )

T soi
‖x̂0 − soi ‖

− (x̂0 − so1)
T so1

‖x̂0 − so1‖

)
+ ṅi1

i = 2, . . . , N (19)

which is linear with respect to ẋo. Thus, we can obtain the
linear WLS estimate of the source velocity as follows:

ˆ̇x0 =
(
DTQ−1

f D
)−1

DTQ−1
f f (20)

where

D =

⎡
⎢⎢⎢⎢⎣

(x̂0−so
2)

T

‖x̂0−so
2‖ − (x̂0−so

1)
T

‖x̂0−so
1‖

...
(x̂0−so

N)
T

‖x̂0−so
N‖

− (x̂0−so
1)

T

‖x̂0−so
1‖

⎤
⎥⎥⎥⎥⎦

f =

⎡
⎢⎢⎢⎢⎣

(x̂0−so
2)

T
so
2

‖x̂0−so
2‖ − (x̂0−so

1)
T
so
1

‖x̂0−so
1‖

...
(x̂0−so

N)
T
so
N

‖x̂0−so
N‖

− (x̂0−so
1)

T
so
1

‖x̂0−so
1‖

⎤
⎥⎥⎥⎥⎦ . (21)

Substituting x̂0 and ˆ̇x0 into F and then solving the SDP (18)
give the final estimate of xo and ẋo.

D. Comparison With Other Methods

Here, we compare the proposed SDR method with the exist-
ing methods presented in [20] and [21].

The QCS method in [20] finds two Lagrange multipliers
through Newton’s method. Indeed, the QCS method solves
problem (11). As aforementioned, problem (11) is a nonconvex
problem, which implies that the QCS method cannot guarantee
that it will find its global solution. This is particularly true
at high noise levels that result in performance degradation.
In comparison, the SDP can always find a global solution.
Although the SDP (18) is a relaxation and approximation to
the WLS problem (11), we have pointed out at the end of
Section III-B that SDP can find good estimates, as verified by
simulations.

The SDR method presented in [21] is a relaxation of the
original ML problem (6). In this SDR method, the condition
that the solution has a maximum rank of 2 is not satisfied,
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implying that it may be a loose relaxation to the ML problem.
As a result, the SDP solution is not good enough, and local
search is needed to find a solution of the ML problem. This, in
turn, may bring local convergence problem. In comparison, the
proposed SDR method is a relaxation to the approximate ML
problem (which is shown in Proposition 1), the SDP solution is
good enough, and local search is not needed.

IV. SEMIDEFINITE RELAXATION METHOD FOR SOURCE

LOCALIZATION WITH SENSOR POSITION

AND VELOCITY ERRORS

In practice, the sensor positions and velocities are typically
not exactly known, and the localization performance can be
significantly improved by taking sensor position and velocity
errors into account [17]. Here, we extend the SDR method to
address localization in the presence of errors in sensor positions
and velocities. We first introduce some new notations. We
assume that s̄i (i = 1 . . . , N) and ¯̇si (i = 1 . . . , N) are the
estimated position and velocity of the ith sensor, respectively.
Moreover, we assume that s̄i = soi +Δsi and ¯̇si = ṡoi +Δṡi,
where Δsi and Δṡi are the position and velocity errors, re-
spectively. For notational simplicity, we stack the true sensor

positions and velocities into vector βo, i.e., βo Δ
= [soT ṡoT ]T ,

and similarly, β̄
Δ
= [s̄T ¯̇s

T
]T , and Δβ

Δ
= [ΔsT ΔṡT ]T .

Obviously, β̄ = βo +Δβ holds. We further assume that Δβ
follows a zero-mean Gaussian distribution with covariance
matrix Qβ = E[ΔβΔβT ] and is mutually independent with
the TDOA/FDOA measurement noise vector Δα. With the
use of these notations, we first derive an ML formulation that
can achieve the CRLB accuracy in the presence of sensor
position and velocity errors and then derive an approximate
WLS formulation and apply SDR to obtain an SDP in a similar
manner to that in Section III-B.

A. ML Estimation With Sensor Position and Velocity Errors

Substituting s̄i = soi +Δsi and ¯̇si = ṡoi +Δṡi into (1) and
applying the first-order Taylor series expansion, we have [17]

di1 − (‖xo − s̄i‖ − ‖xo − s̄1‖)
≈ ni1 + uoT

i Δsi − uoT
1 Δs1

ḋi1 −
[
(xo − s̄i)

T (ẋo − ¯̇si)

‖xo − s̄i‖
− (xo − s̄1)

T (ẋo − ¯̇s1)

‖xo − s̄1‖

]
≈ ṅi1 + uoT

i Δṡi − uoT
1 Δṡ1 + u̇oT

i Δsi − u̇oT
1 Δs1 (22)

where uo
i =(xo−soi )/‖xo−soi ‖, and u̇o

i =(ẋo−ṡoi )/‖xo−soi ‖−
[(xo − soi )(x

o − soi )
T (ẋo − ṡoi )]/‖xo − soi ‖3.

Define Uo as

Uo =

[
Uo

1 O(N−1)×3N

U̇
o

1 Uo
1

]
(23)

where the ith (i = 1, . . . , N − 1) row of Uo
1 and U̇

o

1 are,
respectively, given by

Uo
1(i, :) = [−uoT

1 OT
3(i−1) uoT

i OT
3(M−i−1) ]

U̇
o

1(i, :) = [−u̇oT
1 OT

3(i−1) u̇oT
i OT

3(M−i−1) ] . (24)

Writing all the equations in (22) in matrix form gives

d̃− G̃θ̄
o
= Δα+UoΔβ (25)

where θ̄
o
= [r̄oT ¯̇r

oT
]T with

r̄o = [r̄o1, r̄
o
2, . . . , r̄

o
N ]T

= [‖xo − s̄1‖, ‖xo − s̄2‖, . . . , ‖xo − s̄N‖]T

¯̇r
o
=

[
¯̇r
o
1, ¯̇r

o
2, . . . , ¯̇r

o
N

]T
=

[
(xo − s̄1)

T (ẋo − ¯̇s1)

‖xo − s̄1‖
,
(xo − s̄2)

T (ẋo − ¯̇s2)

‖xo − s̄2‖

. . . ,
(xo − s̄N )T (ẋo − ¯̇sN )

‖xo − s̄N‖

]T

. (26)

According to (25), the ML estimation in the presence of sensor
position and velocity errors can be formulated as

min
φ

(d̃− G̃θ)T (Qα +UoQβU
oT )−1(d̃− G̃θ). (27)

It is worth noting that, in the ML formulation (27), we assume
that Uo is exactly known, which is clearly not true in practice.
Hence, this ML problem is unsolvable in practice. In [17],
a CRLB was derived for the case when the errors in sensor
positions and velocities are present. Similar to the derivations
in [17], we can show that the mean square error (MSE) of the
ML estimation problem (27) can attain this CRLB under mild
conditions. This means that this CRLB can be achieved only
when the positions and velocities of the source and sensors in
Uo are exactly known. Indeed, this CRLB is the performance
lower bound for the joint ML estimation of the positions and
velocities of both the source and the sensors, and the joint
ML estimation has a potential ability to reduce sensor position
and velocity errors [31]. Hence, for any practical estimator
that estimates the position and velocity of the source only, this
CRLB is a loose bound. However, extensive simulations (e.g.,
in [17] and Section VI of this paper) show that the CRLB can
be achieved at low error levels, indicating that the ability of
reducing sensor position and velocity errors is quite limited.
Hence, this CRLB is still very useful in practice.

B. Semidefinite Relaxation

The ML problem (27) is unsolvable; hence, it is not useful in
practice. Here, we first give an approximate WLS formulation
and then apply SDR to the approximate WLS formulation to
obtain the estimate of the source position and velocity.

We first present the following proposition.
Proposition 2: The ML problem (27) can be approximated

by the following WLS problem:

min
φ

[
B̄

−1
(Āȳ − b̄)

]T
(Qα + B̄

o−1
C̄

o
QβC̄

oT
B̄

o−T
)−1

×
[
B̄

−1
(Āȳ − b̄)

]
(28)
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where B̄o, Ā, b̄, and ȳo are, respectively, obtained by replacing
soi and ṡoi with s̄i and ¯̇si in Bo, A, b, and yo, and C̄

o is
defined as

C̄
o Δ
=

[
C̄

o
1 O(N−1)×3N

¯̇C
o

1 C̄
o
1

]
. (29)

The ith (i = 1, . . . , N − 1) row of C̄o
1 and ¯̇C

o

1 are, respectively,
given in (30), shown at the bottom of the page.

Proof: The proof is partially based on the derivations in
[17]. See Appendix B for details. �

In (28), we have assumed that B̄o and C̄
o in the weighting

matrix are known, which is clearly not true in practice. Hence,
(28) is still unsolvable, indicating that further approximation
must be needed. We use the initial estimate φ̂0 to obtain an

estimate of B̄o and C̄
o, i.e., ˆ̄B and ˆ̄C ( ˆ̄C is obtained in the

same way as ˆ̄B), respectively, and then, (28) can be further
approximated by

min
φ

[
B̄

−1
(Āȳ − b̄)

]T
(Qα + ˆ̄B

−1 ˆ̄CQβ
ˆ̄C
T ˆ̄B

−T
)−1

×
[
B̄

−1
(Āȳ − b̄)

]
. (31)

Combining (28) and (49) shown below, and comparing (31)
with (27), we see that (31) is actually an approximation of
(27) by approximating the true source and sensor position and
velocity values φo and βo in Uo in (27) using their estimates
φ̂0 and β̄, respectively.

Note that, now, (31) has the same form as (7), and we can use
the same procedure (two steps) in Section III-B to solve (31).

In the first step, we obtain Q̂ as Q̂ = ˆ̄BQα
ˆ̄B

T
+ ˆ̄CQβ

ˆ̄C
T

. In
the second step, we obtain the SDP that has exactly the same
form as that in (18), except with the replacement of soi and ṡoi
by s̄i and ¯̇si, respectively, as follows:

min
Ȳ ,ȳ

tr

{[
Ȳ ȳ
ȳT 1

]
F̄

}
subject to

Ȳ (7, 7) = tr
{
Ȳ (1 : 3, 1 : 3)

}
− 2s̄T1 ȳ(1 : 3) + ‖s̄1‖2

Ȳ (7, 8) = tr
{
Ȳ (1 : 3, 4 : 6)

}
− ¯̇s

T
1 ȳ(1 : 3)

− s̄T1 ȳ(4 : 6) + ¯̇s
T
1 s̄1

Ȳ (8, 8) ≤ tr
{
Ȳ (4 : 6, 4 : 6)

}
− 2¯̇sT1 ȳ(4 : 6) + ‖¯̇s1‖2

[Ȳ ȳ; ȳT 1] � 0 (32)

where

F̄ =

[
Ā

T
Q̂

−1
Ā −Ā

T
Q̂

−1
b̄

−b̄
T
Q̂

−1
Ā b̄

T
Q̂

−1
b̄

]

with Q̂ = ˆ̄BQα
ˆ̄B

T
+ ˆ̄CQβ

ˆ̄C
T

.

TABLE I
POSITIONS AND VELOCITIES OF THE SENSORS

It is worth mentioning that we still use the same scheme
described in Section III-C to obtain the initial estimate φ̂0.

V. COMPLEXITY ANALYSIS

Here, we analyze the computational complexity of the
proposed method. The complexity of the first step is at
most O(N(n+ 1)2 + L(n+ 1)3), where L is the number of
iterations,1 and n is the dimension of the source location (here,
n = 3) [14]. In the second step, the complexity of computing
F (or F̄ ) is roughly O(16(N2n+Nn2)). The worst case
complexity of solving SDP is O((u3 + u2v2 + uv3)v0.5) [32],
where u is the number of equality constraints (SDP in the
standard primal form), and v is the problem size. In the SDP
(18) and (32), u = 4, and v = 2n+ 3. Since v � u, the com-
plexity is roughly O(4(2n+ 3)3.5). Hence, the total complexity
is roughly O(16(N2n+Nn2) + L(n+ 1)3 + 4(2n+ 3)3.5).
In the SDR method in [21], u = O(N2), and v = O(N), which
results in the complexity of roughly O(N6.5).

VI. SIMULATIONS

Here, simulations are conducted to verify the performance of
the proposed method, which is compared with that of several
existing methods [16], [17], [19].

A. Localization Performance Without Sensor Position and
Velocity Errors

Consider a scenario in which five moving sensors are used
to locate one moving source. The positions and velocities of
the sensors are listed in Table I; they are the same as those
in [16]. The performance is evaluated in terms of root MSEs
(RMSEs), which are defined by

√
E[(x̂− xo)T (x̂− xo)] and√

E[(ˆ̇x− ẋo)T (ˆ̇x− ẋo)] for position and velocity estima-
tions, respectively. In the simulation, RMSEs are obtained using
3000 Monte Carlo runs. The TDOA measurement noise and
FDOA measurement noise are assumed to be independent, and
the covariance matrices are Qt = σ2

dV d and Qf = 0.1σ2
dV d,

respectively, where σ2
d represents the measurement noise level,

1L is related to the search interval [p, q], and the solution precision ε: L is
the smallest integer that satisfies L > log2[(q − p)/ε].

C̄
o
1(i, :) =

[
− (di1ū

o
1 + (xo − s̄1))

T 0T
3(i−1) (x

o − s̄i)
T 0T

3(M−i−1)

]
¯̇C
o

1(i, :) =
[
−
(
ḋi1ū

o
1 + di1 ¯̇u

o
1 + (ẋo − ¯̇s1)

)T

0T
3(i−1) (ẋ

o − ¯̇si)
T 0T

3(M−i−1)

]
(30)
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Fig. 1. Comparison of RMSEs using different methods in the absence of
sensor position errors: the near-field scenario.

and V d is set to 1 in the diagonal elements and 0.5 elsewhere.
The SDPs in this paper are solved using the MATLAB toolbox
CVX2 [33], where the solver is SeDuMi [34].

We first consider the near-field localization case. The source
is assumed to be located at xo = (600, 650, 550) with velocity
ẋo = (−20, 15, 40). The RMSEs and the CRLB [16] are shown
in Fig. 1, from which we see that the proposed method performs
the best. Both the two-stage WLS and MDS methods have the
“threshold effect” when the noise level is higher than 10 dB.
In comparison, the RMSE of the position estimates using the
SDP method can attain the CRLB, even at high noise levels.
Although the RMSE of the velocity estimates cannot attain
the CRLB, it is still much smaller than those using the other
methods.

We next consider the far-field case. The source is assumed
to be located at xo = (2000, 2500, 3000) with velocity ẋo =
(−20, 15, 40). The simulation results are shown in Fig. 2, from
which we see that the SDP method still performs much better
than the other methods. Even at high noise levels, the RMSE
of velocity estimates can attain the CRLB. It is worth noting
that in both cases, we do not use any postprocessing procedures
(e.g., local search), indicating that the SDP solution is very
accurate although it is generally not the solution of the original
ML problem.

B. Localization Performance With Sensor Position and
Velocity Errors

Here, we consider localization in the presence of sensor
position and velocity errors. The RMSE is also used to evaluate
the performance of the proposed method. As earlier, we first
consider the near-field case. The source is still located at
xo=(600, 650, 550) with velocity ẋo=(−20, 15, 40), and the
positions and velocities of the sensors are the same as
those in Table I. We assume that the covariance of the
sensor position and velocity errors is Qβ=Diag{V s, V̇ s},

2The solution precision in CVX is set as “best” [33].

Fig. 2. Comparison of RMSEs using different methods in the absence of
sensor position errors: the far-field scenario.

Fig. 3. Comparison of RMSEs using different methods in the presence of
sensor position errors: the near-field scenario.

where V s
Δ
=E[ΔsΔsT ] = σ2

sdiag{1, 1, 1, 2, 2, 2, 10, 10, 10,

40, 40, 40, 20, 20, 20}, and V̇ s
Δ
=E[ΔṡΔṡT ]=0.5V s. We fix

the TDOA measurement noise level σ2
d as σ2

d=−20 dB and ex-
amine the variation of the RMSE with the sensor position error
level σ2

s . The RMSEs and the CRLB [17] are shown in Fig. 3,
from which we see that the SDP method performs much better
than the two-stage WLS method, and it can always achieve the
CRLB accuracy. Fig. 4 shows the simulation results for locating
a far-field source located at xo=(2000, 2500, 3000) with ve-
locity ẋo=(−20, 15, 40). In this case, we add a sensor located
at (200,−300,−200) with velocity (20,−10, 10) to the above
sensor network to obtain better localization performance, i.e.,
we use six sensors to locate this far-field source. In this case, we
set σ2

d = −40 dB, V s = σ2
sdiag{1, 1, 1, 2, 2, 2, 10, 10, 10, 40,

40, 40, 20, 20, 20, 3, 3, 3}, and V̇ s = 0.5 V s. Again, we see in
Fig. 4 that the SDP method performs much better than the two-
stage WLS method. In comparing Fig. 3 with Fig. 4, we see
that the localization performance in the far-field case is far more
sensitive to the sensor position and velocity errors than that in
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Fig. 4. Comparison of RMSEs using different methods in the presence of
sensor position errors: the far-field scenario.

the near-field case. An important observation revealed in Figs. 3
and 4 is that the SDP solution is quite reliable, even at high
position error levels, although approximation and relaxation are
applied to the original ML problem.

VII. CONCLUSION

In this paper, we have proposed an SDR method to solve the
TDOA/FDOA-based localization problem. This method applies
the SDR technique to the reformulated WLS problem to obtain
an SDP, whose solution is very accurate; thus, local search is not
needed. Moreover, the proposed SDR method has low complex-
ity, making it applicable in real-time applications. Simulation
results show that this method significantly outperforms several
existing methods at high noise levels.

APPENDIX A
PROOF OF PROPOSITION 1

Consider the noise-free range difference measurement, i.e.,

doi1 = ‖xo − soi ‖ − ‖xo − so1‖ (33)

which is equivalent to

doi1 + ‖xo − so1‖ = ‖xo − soi ‖ . (34)

Squaring both sides of (34) yields

do2i1 + 2doi1r
o
1 = ‖soi ‖2 − ‖so1‖2 − 2 (soi − so1)

T xo

i = 2, . . . , N. (35)

Substituting doi1 = di1 − ni1 into (35) gives

d2i1 + 2di1r
o
1 − ‖soi ‖2 + ‖so1‖2 + 2 (soi − so1)

T xo ≈ 2roi ni1

(36)

where the second-order noise term n2
i1 is neglected.

Taking the time derivative of (35), we have the following
equations related to the FDOAs:

doi1ḋ
o
i1 + doi1ṙ

o
1 + ḋoi1r

o
1 = ṡoTi soi − ṡoT1 so1 − (ṡoi − ṡo1)

T xo

− (soi − so1)
T ẋo, i = 2, . . . , N (37)

where ḋoi1=((xo−soi )T(ẋo−ṡoi ))/‖xo−soi ‖−((xo−so1)
T(ẋo−

ṡo1))/‖xo−so1‖ (i=2, . . . , N).
Substituting doi1 = di1 − ni1 and ḋoi1 = ḋi1 − ṅi1 into (37)

gives

2di1ḋi1+2di1ṙ
o
1+2ḋi1r

o
1−2ṡoTi soi +2ṡoT1 so1+2(ṡoi −ṡo1)

Txo

+ 2(soi − so1)
T ẋo ≈ 2ḋoi1ni1 + 2doi1ṅi1 (38)

where the second-order noise term ni1ṅi1 is also neglected.
All the equations in (36) and (38) can be combined to yield

the following matrix form:

Ayo − b ≈ BoΔα (39)

where A and b are defined in (8) and

yo = [xoT ẋoT ro1 ṙo1 ]
T

bo =

[
Bo

1 O(N−1)×(N−1)

Ḃ
o

1 Bo
1

]
(40)

with Bo
1 = 2diag{ro2, . . . , roN}, and Ḃ

o

1 = 2diag{ṙo2, . . . , ṙoN}.
From (39), we have

Bo−1(Ayo − b) ≈ Δα. (41)

By comparing (41) with (5), we can approximately write the
ML problem (6) as

min
φ

[
B−1(Ay − b)

]T
Q−1

α

[
B−1(Ay − b)

]
= (Ay − b)T (BQαB

T )−1(Ay − b)

= (Ay − b)TQ−1(Ay − b) (42)

where Q = BQαB
T .

APPENDIX B
PROOF OF PROPOSITION 2

For convenience, we rewrite (35) and (37) as follows:

do2i1 + 2doi1r
o
1 = ‖soi ‖2 − ‖so1‖2 − 2 (soi − so1)

T xo

doi1ḋ
o
i1 + doi1ṙ

o
1 + ḋoi1r

o
1 = ṡoTi soi − ṡoT1 so1 − (ṡoi − ṡo1)

T xo

− (soi − so1)
T ẋo, i = 2, . . . , N.

(43)

Substituting doi1 = di1 − ni1, ḋoi1 = ḋi1 − ṅi1, soi = s̄i −Δsi,
and ṡoi = ¯̇si −Δṡi into (43) and applying the first-order Taylor
series expansion, we have [18]

d2i1 − ‖s̄i‖2 + ‖s̄1‖2 + 2(s̄i − s̄1)
Txo + 2di1r̄

o
1

≈ 2r̄oi ni1+2(xo−s̄i)
TΔsi−[2di1ū

o
1+2(xo−s̄1)]

T Δs1



WANG et al.: SDR METHOD FOR SOURCE LOCALIZATION USING TDOA AND FDOA MEASUREMENTS 861

2
[
di1ḋi1 − ¯̇s

T
i s̄i + ¯̇s

T
1 s̄1 + (¯̇si − ¯̇s1)

Txo + (s̄i − s̄1)
T ẋo

+ ḋi1r̄
o
1 + di1¯̇r

o
1

]

≈ 2
{
¯̇r
o
ini1 + r̄oi ṅi1 −

[
ḋi1ū

o
1 + di1 ¯̇u

o
1 + (ẋo − ¯̇s1)

]T
Δs1

− [di1ū
o
1 + (xo − s̄1)]

T Δṡ1 + (ẋo − ¯̇si)
TΔsi

+ (xo − s̄i)
TΔṡi

}
, i = 2, . . . , N (44)

where r̄oi and ¯̇r
o
i are defined in (26), and ūo

i and ¯̇u
o
i are obtained

by replacing soi and ṡoi in uo
i and u̇o

i [defined in (22)] with s̄i
and ¯̇si, respectively. As done in [17] and [18], all the second-
order noise terms are neglected in (44).

Collecting all the equations together and writing them in
matrix form, we obtain

Āȳo − b̄ ≈ B̄
o
Δα+ C̄

o
Δβ (45)

where B̄o, Ā, b̄, and ȳo are, respectively, obtained by replacing
soi and ṡoi with s̄i and ¯̇si in Bo, A, b, and yo, and C̄

o is
defined in (29). From (45), we have

B̄
o−1

(Āȳo − b̄) ≈ Δα+ B̄
o−1

C̄
o
Δβ. (46)

According to (46), we can obtain the nonlinear WLS estimation
problem (28) by assuming that B̄o and C̄

o on the right-hand
side are known.

In the following, we establish the relationship between the
problem (28) and the original ML problem (27). To this end,
we first obtain an approximate ML problem. We begin from
the measurement equations (1). Substituting soi = s̄i −Δsi
and ṡoi = ¯̇si −Δṡi into (1) and applying the first-order Taylor
series expansion, we have

di1 − (‖xo − s̄i‖ − ‖xo − s̄1‖)

≈ ni1 + ūoT
i Δsi − ūoT

1 Δs1

ḋi1 −
[
(xo − s̄i)

T (ẋo − ¯̇si)

‖xo − s̄i‖
− (xo − s̄1)

T (ẋo − ¯̇s1)

‖xo − s̄1‖

]

≈ ṅi1 + ūoT
i Δṡi − ūoT

1 Δṡ1 + ¯̇u
oT
i Δsi − ¯̇u

oT
1 Δs1 (47)

where ‖xo−soi ‖≈‖xo−s̄i‖+ūoT
i Δsi and (xo−soi )T (ẋo−ṡoi )/

‖xo−soi ‖≈(xo−s̄i)T(ẋo−¯̇si)/‖xo−s̄i‖+ūoT
i Δṡi+¯̇u

oT
i Δsi

are used.
The equations in (47) can be written in the matrix form as

d̃− G̃θ̄
o ≈ Δα+ Ū

o
Δβ (48)

where Ū
o is obtained by replacing soi and ṡoi with s̄i and ¯̇si

in Uo.
Based on (48), we can obtain the following approximate ML

formulation:

min
φ

(d̃− G̃θ̄)T (Qα + Ū
o
QβŪ

oT
)−1(d̃− G̃θ̄). (49)

Comparing (49) with (27) reveals that the only difference
between them is that, in (27), the true values soi and ṡoi are used,
whereas in (49), the estimated values s̄i and ¯̇si are used. Thus,
(49) can be seen as an approximation to (27).

It can be verified that B̄o−1
C̄

o
= Ū

o [18]. Using this and
comparing (46) with (48), we obtain B̄

o−1
(Āȳo − b̄) ≈ d̃−

G̃θ̄
o
, from which we see that problems (28) and (49) are

approximately equivalent. Hence, (28) is also an approximation
to the original ML problem (27).
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