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Workload Allocation in Hierarchical Cloudlet
Networks

Qiang Fan, Student Member, IEEE, and Nirwan Ansari, Fellow, IEEE

Abstract—Edge cloudlets are promising to mitigate the high
network delay incurred by the remote cloud in executing work-
loads offloaded from a user equipment (UE). However, the
response time of a task request consists of both the network
delay and computing delay. Considering the spatial and temporal
dynamics of workloads among cloudlets, if the workload of an
edge cloudlet is heavy, the computing delay in the cloudlet may
be unbearable. In this letter, we design a hierarchical cloudlet
network and propose a Workload ALLocation (WALL) scheme to
minimize the average response time of UEs’ requests by deciding
which cloudlet a UE is assigned to and how much computing
resource is provisioned to serve it. The performance of the
proposed scheme is validated by extensive simulations.

Index Terms—Cloudlet, workload allocation, edge computing,
resource allocation.

I. INTRODUCTION

RECENT mobile applications are increasingly
computation-intensive while resources of User

Equipments (UEs) remain limited. Thus, mobile cloud
computing has been introduced to offload UEs’ task requests
to a centralized cloud in Internet. However, the long distance
between a UE and the centralized cloud inherently incurs
relatively high latency. The response time may satisfy the
requirement of some applications such as web browsing, but
is unbearable for many delay-sensitive applications, such as
augmented reality, on-line gaming, and image processing. The
concept of cloudlets has thus been employed to reduce the
network delay by moving the remote cloud resources to the
network edge. Since cloudlets are generally placed at access
points that are close to UEs, UEs can access the computing
resources with a lower network delay. Recent works have
already shown that distributed cloudlets can remarkably
reduce the response time of task requests. Sun and Ansari
[1] proposed a LEAD algorithm to allocate UEs’ dedicated
virtual machines (VMs) among cloudlets to minimize the
network delay by having a number of disk replicas of each
UE’s virtual VM placed among cloudlets. Kiani et al. [2]
proposed a hierarchical cloudlet architecture based on the
traditional mobile network and designed a mechanism to
allocate dedicated virtual machines of hierarchical cloudlets
and communications resources to UEs in order to maximize
the profit of a service provider (note that the amount of
computing resources for UEs are given). In addition, Tong
et al. [3] proposed a workload placement algorithm in a
hierarchical edge network, which selects the cloudlet and
allocates the computing resources for each task. However,
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for delay-sensitive applications, the number of task requests
in the network is huge and the size of each request is small;
thus, it is hard to run the algorithm in real-time. Rodrigues
et al. [4], [5] proposed a method to improve the transmission
delay and processing delay, respectively, via transmission
power control and VM migration among cloudlets co-located
with their BSs instead of hierarchical cloudlets.

In a hierarchical cloudlet network where different tiers
of cloudlets form a tree topology (i.e., tier-1 cloudlets are
attached with access points while each tier-2 cloudlet acts as
a high-level cloudlet covering a number of tier-1 cloudlets),
the workload allocation among different tiers of cloudlets has
a crucial impact on the response time for UEs. As tier-1
cloudlets are closer to UEs, offloading a UE’s requests to
a tier-1 cloudlet yields a lower network delay than a tier-2
cloudlet. On the other hand, since the computing resource
of a tier-2 cloudlet is much richer than a tier-1 cloudlet,
offloading a UE’s requests to a tier-2 cloudlet incurs a lower
computing delay than a tier-1 cloudlet with limited resources.
Furthermore, owing to the spatial and temporal dynamics of
user distribution, when a tier-1 cloudlet is overloaded, the
computing delay tends to be the dominating factor for the
response time of requests. Thus, some UEs’ workloads should
be offloaded to tier-2 cloudlet to decrease their computing
delay, although the network delays are relatively deteriorated.

To minimize the response time, we propose a Workload AL-
Location (WALL) scheme for hierarchical cloudlet networks,
where both the network delay and computing delay are taken
into account. Below are the main contributions of this letter: 1.
We propose a novel hierarchical cloudlet network architecture
to enable UEs to be assigned to suitable cloudlets. 2. We
formulate the problem of minimizing the average response
time by offloading UEs’ workloads among different tiers of
cloudlets and allocating optimal computing resources for each
UE. 3. In the workload allocation, the QoS constraint in terms
of the response time threshold is satisfied for each UE. 4. We
design the novel WALL algorithm to solve the problem and
demonstrate its performance via simulations.

II. SYSTEM MODEL

A hierarchical cloudlet network architecture is illustrated
in Fig. 1, where the software defined network (SDN) based
cellular core, which consists of a SDN controller and open-
flow switches, is employed to provide flexible routes and
communications resources between BSs. Tier-1 cloudlets are
co-located with base stations (BSs) and tier-2 cloudlets are
placed at openflow switches, each of which connects to several
BSs. Meanwhile, mobile providers offer seamless wireless
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Fig. 1. Cloudlet network architecture.

communications between a UE and its BS, and thus each
UE can access its BS and then connect to different tiers of
cloudlets. As shown in Fig. 1, the cloudlet network forms a
tree topology, i.e., the workload of a tier-1 cloudlet can also
be offloaded to its corresponding tier-2 cloudlet. Note that
as compared to tier-1 cloudlets, tier-2 cloudlets have more
powerful computing resources. Within one cloudlet, each UE
is allocated an amount of computing resource according to its
workload. Hence, we assume each UE forms a queuing model
to process its tasks requests, where the average computing
delay (i.e., consisting of the average queuing delay and average
processing delay) depends on the task arrival rate of the UE
and its allocated computing resources (i.e., the service rate).

TABLE I
THE IMPORTANT NOTATIONS

Symbol Definition
xij Binary indicator of UE j being assigned to cloudlet i or not.
µij Computing resources allocated to UE j in cloudlet i.
Ij Set of potential cloudlets (i.e., in different tiers) for UE j.
dij Network delay between UE j and cloudlet i.
Ci Computing capacity of cloudlet i.
Tj Delay threshold for UE j.
Z Set of tier-2 cloudlets.

Denote I as the set of cloudlets, J as the set of UEs, and
K as the set of BSs. Meanwhile, let Ij be the set of potential
cloudlets for UE j, i.e., cloudlets in different tiers for UE j.
For example, UE j is associated with a BS, which is co-located
with tier-1 cloudlet A; cloudlet A connects to a tier-2 cloudlet
B. Thus, set Ij of UE j is composed of cloudlet A and B.
The key notations of this letter are summarized in Table I.

A. Average Computing Delay

Assume that task requests of each UE j are generated
according to a Poisson Process with the average arrival rate
λj , and the size of tasks in terms of the CPU cycles follows
an exponential distribution with the average value of lj . Let
µij be the computing resources (i.e., CPU cycles per second)
allocated to UE j in cloudlet i in a time slot. Then, for a given
µij in the time slot, the service time for UE j’s requests also
follows an exponential distribution, where the average service
time can be expressed as lj/µij . Consequently, each UE can

realize an M/M/1 queuing model to process its task requests
in its cloudlet. To keep the queue system stable, we need to
guarantee that λj is smaller than the service rate (µij/lj), i.e.,
µij/lj − λj > 0. We define the average computing delay of
UE j in cloudlet i as the average system delay of the UE
(consisting of the queuing delay and processing delay), and
thus we have:

tij =
1

µij/lj − λj
. (1)

B. Network Delay

When a UE request is sent to a cloudlet, the request goes
through the BS and the SDN-based cellular core network.
Hence, the E2E delay between a UE and its cloudlet consists
of two parts: first, the E2E delay between the UE and its BS,
i.e., the wireless delay; second, the E2E delay between the
BS and the cloudlet that hosts the UE’s workload. However,
the cloudlet selection for a UE does not affect its wireless
delay, which only depends on the UE’s service plan and the
mobile provider’s bandwidth allocation strategy [6]. Thus, in
this letter, we just define the network delay between a UE
and its associated cloudlet as the E2E delay between the UE’s
BS and the cloudlet. Note that we assume that each UE can
be associated with only one BS. Denote τki as the E2E delay
between BS k and cloudlet i, and Y as a given indicator matrix
to reflect the UE-BS association at the beginning of each time
slot, in which ykj ∈ Y represents UE j being covered by BS
k or not. As each UE is associated with only one BS, we
have

∑
k

ykj = 1,∀j ∈ J . Note that the value of τki can be

measured and recorded by the SDN controller [7]. Thus, the
network delay between UE j and its potential cloudlet i ∈ Ij
can be expressed as

dij =
∑
k

ykjτki, ∀j ∈ J , ∀i ∈ Ij . (2)

III. PROBLEM FORMULATION

The main purpose of this letter is to minimize the average
response time for all UEs in the hierarchical cloudlet network.
Thus, we formulate the workload allocation problem, i.e.,
minimizing the average response time by offloading UEs’
workload among different tiers of cloudlets and optimally
allocating the computing resources of each cloudlet to UEs
in each time slot, as follows:

P1 : min
xij ,µij

∑
j∈J

∑
i∈Ij

xij(dij +
1

µij/lj − λj
) (3)

s.t.
∑
j∈J

xijµij ≤ Ci,∀i ∈ I, (4)∑
i∈Ij

xij = 1,∀j ∈ J, (5)

xij(dij +
1

µij/lj − λj
) ≤ xijTj ,∀i ∈ I, ∀j ∈ J, (6)

xij ∈ {0, 1},∀i ∈ I, ∀j ∈ J. (7)

Here, Constraint (4) imposes computing resources allocated
to UEs to be no more than the cloudlet’s computing capacity.
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Constraint (5) ensures that the workload of each UE is
assigned to only one cloudlet. Constraint (6) imposes the
response time of UE j to be smaller than its delay threshold.

The above optimization problem is a mixed integer non-
linear programming problem. The resource allocation in each
cloudlet (i.e., determining µij) depends on the UE-cloudlet
association xij . In order to achieve the optimal UE-cloudlet
association, a brute-force search leads to O(MN ) iterations,
where N represents the number of UEs and M is the number
of cloudlet tiers. Obviously, the computational complexity of
the brute-force search increases exponentially with respect to
the number of UEs. Thus, it is not practical to execute the
optimization in a time slot especially for large scale networks.

IV. THE WALL ALGORITHM

In this section, we propose the WALL algorithm to ef-
fectively assign UEs to suitable cloudlets that approaches
the optimal solution with low computational complexity. For
brevity, we define UEs covered by a tier-2 cloudlet as the
UEs covered by BSs connected with the tier-2 cloudlet. The
basic idea is to iteratively select a suitable UE which has the
maximum workload among UEs covered by a tier-2 cloudlet,
and assign it to the cloudlet that incurs the lowest response
time. When UEs covered by a tier-2 cloudlet are assigned, we
will sequentially check for the next tier-2 cloudlet.

A. Resource Allocation

In each iteration, when a new UE is assigned to a cloudlet,
based on workloads of UEs in the cloudlet, we can opti-
mally allocate the computing resources of the cloudlet to the
corresponding UEs such that their average response time is
minimized. In other words, based on a given UE-cloudlet
association, the original problem P1 can be transformed into
a resource allocation problem for each cloudlet i as follows:

P2 : min
µij

∑
j∈J

xij(dij +
1

µij/lj − λj
) (8)

s.t. Constraints(4), (5), (6), (7).

We then have the following lemma:

Lemma 1. When each xij is determined, P2 is a convex
optimization problem.

Proof: For brevity, let f =
∑
j∈J

xij(dij +
1

µij/li−λij
), and

we use µj to substitute µij in cloudlet i. Thus, we have

∂2f

∂µk∂µj
=

{
2l−2j (µj/lj − λj)−3, if k = j,

0, otherwise.
(9)

Since (µj/lj − λj) > 0, the Hessian matrix H = ∂2f
∂µk∂µj

of f is a positive definite matrix. As a result, f is convex.
Moreover, because Constraints (4), (5), (6), (7) are linear, the
optimization problem P2 is a convex optimization problem.

As P2 is a convex problem, we can derive the optimal
solution of P2 by solving the corresponding KKT conditions
[8]. Consequently, the optimal response time for each UE in
cloudlet i can be obtained.

B. UE-cloudlet Association

Denote Z as the set of tier-2 cloudlets and Jz as the set of
UEs covered by tier-2 cloudlet z. For UEs covered by tier-2
cloudlet z, we can find the UE with the maximum workload,
which has not been assigned, as follows:

j∗ = argmax
j

{
λj |
∑
i∈I

xij = 0, j ∈ Jz

}
. (10)

Meanwhile, the optimal cloudlet i∗ that incurs the minimum
average response time for UE j∗ can be expressed as follows:

i∗ = argmin
i∈Ij∗

{
dij∗ +

1

µij∗/lj∗ − λj∗

}
. (11)

Specifically, WALL, as shown in Algorithm 1 below, starts
with an initial UE-cloudlet association matrix X , which is set
to be a zero matrix. Second, for each tier-2 cloudlet, we sort
its covered UEs in descending order based on their workloads.
Then, we sequentially assign each UE j to a potential cloudlet
i ∈ Ij that incurs the minimum response delay. Third, when all
UEs covered by a tier-2 cloudlet have already been assigned,
we execute the same procedure for users covered by the
next tier-2 cloudlet. Fourth, the algorithm terminates when all
UEs in the cloudlet network are assigned to different tiers of
cloudlets. The complexity of the sorting operation (i.e., Step 3
of Algorithm 1) is O(|Jz| log(|Jz|)) and Step 3 is repeated for
|Z| times. After the sorting operation, the complexity of each
iteration is O(M), where M is the number of cloudlet tiers;
the total number of iterations can be expressed as |J |. Thus,
the complexity of Algorithm 1 is O(M |J |+

∑
z∈Z
|Jz|log(|Jz|)).

Algorithm 1 WALL algorithm
Input: The user-BS association matrix Y = {ykj |k ∈

K, j ∈ I}. The matrix of E2E delay between BSs and
cloudlets T = {τki|k ∈ K, i ∈ I}. The vector of the average
task arrival rate for UEs Λ = {λj |j ∈ J }.

Output: The UE-cloudlet association matrix, i.e., X =
{xij |i ∈ I, j ∈ J }.

1: Initialize X = 0 and let z = 1;
2: while z ≤ |Z| do
3: Sort all UEs covered by tier-2 cloudlet z (i.e., Jz) in

descending order of UEs’ workloads;
4: Let n = 1;
5: while n ≤ |Jz| do
6: j∗ = n (i.e., find the optimal UE j∗);
7: Find the optimal cloudlet i∗ for UE j∗ by Eq. (11);
8: Let xi∗j∗ = 1 and n = n+ 1;
9: end while

10: z = z + 1;
11: end while

Note that if a user cannot find an edge cloudlet to enable
the user and the cloudlet’s existing associated users to achieve
lower response time than their delay threshold, both tier-1 and
tier-2 cloudlets of the user are considered to be full and the
user’s tasks will be assigned to the remote cloud.



4

Fig. 2. Average performance of a UE for
different schemes.

Fig. 3. Average response time with respect to
λmax (CT1 = 1.5∗105 and CT2 = 15∗105).

Fig. 4. Average response time with respect
to capacities of tier-1 (λmax = 1.8, CT2 =
22.5 ∗ 105).

V. RESULTS AND DISCUSSION

We set up the simulation to demonstrate the performance of
WALL. For comparison, we select the LatEncy aware Avatar
hanDoff (LEAD) algorithm [1] in which UEs’ requests are
offloaded to their closest cloudlets (i.e., with the minimum
network delay), computing resources for UEs are given. The
simulation environment consists of 2 tier-2 cloudlets and 25
tier-1 cloudlets (i.e., each tier-1 cloudlet is attached to a BS)
within an area of 25 km2, where the coverage of each BS
is 1 km2. Let tier-1 cloudlet 1-13 connect to the first tier-2
cloudlet, and the rest connect to the second tier-2 cloudlet.
Meanwhile, 300 UEs are randomly distributed among the BSs
and assumed to be associated to its closest BS. As each UE’s
task arrival rate follows a Poisson distribution, we randomly
choose the average task arrival rate of each UE between 0
and λmax in each time slot (i.e., 3 mins). The average size of
requests in each UE is chosen according to the Normal distri-
bution with an average of 1000 CPU cycles and a variance of
200 cycles, i.e., N(1000, 200). Let CT1 be the capacity of each
tier-1 cloudlet, and CT2 be the capacity of each tier-2 cloudlet,
where the unit is CPU cycles/second. Moreover, the network
delay between each tier-1 cloudlet and its corresponding tier-2
cloudlet is chosen according to N(30, 10) (in ms); the network
delay between each tier-2 cloudlet and the remote cloud is
selected according to N(90, 30) (in ms); the delay threshold
is set as 150 ms.

Fig. 2 shows the average response time per UE, in which
WALL yields lower response time as compared to LEAD.
Specifically, WALL incurs higher network delay since LEAD
always assigns UEs’ requests to their closest cloudlet. How-
ever, WALL considers both the network delay and computing
delay in the workload allocation and flexibly allocates com-
puting resources for UEs based on their workloads, and thus
significantly reduces the computing delay.

We further analyze how the workloads of UEs affect the
performances of the two algorithms. Note that the value of
λmax reflects the workloads of UEs, i.e., increasing λmax
increases workloads of UEs. As shown in Fig. 3, with the in-
crease of λmax, the average response time of both WALL and
LEAD increase gradually. However, the average response time
of WALL is remarkably lower and grows slowly as compared
to LEAD because when UEs’ workloads are heavy, WALL can
offload UEs’ workloads to a lightly loaded cloudlet, which can
allocate enough computing resources to UEs, thus remarkably
reducing their average computing delay.

Moreover, we analyze the impact of tier-1 cloudlets’ capac-
ities on the average response time. Fig. 4 shows the average
response time of WALL and LEAD when the capacities of
tier-1 cloudlets increase. It can be seen that the average
response time of WALL decreases more quickly than LEAD.
As the computing resource for each UE is given, LEAD just
considers the network delay, and thus assigns more UEs to tier-
1 cloudlets with the increase of capacities of these cloudlets. In
particular, when tier-1 cloudlets’ capacities are very high, most
UEs in LEAD are assigned to tier-1 cloudlets, and thus the
average response time tends to be stable. In contrast, WALL
can flexibly allocate the computing resources of a cloudlet to
UEs. When the capacity of a tier-1 cloudlet is low, WALL
allocates many UEs to the tier-2 cloudlet, where the low
computing delay overweighs the increment of network delay.
Meanwhile, when the capacity of a tier-1 cloudlet increases, it
incurs lower computing delay; thus, WALL assigns more UEs
from the tier-2 cloudlet to tier-1 cloudlets to further reduce
their response time by reducing their network delay.

VI. CONCLUSION

In this letter, we have proposed the Workload ALLocation
(WALL) scheme for hierarchical cloudlet networks. WALL as-
signs UEs to different tiers of cloudlets and optimally allocates
the computing resources of each cloudlet to its associated UEs
in each time slot. Simulation results have verified WALL.
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