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Abstract—Empowered by computing resources at the network

via Internet, the transferred data may consume a huge amount

edge, data sensed from loT devices can be processed and stbre of pandwidth and energy of the core network. On the other

in their nearby cloudlets to reduce the traffic load in the
core network, while various IoT applications can be run in
cloudlets to reduce the response time between loT users (g.gser
equipment in mobile networks) and cloudlets. Considering e
spatial and temporal dynamics of each application’s worklads
among cloudlets, the workload allocation among cloudletsof
each IoT application affects the response time of the applation’s
requests. While assigning loT users’ requests to their nedy
cloudlets can minimize the network delay, the computing dely
of a type of requests may be unbearable if the corresponding
virtual machine of the application in a cloudlet is overloaced. To
solve this problem, we design an Application awaRE workload
Allocation (AREA) scheme for edge computing based IoT to
minimize the response time of 10T application requests by ded-
ing the destination cloudlets for each loT user’s differenttypes

hand, since the remote cloud is far from IoT users which
send application requests and await the results genergted b
the data processing in the remote cloud, the response time of
the requests may be too long, especially unbearable foy dela
sensitive 10T applications. Therefore, cloudlets, whicing
computing resources close to 10T devices and loT users, can
be employed to alleviate the traffic load in the core network
and minimize the response time for IoT users [3], [4].
Although provisioning cloudlets may reduce the network
delay, simply allocating all 10T users’ workloads to thesdst
cloudlets is not enough to reduce the response time, which
consists of both the network delay and computing delay. Note

of requests and the amount of computing resources allocated that we consider UE equipments (UEs) in mobile networks

for each application in each cloudlet. In this scheme, bothhe
network delay and computing delay are taken into account, &.,
loT users’ requests are more likely assigned to closer anddhtly
loaded cloudlets. Meanwhile, the scheme will dynamically djust
computing resources of different applications in each clodlet
based on their workloads, thus reducing the computing delayf
all requests in the cloudlet. The performance of the propos®
scheme has been validated by extensive simulations.

Index Terms—Cloudlet, Internet of Things (IoT), workload
allocation, edge computing, resource allocation.

|. INTRODUCTION

as loT users, each of which can run several types of loT
Apps. Owing to the UE mobility in the network, the workload
distribution exhibits spatial and temporal dynamics among
cloudlets. When the workload of a cloudlet is too heavy, the
computing resources available for an application is lichite
and thus the response time of the corresponding requests is
degraded correspondingly. In this case, although the &oud
in the proximity yields the minimum network delay, the bulk
of the response time is attributed to the computing delaysTh
the workload allocation of different types of requests tyea
impacts the response time of UEs’ requests. On the other, hand
for each cloudlet, the resource allocation for differerjey

N the past few years, a tremendous number of smart deviegsapplications also affects the computing delay of differe
and objects, such as smart phones, wearable devices, in@yses of requests. Since the computing size per request for

trial and utility components, are equipped with sensoretss

different applications are different, the computing caiyacf

the real-time physical information from the environmenk [1a cloudlet should be optimally allocated for different tgpe

Hence, Internet of Things (loT) is introduced, where vasiolf applications in order to reduce the computing delay of all
smart devices are connected with each other via the interpglps of UEs.

and empowered with data analytics. Various 10T application To solve the above problem, we propose an Application
such as smart transportation, smart health, smart city aaflaRE workload Allocation (AREA) scheme for edge com-
smart home have been widely studied to improve our daiuting based loT to minimize the total response time of UES’
life. Owing to the high volume and fast velocity of dataapps, where both the network delay and computing delay are
streams generated by 10T devices, the cloud that can poovistaken into account. Below are major contributions of theguap
flexible and efficient computing resources is employed as,ane formulate the problem of minimizing the average re-
smart "brain” to process and store the big data generatec},ponse time of different types of loT Apps by offloading
from distributed IoT devices [2]. However, as the data strea  UEs’ different types of requests among distributed clotsdle
generatEd from loT devices are transmitted to the remotelclo and a”ocating Opt|ma| Computing resources for different
applications in each cloudlet. The response time of each
type of requests consists of both the network delay and
computing delay. To reduce the network delay, different
types of requests of a UE are favorably assigned to closer
cloudlets. On the other hand, each application is assumed to
be handled by a dedicated virtual machine in each cloudlet,
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the capacity of which can be dynamically allocated in eat¢b handle the data streams from IoT devices at the mobile
time slot [5]; when a cloudlet is overloaded, the computingdge. Moreover, Jutila [12] proposed adaptive edge comguti
resources available for each application are not enoughsmiutions for loT networking in order to optimize traffic
handle the type of requests, and thus the computing deffgws and network resources. Demy al. [13] proposed an
becomes the dominating factor of the response time. Henaégorithm to balance the power consumption and serviceydela
different types of requests of a UE should be assigned ltg allocating workloads among fog nodes and the cloud.
other lightly loaded cloudlets to reduce their computinjfousefpouret al. [14] proposed a delay aware policy for
delay. the loT-fog-cloud network to minimize the service delay for

« Since different applications require different QoS camistis 10T applications. Zhanget al. [15] proposed an edge IoT
in terms of the maximum allowed computing delay, wé&amework to allocate the limited computing resources of
will allocate different types of requests of each UE téog nodes to IoT users to achieve the optimal and stable
suitable cloudlets to guarantee that their corresponding Qperformance in the IoT based network. Fedral.[16] proposed
constraints are satisfied. a workload allocation scheme, referred to as WALL, in a

« To solve the application aware workload allocation problemerarchical edge network to optimize the response timas¥ t
in each time slot, we design the novel AREA algorithm thatquests. Ji@t al. [17] proposed to place a certain number of
decomposes the problem into two sub-problems and sobkleudlets and allocate workloads among cloudlets to mizgmi
them sequentially. First, we design a heuristic algoritiom the response time. Yargf al. [18] studied the joint optimiza-
allocate each UE's different types of requests to suitakiien of application service placement and load dispatching
cloudlets according to the workloads of cloudlets and tremong cloudlets where all users’ workloads are the same, and
network delays between the UE and cloudlets. Afterwardfien designed a set of efficient algorithms to achieve variou
when different types of requests of each UE have be@made-offs among the average latency of users’ requests and
assigned among cloudlets, the above problem becometha cost of service providers. As we know, the computing size
resource allocation problem in each cloudlet that has beper request for different applications is heterogeneousgewh
proved to be a convex problem, and thus we can optimatlyeir QoS requirements are different. However, all the abov
allocate the computing resources of each cloudlet to diffeworks assume that application requests are homogeneous and
ent types of applications by solving the convex problem. then allocate the workloads among cloudlets to minimize the

The remainder of this paper is organized as follows. ligSPonse time of requests. Considering the diverse contputi
Section I, we briefly review related works. In Section 111 Sizes and QoS requirements of different types of requests, w
we illustrate the cloudlet network architecture and décri formulate the problem of minimizing the average response
the system model. In Section IV, we formulate and analy#éne of different types of Apps by assigning UEs’ different
the application aware workload allocation problem. In ®ect types of Apps to distributed cloudlets and allocating oplim
V, the AREA algorithm is proposed to obtain the Suboptiméqomputing resources for different applications in eachidlet.
solution of the application aware workload allocation peoi. The problem is formulated such that the QoS constraint di eac
Section VI shows the simulation results, and concludir@PPlication in terms of the maximum allowable computing
remarks are presented in Section VII. elay is satisfied individually.

Ill. SYSTEM MODEL
Il. RELATED WORKS

Mobile edge computing, by moving computing resource
. . Access openflow ¢ Internet/Cloud

close to UEs, has been proposed to improve UE experience ABS suitch D Luiten
mobile applications. Tongt al.[6] proposed a workload place- ™« o @ senwr
ment algorithm in a hierarchical edge cloud network, whic SON Cantroller
selects the cloudlet and allocates the computing resotioces =
each task to minimize the response time for all offloade
tasks. Faret al.[7] proposed to migrate UES’ virtual machines
(VMs) among distributed cloudlets to reduce the brown eyper:
consumption of cloudlets by considering the green ener \ &
generation among cloudlets and energy consumption of V 0 g
migrations. Some works [8], [9] look into placing a certain
number of cloudlets among a given set of available sites ang. 1. Cloudlet network architecture.
then assigning workloads to the cloudlets.

Owing to the proximity of edge computing resources to A distributed cloudlet network architecture is illustréte
loT devices and loT users, some studies have focused ionFig. 1, where cloudlets are co-located with some base
integrating loT with mobile edge computing. Chiaegj al. stations (BSs). The software defined network (SDN), which
[10] summarized the opportunities and challenges of edgensists of a SDN controller and open flow switches, is
computing in the networking context of loT and advocateemployed as the cellular core network, thus enabling flexibl
that edge computing can fill the technology gaps in loTouting and communications resource among BSs. All BSs are
Sun and Ansari [11] proposed the IoT architecture (Edgelo&juipped with two interfaces (i.e., NB-loT and LTE) to offer

SDN based
Cellular > S5, R
core  P—Ng

Y




the seamless coverage for both 10T devices and IoT usardl it also follows a Poisson Process. On the other hand, the
(UEs). Thus, the sensed data of 10T devices can be stommmputing capacity (in terms of CPU cycles per second) of
at their closest cloudlets and the remote cloud, which act gpe k£ VM in cloudleti (i.e., ;) is fixed in each time slot;
brokers. Meanwhile, a Resource Directory (RD) is located #ie computing size of a typle application request (in terms of
the SDN controller to help each loT application discover thihe CPU cycles) follows an exponential distribution witke th
location of its required 10T data. On the other hand, eaaverage value of,. Thus, we can derive the service time for
UE can access different cloudlets through its BS and tiygpe & requests running in a cloudlet's VM &g/ 1;, which
SDN based cellular core network. Within one cloudlet, walso follows an exponential distribution. Since the alrize
assume that each virtual machine (VM) only processes tbkeach VM of a cloudlet follows a Poisson Process while the
workloads of one application, i.e., each application is pgap corresponding service time follows an exponential distidn,

to a dedicated VM. Note that each |oT application has only omach VM of a cloudlet can form an M/M/1 queuing model

VM in a cloudlet. Considering the diversity of applicatigiise

to process its corresponding application requests. Naé th

computing capacities of VMs are heterogeneous in a cloudtetkeep the queue stable, the average arrival rate of the VM
and can be adjusted dynamically [5]. We define an loT Apfe., A\;x) should be smaller than its average service rate (i.e.,
as the software program running on a UE that requests thg /l;), and thus we can derive that /Iy — \ix > 0. We
specific type of application service. As a UE may run multipldefine the computing delay of type requests in cloudlet,

IoT Apps, each type of application requests of the UE cdp,, as the average system delay of typ&M'’s queue (i.e.,

be offloaded to a cloudlet having the corresponding type wicluding the waiting delay and service time):

VMs. Thus, when an application VM in a cloudlet receives 1

an application request, it quickly retrieves the required |
data from other brokers under the direction of RD and then

processes the request to get the result.

TABLE |
LIST OF SYMBOLS

Symbol  Definition
z Set of distributed cloudlets.
J Set of UEs.
K Set of different loT applications.
R Set of BSs.
Tijk Binary indicator of UEj’s App k being assigned to cloudlét
Yrj Binary indicator of UEj being covered by BS.
K; Set of Apps run by UE.
Hik Computing capacity of typé VM in cloudlet <.
Tri E2E delay between B8 and cloudlet:.
Ajk Average request arrival rate of tyfeApp in UE j.
ik Average request arrival rate of tygeVM in cloudlet .
g Average computing size of a tygerequest.
di; Network delay between UE and cloudlet:.
Dy Maximum allowed computing delay of Applicatiof.
Z Set of Apps of all UEs.
7z Index of the UE where App € Z is located.
di Network delay between App and cloudlet:.

tik = NViel kek. 2
g Wik /le — D TijeAjk @)

JjeJ

B. Network Delay

When a request of a UE is sent to a cloudlet, the request
goes through its BS and the SDN-based cellular core network.
Therefore, the E2E delay between a UE’s App and its cloudlet
consists of two parts: first, the E2E delay between the UE and
its associated BS, i.e., the wireless delay; second, the E2E
delay between its BS and its assigned cloudlet. However, the
cloudlet selection for a UE does not affect its wireless yela
which only depends on the UE’s service plan and the mobile
provider's bandwidth allocation strategy [19]. Thus, weatju
consider the E2E delay between the BS and cloudlet in this
paper. Denote;,; as the E2E delay between BSand cloudlet
i, and Y as a given indicator matrix to reflect the UE-BS
association at the beginning of each time slot, in whjche
Y represents whether UE is covered by BS- or not. Note
that the value ofr,; can be measured and recorded by the
SDN controller [20], [21]. Thus, the network delay between
UE j and cloudleti € Z can be expressed as

dij = Z YriTri, Vi€ L, 5 € J. (3)
reRrR

IV. PROBLEM FORMULATION

Note that each UE may have several types of 0T Apps. As

each App in a UE is assigned to only one cloudlet individyal
the size of the set of Apps in the network can be derived
|Z] = > |K;], in which the variables are defined in the lis

Jje€T .
of symbols shown in Table I.

A. Computing Delay

Assume that typek requests of UEj are generated ac-APP of the UE should be allocated to alternative cloudlets to
cording to a Poisson Process with the average arrival ragsluce the response time. On the other hand, offloading an
Ajx. Thus, the workload of typé VM in cloudlet i can be APP'S requests from its closest cloudlet to other cloudlets
expressed as:

ik = Z TijhkNjk s (1)
jes

The response time of a UE’s App consists of both the com-

oth of them should be taken into account. On one hand, owing
to the dynamic distribution of workloads among different
cloudlets, the overloaded cloudlets incur remarkably &igh
computing delay than other lightly loaded cloudlets. Thifis,
the closest cloudlet of a UE is overloaded, the requestsaf ea

%Jting delay and network delay. In the workload allocation,

increase the network delay. The main goal of this paper is to
minimize the response time of all IoT Apps in the network
by assigning the requests of each App among cloudlets and



flexibly allocating the computing resource of each cloudl 1 . .
. . ik | dis + —————— | < b is always sati-
to different types of VMs to serve the assigned Apps. Thus ng Tigh | dij + m/lk—jezj TijrAje | = Y

we can formulate the application aware workload allocatidied for all solutions of¥ and can be relaxed. To satisfy Con-

problem in each time slot as follows: straint (8) (i.e..ui/lk — > ijsAjr > 0,Vi € T '), we need
jed
to guarantee thaf}" Ajpzije = > Nje@oje = 3 2 Ajke
Pl: min Y 3N | dij + . Consequently, the decision problem can be transformed into
: ijk | Qi u ' ISI !
Tijk Hik " “ ﬂik/lk - Z xijk)‘jk d Y ¥

i€T jET keK; jeq a partition problem, i.e., whether the UEs can be partitione
(4) into two sets to make the average request arrival rates of the

two sets the same. Hence, the partition problem is reducible

S't'z pik < Ci, Vi € T, ®) to the decision problem of P1. As the partition problem is a
hex well-known NP-complete problem, the decision problem of P1
D gk =1,V € J,Vk € K, (6) is also NP-complete, and thus P1 is NP-hard.
€L |

1
I”k(uik/lk - 2;7 xijk/\jk) < Tk Dk, ) V. THE AREA ALGORITHM
. . ’ Since P1 is NP-hard, which is challenging to achieve the
Viel,vj€ T, vk ek, optimal solution, we propose the heuristic AREA algorithm
ik /U — Z TijrAjk > 0,Vi € I,Vk € K, (8) to effectively allocate different types of workloads among
jeg cloudlets as well as flexibly allocate computing resources
zijk € {0,1},Vi e Z,Vj € J,Vk € K;, (9) for different VMs in each cloudlet, with low computational
pir € 0,Cy],Vi € T,k € K. (10) complexity. Note that the major challenge of solving P1 &tth

wi depends on the App assignment;. To solve P1 more
Here, C; is the computing capacity of cloudlet and efficiently, we decompo_se the original problem into two sub-

Dy is the maximum allowed computing delay of applicatioRfoPlems: the App assignment sub-problem and the resource
k. Constraint (5) indicates that the aggregated computifocation sub-problem. We will first assign different tgpaf
resources of all VMs in a cloudlet should be no larger th#APPS among cloudlets (i.e., determinimg;;), and then try to
the cloudlet's computing capacity. Constraint (6) ensuneg °Ptimally allocate the computing resources to differenety
each App of a UE is assigned to only one cloudlet. Constrafflk VMs in each cloudlet (i.e.;z) based on the givem; .
(7) imposes the computing delay for each UE’s typ&PP
to meet the QoS requirement of the application in terms & App Assignment

the maximum allowed computing dela®,. Constraint (8)  When assigning Apps’ workloads among cloudlets, the
imposes the average service rate of iMn a cloudlet to be priority of assigning each App to its closest cloudlets stiou
smaller than the VM's average task arrival rate, in order ige considered to reduce the total network delay. Therefore,
keep the queue of the VM stable. we will initialize the App assignment by allocating all Apps
Lemma 1. The problem of application aware workload allo-10 their closest cloudlets; then, the algorithm will itévaly
cation (i.e., P1) is NP-hard. select a St_mable App wnh the highest response t_|me gnd
reallocate it to an alternative cloudlet which minimizes it

Proof: Suppose there is only one loT application; theesponse time, until each App cannot find a better cloudlet.
capacity of VM k equals to the capacity of a cloudlet, i.e., Given the capacities of cloudlets, the initial App assignine
wir = C;. Meanwhile, we assume that the computing deldg determined by the network delay between UEs that host
thresholdD,, = +occ. Therefore, both Constraint (5) and (7)Apps and cloudlets, and thus can be obtained by solving the
can be relaxed from P1. Then, to prove that P1 is a NP-hdadlowing problem:

problem, we can demonstrate that its corresponding decisio .
problem is NP-complete. The decision problem of P1 can be P2: rznifz Z > ki (11)
expressed as: given a positive value ipfis it possible to i€L jeT kek;
find a feasible solutionX = {z;;x|i € Z,j € J} such that s.t.z zir = 1,Vj € J,Vk € Kj, (12)
ieT
1 .

%jgyxijk dij + W < b, and Constraints Z Z Mlearoge < CoVi € T (13)
(6), (8) and (9) are satisfied? JET kEK;

In order to prove that the above decision problem zijr €{0,1},VieZVje J,Vke K. (14)

is_NP-complete, o_nIy two cloudl_ets are con5|d_ered andAs each App of a UE is assigned among cloudlets indi-
the average service rate of either cloudlet is set to

. B ) _ vidually, we denoteZ; as the set of Apps of all UEs which
be the same, ie./ly = o/l = ngj Ak + e waiting to be assigned among cloudlets, dhdas the
where ¢ is a very small positive value, i.e < set of cloudlets which have excess computing resources. At

€,
%min{/\jku € J}. Moreover, assume thét— +oo. Thus, the beginning, all UES’ Apps have not be assigned and are



included in 2, (i.e., Z, = Z), while all cloudlets are empty Algorithm 1

without any assigned Apps, i.e., all cloudlets are incluged Input: The UE-BS association vecty = {y,,|r €
7. Denoted;. as the network delay between an Apfi.e., R, j € Z}. The matrix of E2E delay between BSs and
z € Z;) and cloudlet, j, as the UE where App is located. cloudletsT = {r.;|r € R, i € Z}. The vector of the average

Hence, we havel,;, = d;; ,Vi € 7,Vz € Z;. task arrival rate for UES’ Appsl = {\;x|j € J,j € K, }.
In the initialization, for Appz, the optimal cloudlet* € 7, Output: The initial App assignment matrix, i.ed =
is the one that incurs the lowest network delay, i#.,= {zjrli€Z.je T, keK;}.

argmin{d;.|i € 7, }; the suboptimal cloudlet is the one that 1. SetZ, — Z andZ, = Z based on their definitions:
incurs the second lowest network delay among the cloudlets vz € Z,, calculateAd, based on Eq. (15);
in 7y, i.e.i = argmiin{dizﬁ e {Z:\i*}}. 3: while 2, # () do
As shown in P2, the capacity of each cloudlet is limited, and#: ~ Find App 2, wherez = arg max{Ad. |z € Z1};
thus it is impossible to allocate all Apps to their corresfiog 5. Allocate App = to its optirznal cloudleti* (i.e., i* =
optimal cloudlets. The basic idea of the initialization & t argmin{d,;|i € 7, });
it/eratively select a suitable App, whose suboptimal cletd!l . | 4 xz o= 1
i incurs a significant network delay degradation as compared Updatjé tzhe App Se,, i.e., 2, = 2\~ .
to the optimal cloudlet”, and then allocate the App into its . it oudleti* is full then
optimal cloudlet. It is easy to observe that the network ylela 9: Removei* from 7y, i.e., 7y = I, \i*;
degradation incurred by the suboptimal cloudlet determing,,. Vz € Z,, recalcuateAd, based on Eq. (15):
the priority of assigning App: to its optimal cloudlet. For ;. onqif
example, if Appz’s suboptimal cloudlet B leads to a remark-;,. anq while
ably higher delay than its optimal cloudlet A as compared to,. o\, 1.
other Apps, assigning App to the suboptimal cloudlet will
significantly impact the total network delay of all Apps. In

this case, App: is given a higher priority than other Apps toresponse time, and reallocates it to an alternative cloudte
be assigned into its optimal cloudlet A. the beginning, all Apps are unmarked and we defieas
DenoteAd. as the network delay degradation by allocatinghe set of unmarked Apps. Then, in each iteration, the AREA
App = from the optimal cloudlet” to the suboptimal cloudlet aigorithm finds the App with the highest response time among
i, e, all unsigned Apps, and searches for a new cloudlet for the
Ad, =d;, —di,,Vz € 2. (15) App to minimize its response time. Note that in each itergtio
the computing resource for each application in a cloudlet is
Thus, as shown in Algorithm 1, in each iteration of th@etermined by the percentage of the application’s workioad
initialization, the algorithm will select and allocate atable the total workloads in the cloudlet, and thus we can deriee th
App z, which has the highest network delay degradatiqgsponse time of Apps in different cloudlets. If a new cletdl
(Le., z = argmax{Ad.[z € Z}), to its optimal cloudlet. is found, AREA proceeds to the next iteration. Otherwise, th
Afterwards, if the workload of a cloudlet exceeds its capaci algorithm marks the App (i.e., removing the App frag) and
the cloudlet is removed from, . Note that oncd, is updated, continues to the next iteration. The AREA algorithm repeats
the algorithm has to recalculate, : and Ad. for each App the iterations untilz, = 0.
z € Z;. The above procedure is repeated until all Apps are\ye now analyze the computational complexity of Algorithm
assigned among cloudlets, i.€%; = 0. 2. In each iteration, the algorithm checks cloudlets for @pA

Lemma 2. Algorithm 1 terminates after a finite number of2Nd the number of related cloudlets can | in the worst
iterations, yielding a feasible 10T App assignment. case. Therefore, the complexity of each iterationDi§Z|).
Then, we analyze the required number of iterations for the

Proof: Let { = |Z;| = N initially, i.e., £ > 0. Then, algorithm to optimally place all Apps among the cloudlets.
for each iteration, since the algorithm chooses a suitalple AEach App has a choice of up 18] cloudlets. In each cloudlet,
z, wherez = argmax{Ad.[z € Z;}, and allocates it to its the App can have at mosg| different response times owing
optimal cloudleti* (ie., i* = argmin{di.|i € 7;}), ¢ is to the different number of Apps allocated to the cloudlet. As
a result, the number of improvements for the App is limited
by |Z||Z|. Thus, considering the number of Apps|&|, the
total number of iterations in the worst case|&|Z|?. So,
the computational complexity of Algorithm 2 ©&(|Z|?| Z|?).

the worst case; as they repeat f@i times, the correspondingWhen we fix the number of cloudlet|, the complexity of
! y Algorithm 2 is polynomial with respect to the number of the

complexity isO(|Z|(|Z] + |Z])). Meanwhile, as Steps 9—10A
repeat for at mostZ| times, the corresponding complexity is pps.
O((|Z| + 1)|Z]). Aggregating all these steps, the complexity
of Algorithm 1 become®)(|Z|(|Z]| + |Z])). B. Resource Allocation

After the initialization, the AREA algorithm, as shown in After all UES’ Apps are assigned to different cloudlets, the
Algorithm 2, iteratively selects a suitable App with the gt problem can be transformed into a resource allocation probl

decremented by one. As a resujltwilll become zero after a
finite number of iterations, and this = 0.

As shown in Algorithm 1, the complexity of Step 2 [ig|.
After Step 2, the complexity of Steps 4-5@(|Z| + |Z|) in



Algorithm 2
1: Initialize App assignment by Algorithm 1 and obtak

the other hand, the latency-based strategy is to minimize
the network delay between Apps and cloudlets by assigning

2: SetZ, based on its definition, i.eZ> = {z|z € Z} Apps to suitable cloudlets. In the above two strategies, the
3: while 25 # () do computing resource of each cloudlet is allocated to differe
4:  Find App z € Z, with the highest response time; types of VMs according to the percentage of different types
5. Obtain the current cloudletof App z; of workloads in the cloudlet.
6: Find the suitable cloudlei* for App z, i.e., i* = The simulation environment consists of 25 BSs within an
, L area of 25m?, where the coverage of each BS i&h? and
argmin | dij + Rk JTe= 3= Tigk Ak each BS is attached with a cloudlet. Meanwhile, 1000 UEs
7. if i* £ i then ° are uniformly distributed among the BSs and assumed to be
a: Assign App~z to the new cloudlef* and updateY; associated with their closest BSs. There are 10 types of loT
9 else applications in the cloudlet network, and we randomly cleoos
10: Mark App z and letZ, = 2,5\ z; 3 types of Apps for each UE (i.e., the total number of Apps
11:  end if in the network is 3000). The length of each time slot is set
12: end while as 5 mins. As each App’s task arrival rate follows a Poisson
13: return X, distribution, we randomly choose the average task arraa r

of each App between 0 and,,... As the computing sizes of
applicationk’s requests follow an exponential distribution with
the average value df,, the average size of different types of
requests is chosen according to the Normal distributiof wit
an average of0° CPU cycles and a variance 2&10° cycles,
i.e., N(10% 2 10°). Moreover, we assume the network delay
between a BS and a cloudlet is a linear function of the digtanc
between them [4], [23], i.e5,; = a x d + 3, whered is the
distance between B8 and cloudleti, and o and 3 are set
as 5 and 22.3, respectively. In addition, the maximum altbwe
Lemma 3. When eache;;; is determined,P3 is a convex computing delay for different types of applications is atros
optimization problem. according toN (60, 20) (ms).

for each cloudlet as follows:

1
P3: mm T; di;i + 16
Z Z G Wik /I — D ZijpNjk (16)

" jeT kek jer
s.t. Constraints(5), (7), (8), (10).

We can then prove the following lemma:

Proof: For brevity, let f =
Z Z Lijk (dz_] + —H Py Z T and we use g120 -Respoﬁse time
jeTJ kek T = I Computing delay
1y 1o substitueu;; in cIoudIetz Thus, we have g 100 |"INetwork delay
0% f > 2wijrly, (Nk/lk -2 Iijk)‘jk)_?)vifk =k, S 80|
T = JeJ jeg ©
kO 0, otherwise. w
(17) & 60
Since (ux/le — > xijrAjr) > 0, the Hessian matrix E‘
jeT d.’ 40 -
H = 8%6“ - of f is a positive definite matrix. As a result e
function f is convex. Moreover, because Constraints (5), (7 & 20"
(8), (10) are linear, the optimization probleR8 is a convex §
optimization problem. < )
u AREA DBC Latency-based

As P3 is a convex problem, we can derive the optime
solution of P3 by solving the KKT condition ofP3 [22].
Therefore, the computing resource of each cloudlet is opfig. 2. Average performance of an App for different alganit(\az = 1.5,
mally allocated to different VMs to minimize the responsgl = 2% 10%).
time. Consequently, the suboptimal solution of P1 is acdev

Different Algorithms

Fig. 2 shows the average response time per App, in which

AREA achieves lower response time as compared to the other
VI. RESULTS AND DISCUSSION two strategies. Specifically, the latency-based stratégsyes

In this section, we set up simulations of the proposeaassigns Apps’ requests to their closest cloudlets without ¢
scheme to evaluate its performance. We select two ottsédering the workload in each cloudlet; DBC assigns Apps
workload allocation strategies for comparison: the dgnsitto the closest cloudlets until the workload of each cloudlet
based clustering (DBC) strategy [17] and the latency-basexiceeds the average workload among cloudlets, without con-
strategy [18]. The basic idea of DBC is to offload UEssidering the diversity of applications in each cloudletush
workloads to suitable cloudlets until the workloads of thboth DBC and the latency-based strategy lead to a lower
cloudlets exceed the average workload among cloudlets. @etwork delay and a higher computing delay than AREA.



AREA considers both the network delay of each App ar
the different types of workloads for each cloudlet in th
workload allocation. To reduce the computing delay of a
Apps, it tends to assign Apps with small computing size
to the lightly loaded cloudlets. Furthermore, it also ofatiiy

allocates computing resources for different types of VM
based on their corresponding workloads, and thus signtfican
reduces the average response time per App. Meanwhile,
shown in Fig. 3, the average response time for differentgyp
of applications in AREA is significantly smaller than thode o

250

[

>

=)
T

ot

n

=]
T

[y

=

=)
T

-~ AREA
—=-DBC |
=/~ Latency-based

DBC and the latency-based strategy.

200

I AREA
Il peEC
[MLatency-based| |

150 |

100 |

50

Average Response Time (ms)

12 3 4 5 6 7 8 9 10
Different Type of Applications
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compared to those of the other two algorithms. When the
workloads of Apps are heavy, AREA can always offload the
App with the highest response time to an alternative cldudle
and thus iteratively minimize the maximum response time
among Apps. Meanwhile, AREA also optimally allocates the
computing resources of each cloudlet to different types of
applications based on their workloads and their corresipgnd
computing sizes, and thus further reduces the computiraydel

Moreover, we investigate the impact of cloudlets’ capasiti
on the average response time. Fig. 5 shows that the response
time of the three algorithms when the capacities of closdlet
increase. It can be seen that AREA achieves much lower
average response time when the capacities of cloudletgehan
When the capacities of cloudlets are small, since DBC and
the latency-based algorithm do not balance the workloads
among cloudlets based on different types of applicatioss, (i
considering all task requests are homogeneous), AREA leads
to a remarkably lower computing delay, and thus incurs lower
response time. However, when the capacities of cloudlets ar
very high, the computing delay is no longer a dominating
factor for the average response time, and thus the average
response time of DBS and the latency-based algorithm get
close to that of AREA.

We also analyze the impact of the number of UEs on the
average response time of Apps. As shown in Fig. 6, the average
response time of AREA increases much slower than those of
the other two algorithms. Since AREA considers the diffeeen
between applications, it tends to assign Apps with smediek t

We further analyze how the workloads of Apps affect thsizes to lightly loaded cloudlets and allocates more comgut
performance of the three algorithms. Note that the value fsources to them, thus minimizing the average responge tim

Amaz reflects the workloads of Apps, i.e., increasiing ..

of all UES’ Apps. Therefore, as the number of UEs increases

increases workloads of Apps. As shown in Fig. 4, with the&here the computing delay is the dominating factor in the
increase of\,..., the average response time of the threaverage response time, AREA is able to achieve a lower
algorithms increases gradually. However, the averagersgp computing delay than the other two algorithms, thus imprgvi
time of AREA is much lower and increases more slowly athe performance of the average response time.
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VII. CONCLUSION 23]

In this paper, we have proposed the Application awaRE
workload Allocation (AREA) scheme for edge computing
based IoT. AREA assigns different types of workloads in
each UE to their corresponding VMs in each cloudlet and
optimally allocates the computing resources of each cktudl
to its application based VMs. We have formulated the problem
of minimizing the average response time of Apps and design
the AREA algorithm to achieve a suboptimal solution. Simu

A. Yousefpour, G. Ishigaki, and J. P. Jue, “Fog commutifowards
minimizing delay in the Internet of Things,” iB017 IEEE Intl. Conf.
on Edge Computing (EDGEHonolulu, HI, June 2017, pp. 17-24.

H. Zhanget al, “Computing resource allocation in three-tier iot fog
networks: A joint optimization approach combining stableefj game
and matching,”IEEE Inet. of Things J.vol. 4, no. 5, pp. 1204-1215,
Oct 2017.

Q. Fan and N. Ansari, “Workload allocation
cloudlet networks,” IEEE  Communications
DOI:10.1109/LCOMM.2018.2801866, early access.
M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placemand user to
cloudlet allocation in wireless metropolitan area netvggrkEEE Trans.

on Cloud Computingvol. 5, no. 4, pp. 725-737, Oct 2017.

L. Yang et al,, “Cost aware service placement and load dispatching in
mobile cloud systems|EEE Trans. on Computersol. 65, no. 5, pp.
1440-1452, 2016.

Q. Fan and N. Ansari, “Green energy aware user assogiati het-
erogeneous networks,” iRroc. of IEEE Wireless Communications and
Networking Conference (WCNC’201@&)oha, Qatar, Apr. 2016.

N. L. Van Adrichem, C. Doerr, and F. A. Kuipers, “Openmemn:
Network monitoring in openflow software-defined networkis,”2014
IEEE Network Ops. and Mgmt. SynKrakow, Poland, May 2014.

C. Yu et al, “Software-defined latency monitoring in data center
networks,” inIntl. Conf. on Passive & Active Net. Measuremevil.
8995, Mar. 2015, pp. 360-372.

S. Boyd and L. VandenbergheZonvex optimization
university press, 2009.

R. Landaet al, “The large-scale geography of internet round trip times,”
in IFIP Networking ConferengeBrooklyn, NY, May 2013, pp. 1-9.

in  hierarcli
Letters 2018,

Cambridge

Qiang Fan (S'15) received his M.S. degree in
Electrical Engineering from Yunnan University of
Nationalities, China, in 2013. He is currently a re-

lation results have verified the performance of AREA.

REFERENCES
(1]

X. Guo, L. Chu, and X. Sun, “Accurate localization of mple sources
using semidefinite programming based on incomplete rangeixia
IEEE Sensors Journalol. 16, no. 13, pp. 5319-5324, July 2016.
L. Wang and R. Ranjan, “Processing distributed interiethings data
in clouds,”IEEE Cloud Computingvol. 2, no. 1, pp. 76-80, 2015.

N. Ansari and X. Sun, “Mobile edge computing empowersinget of

(2]
(31
(4]

things,” IEICE Trans. on Commvol. E101-B, no. 3, pp. 604-619, 2018.

X. Sun and N. Ansari, “Latency aware workload offloading the
cloudlet network,”IEEE Communications Lettersvol. 21, no. 7, pp.
1481-1484, July 2017.

Y. Wang et al,, “Improving utilization through dynamic VM resource
allocation in hybrid cloud environment,” i20th IEEE Intl. Conf.
Parallel & Distributed Systems (ICPADS 2014014, pp. 241-248.

L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud aitelsture for

(5]

(6]

mobile computing,” in35th Annual IEEE Intl. Conf. on Comp. Comm.

(INFOCOM 2016) San Francisco, CA, April 2016, pp. 1-9.

Q. Fan, N. Ansari, and X. Sun, “Energy driven avatar miigrain green
cloudlet networks,”IEEE Communications Lettersol. 21, no. 7, pp.
1601-1604, 2017.

Q. Fan and N. Ansari, “Cost aware cloudlet placement fioy thata

(7]

(8]

search assistant and a Ph.D. candidate in the Depart-
ment of Electrical and Computer Engineering, New
Jersey Institute of Technology (NJIT), Newark, New
Jersey, USA. His research interests include mobile
cellular networks, mobile cloud computing, Internet
of things, and free space optical communications.

Nirwan Ansari (S'78-M’'83-SM’'94-F'09) received
his B.S.E.E. degree from NJIT, M.S.E.E. degree
from the University of Michigan, Ann Arbor,
and Ph.D. degree from Purdue University, West
Lafayette. He is Distinguished Professor of Electri-
cal and Computer Engineering at NJIT. He has also
been a visiting (chair) professor at several universi-
ties. He recently authored Green Mobile Networks:
A Networking Perspective (Wiley-IEEE, 2017) with
T. Han, and co-authored two other books. He has
also (co-)authored more than 500 technical publi-

processing at the edge,” i8017 IEEE International Conference on cations, over 200 in widely cited journals/magazines. He gaest-edited a

Communications (ICG)Paris, France, May 2017, pp. 1-6.

Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo, “Efficient algthims
for capacitated cloudlet placementdEEE Trans. on Parallel and
Distributed Systemsol. 27, no. 10, pp. 2866—2880, 2016.

M. Chiang and T. Zhang, “Fog and loT: An overview of reséa
opportunities,”IEEE Inet. of Things Jvol. 3, no. 6, pp. 854-864, 2016.
X. Sun and N. Ansari, “EdgeloT: Mobile edge computing tfee internet
of things,” IEEE Comm. Mag.vol. 54, no. 12, pp. 22—-29, 2016.

M. Jutila, “An adaptive edge router enabling internéttliings,” IEEE
Internet of Things Journalvol. 3, no. 6, pp. 1061-1069, 2016.

R. Denget al, “Optimal workload allocation in fog-cloud computing
toward balanced delay and power consumptiti/BEE Internet of Things
Journal vol. 3, no. 6, pp. 1171-1181, Dec 2016.

El

[20]
[11]
[12]

(23]

number of special issues covering various emerging topic®mmunications
and networking. He has served on the editorial/advisoryrdb@d over ten
journals. His current research focuses on green commignisaand network-
ing, cloud computing, and various aspects of broadbandanksy Some of
his recognitions include several Excellence in Teachingails, a few best
paper awards, the NCE Excellence in Research Award, the GorASISN

TC Technical Recognition Award, the IEEE TCGCC Distingeidhlrechnical
Achievement Recognition Award, the NJ Inventors Hall of lealmventor of
the Year Award, the Thomas Alva Edison Patent Award, Purdo®dusity

Outstanding Electrical and Computer Engineer Award, argigdation as a
COMSOC Distinguished Lecturer. He has also been granted.S6 patents.



