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Abstract—We propose a cloudlet network architecture to bring
the computing resources from the centralized cloud to the edge.
Thus, each User Equipment (UE) can communicate with its
Avatar, a software clone located in a cloudlet, and can thus
lower the end-to-end (E2E) delay. However, UEs are moving
over time, and so the low E2E delay may not be maintained
if UEs’ Avatars stay in their original cloudlets. Thus, live Avatar
migration (i.e., migrating a UE’s Avatar to a suitable cloudlet
based on the UE’s location) is enabled to maintain the low E2E
delay between each UE and its Avatar. On the other hand, the
migration itself incurs extra overheads in terms of resources of
the Avatar, which compromise the performance of applications
running in the Avatar. By considering the gain (i.e., the E2E
delay reduction) and the cost (i.e., the migration overheads) of
the live Avatar migration, we propose a PRofIt Maximization
Avatar pLacement (PRIMAL) strategy for the cloudlet network
in order to optimize the tradeoff between the migration gain
and the migration cost by selectively migrating the Avatars to
their optimal locations. Simulation results demonstrate that as
compared to the other two strategies (i.e., Follow Me Avatar and
Static), PRIMAL maximizes the profit in terms of maintaining
the low average E2E delay between UEs and their Avatars and
minimizing the migration cost simultaneously.

I. INTRODUCTION

Recent mobile applications, such as augmented reality,
image processing and speech recognition, become resource
intensive and drain User Equipments’ (UEs’) batteries very
quickly. Mobile Cloud Computing (MCC) [1], [2] has been
proposed to offload applications’ workloads from UEs to the
cloud in order to not only reduce energy consumption of UEs
but also accelerate the execution time of the applications. MCC
reduces the UE’s computational cost at the expense of the
communications cost, i.e., the UE frequently interacts with
the cloud by offloading its application workloads. Thus, it is
not efficient to perform the application offloading if the End-
to-End (E2E) delay between a UE and the cloud is unbearable.
The cloudlet architecture is introduced to reduce the E2E
delay, i.e., the computing resources are moved from the remote
cloud to the local cloudlet, which is a tiny version of a data
center residing close to UEs, so that UEs can access the
computing resources with the low E2E delay [2].

To reap benefits of the cloudlet, we propose the cloudlet
network architecture, as shown in Fig. 1, in order to provide
ubiquitous computing resources to UEs and at the same time
maintain the low E2E delay. Since the existing LTE network
infrastructure can provide seamless connection between a UE
and a base station (BS), each BS is connected to a cloudlet

Fig. 1. The cloudlet network architecture.

via high speed fibers so that UEs can utilize computing
resources in the cloudlets with one wireless hop delay. More-
over, each UE subscribes one Avatar, a high performance
Virtual Machine (VM) in the cloudlet, which provides extra
computing resources and storage space. Avatars are software
clones of their UEs and always available to UEs when UEs
are moving from one coverage area to another. Assigning a
specific Avatar to each UE in the cloudlet provides hardware
isolation by securely running each UE’s application workloads
on a shared physical hardware. On the top of the cloudlets,
Software Defined Network (SDN) based cellular core network
has been proposed in the cloudlet network architecture to
provide efficient and flexible communications paths between
Avatars in different cloudlets as well as between UEs in
different BSs [3], [4]. Moreover, every UE and its Avatar in
the cloudlet can communicate with public data centers (e.g.,
Amazon EC2) and Storage Area Networks (SANs) via the
Internet in order to provision scalability, i.e., if cloudlets are
not available for UEs because of the capacity limitation, UEs’
Avatars can be migrated to the remote data centers to continue
serving their UEs.

The locations of cloudlets depend on the UE density, i.e.,
the BS in the hotspot area can own a specific cloudlet (e.g.,
BS1 connects to a specific cloudlet, say, Cloudlet A in Fig. 1),
or the BSs in the rural or suburban area can share the same
cloudlet. Thus, the cloudlet can be placed among the BSs (e.g.,
cloudlet B is deployed between BS2 and BS3 in Fig. 1) or the
cloudlet is directly connected to the switch at the edge of
the SDN based cellular core (e.g., cloudlet C connects to the



edge switch so that BS4 and BS5 can share the computing
and storage resources of cloudlet C).

The cloudlet network architecture not only helps UEs of-
fload their application workloads to their Avatars with lower
latency but also facilitates real time big mobile data analysis.
Smart UEs, embedded with a rich set of sensors, become
a data stream generator producing their users’ information
over time. Analyzing these massive amount of mobile data is
not only extremely valuable for market applications, but also
potentially benefits the society as a whole [5]. Traditionally,
these big mobile data are analyzed within a data center [6], [7]
by utilizing the distributed computing framework. However,
transmitting the big mobile data from UEs to the data center
through the Internet suffers from the long latency and increases
the traffic load of the network. Meanwhile, the potential value
of the mobile data is decreasing as time passes by. Thus, rather
than bringing the mobile data to the computing resources,
the cloudlet network architecture is proposed to bring the
computing resources to the mobile data. In other words, each
Avatar locally collects, filters, classifies or even analyzes the
raw data stream of its user so that the volume of the mobile
data, which need to be transmitted to the remote data center
for further analysis, can be reduced substantially or eliminated
and the communications latency can be reduced as well.

The rest of the paper is organized as follows. In Sec. II, we
propose the live Avatar migration among cloudlets to maintain
the low E2E delay between UEs and their Avatars when UEs
are moving over time. We design the live Avatar migration gain
and cost models to calculate the gain and cost of each Avatar
migration, respectively. In Sec. III, we formulate the novel
Avatar placement strategy, referred to as PRofIt Maximization
Avatar pLacement (PRIMAL), to maximize the migration profit
in terms of optimizing the tradeoff between the migration gain
and the migration cost. In Sec. IV, we demonstrate the per-
formance of the proposed strategy via extensive simulations.
The conclusion is presented in Sec. V.

II. LIVE AVATAR MIGRATION

UEs frequently communicate with their Avatars by transmit-
ting their mobile data over time. Thus, deploying the Avatar
close to its UE will essentially reduce the E2E delay between
the UE and its Avatar, and thus facilitates big mobile data
analysis as well as MCC applications. However, UEs are
moving over time, and so the E2E delay between a UE and
its Avatar might become unbearable. Therefore, it is necessary
to optimize each Avatar’s placement. By taking advantages
of the live VM migration in a data center, Avatars can also
be migrated among cloudlets over the SDN based celluar
core network to alter their locations, and thus the E2E delay
between a UE and its Avatar can be reduced by optimizing
the Avatars’ locations. Nevertheless, Avatar migrations are
expensive operations because they incur additional overheads
[8], [9], i.e., Avatar migrations consume extra resources (e.g.,
CPU, memory, network, disk I/O resources), which affect the
performance of applications running in the Avatars. While
migrating the Avatar close to its UE potentially improves the

E2E delay, it may introduce humongous migration overheads.
In order to measure the profit of the migration, it is important
to consider the gain and the cost of the Avatar migration
simultaneously.

A. Live Avatar Migration Gain Model

Different from the traditional live VM migration in a data
center, the benefit of the live Avatar migration is to reduce the
E2E delay between a UE and its Avatar, which comprises three
parts: first, T access, i.e., the E2E delay between a UE and its
BS (to which the UE is associated with); second, T core, i.e.,
the E2E delay between the UE’s BS and the UE’s cloudlet (in
which the UE’s Avatar is located); third, T cloudlet, i.e., the E2E
delay within the cloudlet. Since changing the placement of
UEs’ Avatars does not significantly affect the values of T access

and T cloudlet, we consider the gain of live Avatar migration as
the reduction of T core, which is the most important parameter
affecting the E2E delay between a UE and its Avatar. In other
words, if a UE’s Avatar is migrated to the cloudlet which has
a lower E2E delay to the UE’s BS, then the gain of the live
Avatar migration is defined as the reduction of T core.

Denote I as the set of UEs/Avatars (note that one UE is
associated with one specific Avatar, and thus we equate the set
of UEs to the set of Avatars), and i is used to index the UEs
and their corresponding Avatars. Denote J and K as the set of
cloudlets and BSs in the network, respectively, and j and k are
used to index the cloudlets and BSs, respectively. Denote xi,j
as the binary variable to indicate whether Avatar i is located
in cloudlet j (i.e., xi,j = 1) or not. Meanwhile, yi,k is used to
indicate whether UE i is associated with BS k (i.e., yi,k = 1)
or not. By taking the advantage of the SDN network, the E2E
between the jth (j ∈ J ) cloudlet and the kth (k ∈ K) BS
in the cloudlet network, denoted as dj,k, can be measured by
the SDN controller in each time slot [10], [11]. Thus, the E2E
delay between UE i’s BS and UE i’s cloudlet can be derived
as follows:

T core
i =

|J |∑
j=1

|K|∑
k=1

xi,jyi,kdj,k. (1)

Assuming that reducing one unit of the E2E delay increases
one unit of the gain, then given UE i’s location (denoted as
yt+1
i,k ) in the next time slot, the migration gain model is defined

as the amount of the E2E delay reduction achieved by the case
that UE i’s Avatar migrates to the location of xt+1

i,j in the next
time slot as compared to the case that UE i’s Avatar stays in
the current location (i.e., xti,j) in the next time slot, i.e.,

ri =

|J |∑
j=1

|K|∑
k=1

(
xti,j − xt+1

i,j

)
yt+1
i,k dj,k. (2)

B. Live Avatar Migration Cost Model

Although live Avatar migration can facilitate the communi-
cations between a UE and its Avatar, the available resources for
running the Avatar’s applications diminish, thus compromising
the QoS for using the Avatar. Suppose the migration overheads
are fixed during the migration process (i.e., the migration
consumes the same amount of resources in each time slot



during the process); if the migration consumes less time, it
generates fewer overheads to affect the applications in the
Avatar. We build the live Avatar migration cost model as
follows:

ci = κiT
mig
i

|J |∑
j=1

1

2

(
xti,j − xt+1

i,j

)2
, (3)

where ci is the cost for migrating Avatar i, Tmig
i is the total

migration time of Avatar i, κi is the cost coefficient that

maps the migration time to the cost, and
|J |∑
j=1

1
2

(
xti,j − x

t+1
i,j

)2
indicates whether Avatar i is migrated to another cloudlet (i.e.,
the summation equals to 1) or not (i.e., the summation equals
to 0).

Fig. 2. The pre-copy live migration procedure.

1) Total Migration Time: We apply the pre-copy live mi-
gration technique [12] for migrating Avatars among cloudlets.
As shown in Fig. 2., there are two phases during pre-copy live
migration, i.e., the pre-copy phase and stop&copy phase [12],
[13]. In the pre-copy phase, the whole memory of the source
Avatar is transmitted to the destination Avatar in the initial
round. For the rest of each round, source Avatar sends the
dirty pages, which are generated from the previous round to
the destination. Until the number of generated dirty pages is no
larger than a predefined threshold, the migration proceeds to
the stop-and-copy phase, i.e., the source Avatar stops serving
its UE, transmits the rest of the dirty memory pages and
informs the destination Avatar to resume services [9].

Lemma 1. If the bandwidth provisioning for performing
migration is constant, given the amount of Avatar i’s memory
(denoted as Mi) and Avatar i’s average memory page dirtying
rate (i.e., the average number of dirty memory pages generated
in each time slot, denoted as Di) during the migration, the time
required for executing Avatar i’s migration is:

Tmig
i =

Mi

R−Di

1− (Di

R

)⌈logDi/R(MthMi

)
+1

⌉
+1
 , (4)

where R is the bandwidth provisioning in terms of the data
rate for doing migration (R > Di) and M th is the threshold
of dirty pages generated.

Proof: Suppose there are Ni number of rounds during
the migration process and the SDN network provider can
guarantee a constant bandwidth in terms of a fixed bit rate for
doing migration, the amount of time consumed in the current
round n depends on the amount of dirty memory generated in
the previous round n− 1. Thus, we have [14]:

Tmig
i,n =

Di

R
Tmig
i,n−1=

(
Di

R

)n

Tmig
i,0 , 1 ≤ n ≤ Ni, (5)

where Tmig
i,n is the time consumption of round n during Avatar

i’s migration, and Tmig
i,0 is the time consumption of the initial

round (i.e., round 0) during which the whole memory of the
source Avatar is transmitted to the destination, i.e., Tmig

i,0 =
Mi

R . Thus, the time consumption of round n is:

Tmig
i,n =

(
Di

R

)n
Mi

R
, 0 ≤ n ≤ Ni. (6)

The total time consumption of the migration is the sum of
the time consumption in each round, i.e.,

Tmig
i =

Ni∑
n=0

Tmig
i,n =

Mi

R−Di

[
1−

(
Di

R

)Ni+1
]
. (7)

As mentioned before, once the number of the generated
dirty pages are no larger than a predefined threshold (i.e.,
M th) in the previous round, then the source Avatar would
stop serving its UE and transmit the rest of the dirty pages to
the destination Avatar in the last round, i.e., Tmig

i,Ni−1R ≤M
th.

Based on Eq. 6, we have Tmig
i,Ni−1 =

(
Di
R

)Ni−1Mi

R , and so we

can derive that if R > Di, Ni ≤ logDi/R

(
Mth

Mi

)
+ 1 (note

that if R ≤ Di, then Ni → +∞). Since the number of the
migration rounds should be an integer value, we have:

Ni =

⌈
logDi/R

(
M th

Mi

)
+ 1

⌉
, R > Di. (8)

By substituting Eq. 8 into Eq. 7, we have Eq. 4 and thus
have proved Lemma 1.

2) Cost Coefficient κi: The cost coefficient κi in Eq. 4
may also vary among Avatars because even if different Avatars
generate the same migration overheads in terms of the same
migration time, the performance degradation of applications
running in different Avatars are also different. The reason is
that the live Avatar migration itself can be considered as an
I/O intensive application, and so the Avatar migration would
have more negative effect on the performance of applications
which have higher I/O footprints as compared to the pure CPU
intensive applications [8], i.e., the Avatars running higher I/O
applications have higher cost coefficient than the Avatars run-
ning lower I/O applications. Based on the above observation,
we model the value of κi to be proportional to the weighted
sum of utilization of different resources [8]:

κi=α
(
wnetunet

i +wdiskudisk
i +wmemumem

i +wcpuucpu
i

)
, (9)

where uneti , umem
i , udiski and ucpui denote the bandwidth,

memory, disk I/O and CPU resource utilization of Avatar i,
respectively; wnet, wmem, wdisk and wcpu are the migration
impact factor of the bandwidth, memory, disk I/O and CPU
resource utilization, respectively, indicating the degree of
impact of different resources (note that the values of wnet,
wmem, wdisk and wcpu can be derived through experiments
[8]); α is the penalty coefficient that maps the weighted sum of
utilization of resources to the cost coefficient. α is an important
parameter in the system. Increasing the value of α would
increase the ratio of the migration cost to migration gain, and
discourage Avatars from doing live migrations. Consequently,



the E2E delay would increase if Avatars are not incentivized
to do live migration. Thus, α is a parameter to adjust the
tradeoff between the E2E delay and the cost for doing live
Avatar migration, and can be chosen via experiments by testing
users’ QoE for utilizing their Avatars. Also, altering the value
of α can adjust the traffic in the SDN cellular core, i.e.,
increasing the value of α would reduce the traffic generated
by the migrations and mitigate the traffic load in the SDN
cellular core consequently.

III. PROFIT MAXIMIZATION AVATAR PLACEMENT
(PRIMAL)

In order to increase the gain by facilitating the communi-
cations between a UE and its Avatar, the UE’s Avatar can
be placed in the cloudlet which has a lower E2E delay to
the UE’s BS. However, changing the placement of the UE’s
Avatar involves live Avatar migration which would degrade
the performance of applications running in the Avatar. Thus,
we need to design an optimal Avatar placement strategy to
optimize the tradeoff between the migration gain and the
migration cost by estimating whether it is worth to do the live
Avatar migration or not. Denote fi as the profit of migrating
Avatar i, i.e., migration gain minus migration cost:

fi = ri − ci

=

|J |∑
j=1

−0.5κiT
mig
i

(
x
t+1
i,j

)2
+

κiTmigi
x
t
i,j−

|K|∑
k=1

y
t+1
i,k

dj,k

 xt+1
i,j


+

|J |∑
j=1

xti,j
|K|∑
k=1

y
t+1
i,k

dj,k − 0.5κiT
mig
i

(
x
t
i,j

)2.
(10)

We assume that the hardware configuration of each Avatar
is the same, and each cloudlet can only host a limit number of
Avatars, denoted as sj (j ∈ J ). Then, we formulate PRIMAL
as follows:

argmax
xt+1
i,j

|I|∑
i=1

fi (11)

s.t. ∀i ∈ I,
|J |∑
j=1

xt+1
i,j = 1, (12)

∀j ∈ J ,

|I|∑
i=1

xt+1
i,j ≤ sj , (13)

∀i ∈ I,∀j ∈ J , xt+1
i,j ∈ {0, 1} , (14)

where the objective is to maximize the total profit of Avatar
live migrations. The first constraint imposes that every UE’s
Avatar should be allocated in only one cloudlet. The second
constraint means that the total number of Avatars assigned to
the cloudlet cannot exceed the cloudlet’s capacity.

Theorem 1. The PRIMAL problem is NP-hard.

Proof: The proof of the theorem is shown in our technical
report [15].

We use the Mixed-Integer Quadratic Programming tool in
the CPLEX solver to find the heuristic solution of PRIMAL.

IV. SIMULATION RESULTS

We simulate the proposed PRIMAL strategy in the cloudlet
network. For comparisons, we select other two live Avatar
migration decision strategies, i.e., the Follow me AvataR (FAR)
strategy and the Static strategy. The idea of the FAR strategy
is to minimize the E2E delay between an Avatar and its UE by
assigning the Avatar to the available cloudlet (i.e., the cloudlet
has enough space to hold the Avatar), which yields the lowest
E2E delay to its UE’s BS [4]. The Static strategy is to avoid
the migration cost, i.e., the locations of Avatars do not change
over time after they are initially deployed.

We set up a network with the topology that includes 25
cloudlet-eNB combinations (5 × 5) in a square area of 100
km2. Each cloudlet connects one eNB and the coverage area
of each eNB is a square area of 4 km2. There are 1000 UEs,
each associated with one Avatar, in the network. The UE’s
mobility model follows the random way point model and each
cloudlet has the same capacity of 50 Avatars.

The resource capacity of each Avatar is homogeneous; each
Avatar is configured with 2-core CPU, 4GB memory, and
500 Mbps bandwidth. The Google cluster data trace [17] is
applied to emulate the CPU, memory and disk I/O utilization
of each Avatar (we select the machines with CPU and memory
capacity of 0.5 (normalized) in the Google cluster data trace,
and calculate their CPU, memory and disk I/O utilization in
each time slot; then, the resources of Avatars are emulated
to be the same as those of the machines). Since the Google
cluster data trace does not publish the bandwidth resource
utilization and memory page dirtying rate traces of the ma-
chines, we emulate the bandwidth demand of each Avatar
as a stochastic process which follows a normal distribution
N(µi, σ

2
i ) [18], [19]. Note that the value of µi and σ2

i are
different among different Avatars, and thus we randomly select
µi ∈ [0, 350Mbps] and σ2

i ∈ [0, 100Mbps] for each Avatar.
Furthermore, each Avatar’s memory page dirtying rate depends
on different types of applications running in the Avatar, i.e.,
some memory-intensive applications (e.g., in-memory data
analytics) may generate more dirty memory pages as compared
to the CPU-intensive and network I/O-intensive applications.
In the simulation, the memory page dirtying rate is randomly
chosen between 0 and 10K pages per time slot. Moreover,
the values of wnet, wmem, wdisk and wcpu are selected to be
0.8, 0.6, 0.4, and 0.1, respectively [8]. The data rate for doing
migration is 200 Mbps.

First, we set up the penalty coefficient α = 5 and run
the simulation. Fig. 3 shows the profit trace by applying
three different Avatar placement strategies. PRIMAL achieves
the highest profit as compared to the other two strategies
indicating that PRIMAL can choose the valuable migrations
(i.e., fi > 0) to maximize the profit. In order to demonstrate
the benefit for maximizing the profit, we further test the
average Round Trip Time (RTT) in terms of the E2E delay
between UEs and their Avatars, as shown in Fig. 4, PRIMAL
and FAR yield the similar average RTT, which is much lower
than that of Static because Static does not dynamically adjust
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Avatars’ placement even if the E2E delays between UEs and
their Avatars are unbearable. On the other hand, as shown
in Fig. 5, the migration cost of PRIMAL is much less than
that of FAR, and thus PRIMAL achieves higher profit than
FAR. We further test the average number of migrations and
the average migration time as shown in Table I. Obviously,
PRIMAL reduces the average number of the migrations as well
as the average migration time, indicating that PRIMAL avoids
some migrations with long migration time. In other words,
PRIMAL selectively migrates Avatars that improve their RTT
time (in terms of the migration gain) significantly but consume
less migration time (in terms of the migration cost).

TABLE I
SIMULATION RESULTS

Strategies Average number of migrations Average migration time

PRIMAL 472.2 migrations/slot 59.7 seconds
FAR 606.1 migrations/slot 67.4 seconds

Second, we try to analyze the performance of PRIMAL by
choosing different values of α. Fig. 6 shows the differences
of the average profits between PRIMAL and FAR as well
as between PRIMAL and Static during the simulation by
choosing different vaules of α. When α = 0, PRIMAL
performs exactly the same as FAR (i.e., the average profit
difference is zero) as both try to minimize the RTT only.

However, as the value of α increases, the migration cost
increases and PRIMAL enables less migrations to maximize
the profit, thus increasing the average profit gap between
PRIMAL and FAR. On the other hand, as the value of α
increases, the average profit gap between PRIMAL and Static
is decreasing since more Avatars remain static to avoid the
migration cost. We believe the performance of PRIMAL and
Static is the same as α → +∞. We further test the trend of
the average RTT, the average number of migrations and the
average migration time for running PRIMAL as the value of
α varies. As shown in Fig. 7 and Fig. 8, when the value of
α is small, PRIMAL triggers more migrations to improve the
RTT even if the migrations consume more time. However, as α
increases, the cost for doing migration increases and PRIMAL
avoids more worthless migrations (those that improve the RTT
a little bit at the expense of longer migration time). Therefore,
there are tradeoffs between the average RTT and the average
number of migrations, and between the average RTT and the
average migration time, i.e., in order to reduce the average
RTT, more migrations are triggered and more migration time is
consumed. Changing the value of α can adjust these tradeoffs.

V. RELATED WORKS

Various VM placement strategies have been proposed for
the resource management in data centers. Wood et al. [20]
proposed Sandpiper to detect hotspots and mitigate them by



migrating the VMs to lightly loaded servers. Piao and Yan
[21] considered that VMs and their data may be located at
different physical servers in the cloud, and thus proposed
a virtual machine placement strategy to minimize the data
access time, i.e., placing VMs close to their data so that the
access time is minimized. Shrivastava et al. [22] proposed
the VM placement strategy to place the dependent VMs (i.e.,
the VMs with heavy interaction among them) close to each
other so that the network traffic can be reduced. Rather than
only considering the gain of VM placement by migrating
VMs to suitable servers, many studies argued that the cost
of VM migration involved in the VM placement cannot be
neglected when the resource management is applied. Verma et
al. [23] proposed the VM placement strategy to minimize the
total power while taking the migration cost into account. The
migration cost is depicted as the throughput of the migration.
Hossain et al. [24] also tried to minimize the total energy
consumption by utilizing the VM placement, but they modeled
the migration cost as the migration energy consumption at the
destination and source servers.

Our previous work [4] tried to maximize the green en-
ergy utilization of the cloudlets in the network by utilizing
the Avatar migrations to adjust the energy demands among
cloudlets. In this paper, we try to optimize the Avatars’
placement by maximizing the profit of Avatar migrations in
terms of optimizing the tradeoff between the migration gain
and the migration cost. To the best of our knowledge, none of
the previous works considered reducing the E2E delay between
a user and its VM as the gain of VM migrations, and reducing
the E2E is very important in the proposed cloudlet network
since it can substantially facilitate communications between a
UE and its Avatar in meeting the QoS of MCC applications
and provisioning big mobile data analysis.

VI. CONCLUSION

In this paper, we have proposed the cloudlet network archi-
tecture to reduce the E2E delay between a UE and its Avatar
so as to meet the QoS of MCC applications and to provision
big mobile data analysis. However, UEs are moving in the
network, and so the E2E may become worse. The live Avatar
migration is triggered to adjust the location of the UE’s Avatar.
However, the migration process consumes extra resources of
the Avatar that may degrade the performance of applications
running in the Avatar. Therefore, we have proposed PRIMAL
to maximize the profit of the Avatar migration in terms of
optimizing the tradeoff between the gain and the cost of the
Avatar migration. We have also demonstrated that PRIMAL
achieves the highest profit as compared to the other two Avatar
placement strategies, i.e., FAR and Static.
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