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Abstract—Empowered by computing resources at the network
edge, data sensed from IoT devices can be processed and stored
in their nearby cloudlets to reduce the traffic load in the
core network, while various IoT applications can be run in
cloudlets to reduce the response time between IoT users (e.g., user
equipment in mobile networks) and cloudlets. Considering the
spatial and temporal dynamics of each application’s workloads
among cloudlets, the workload allocation among cloudlets for
each IoT application affects the response time of the application’s
requests. While assigning IoT users’ requests to their nearby
cloudlets can minimize the network delay, the computing delay
of a type of requests may be unbearable if the corresponding
virtual machine of the application in a cloudlet is overloaded. To
solve this problem, we design an Application awaRE workload
Allocation (AREA) scheme for edge computing based IoT to
minimize the response time of IoT application requests by decid-
ing the destination cloudlets for each IoT user’s differenttypes
of requests and the amount of computing resources allocated
for each application in each cloudlet. In this scheme, both the
network delay and computing delay are taken into account, i.e.,
IoT users’ requests are more likely assigned to closer and lightly
loaded cloudlets. Meanwhile, the scheme will dynamically adjust
computing resources of different applications in each cloudlet
based on their workloads, thus reducing the computing delayof
all requests in the cloudlet. The performance of the proposed
scheme has been validated by extensive simulations.

Index Terms—Cloudlet, Internet of Things (IoT), workload
allocation, edge computing, resource allocation.

I. I NTRODUCTION

I N the past few years, a tremendous number of smart devices
and objects, such as smart phones, wearable devices, indus-

trial and utility components, are equipped with sensors to sense
the real-time physical information from the environment [1].
Hence, Internet of Things (IoT) is introduced, where various
smart devices are connected with each other via the internet
and empowered with data analytics. Various IoT applications,
such as smart transportation, smart health, smart city and
smart home have been widely studied to improve our daily
life. Owing to the high volume and fast velocity of data
streams generated by IoT devices, the cloud that can provision
flexible and efficient computing resources is employed as a
smart ”brain” to process and store the big data generated
from distributed IoT devices [2]. However, as the data streams
generated from IoT devices are transmitted to the remote cloud

Q. Fan and N. Ansari are with Advanced Networking Lab., Department
of Electrical and Computer Engineering, New Jersey Institute of Technology,
Newark, NJ, 07102 USA (Email:{qf4, nirwan.ansari}@njit.edu). This work
was supported in part by the National Science Foundation (CNS-1647170).

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

via Internet, the transferred data may consume a huge amount
of bandwidth and energy of the core network. On the other
hand, since the remote cloud is far from IoT users which
send application requests and await the results generated by
the data processing in the remote cloud, the response time of
the requests may be too long, especially unbearable for delay
sensitive IoT applications. Therefore, cloudlets, which bring
computing resources close to IoT devices and IoT users, can
be employed to alleviate the traffic load in the core network
and minimize the response time for IoT users [3], [4].

Although provisioning cloudlets may reduce the network
delay, simply allocating all IoT users’ workloads to the closest
cloudlets is not enough to reduce the response time, which
consists of both the network delay and computing delay. Note
that we consider UE equipments (UEs) in mobile networks
as IoT users, each of which can run several types of IoT
Apps. Owing to the UE mobility in the network, the workload
distribution exhibits spatial and temporal dynamics among
cloudlets. When the workload of a cloudlet is too heavy, the
computing resources available for an application is limited,
and thus the response time of the corresponding requests is
degraded correspondingly. In this case, although the cloudlet
in the proximity yields the minimum network delay, the bulk
of the response time is attributed to the computing delay. Thus,
the workload allocation of different types of requests greatly
impacts the response time of UEs’ requests. On the other hand,
for each cloudlet, the resource allocation for different types
of applications also affects the computing delay of different
types of requests. Since the computing size per request for
different applications are different, the computing capacity of
a cloudlet should be optimally allocated for different types
of applications in order to reduce the computing delay of all
Apps of UEs.

To solve the above problem, we propose an Application
awaRE workload Allocation (AREA) scheme for edge com-
puting based IoT to minimize the total response time of UEs’
Apps, where both the network delay and computing delay are
taken into account. Below are major contributions of the paper.
• We formulate the problem of minimizing the average re-

sponse time of different types of IoT Apps by offloading
UEs’ different types of requests among distributed cloudlets
and allocating optimal computing resources for different
applications in each cloudlet. The response time of each
type of requests consists of both the network delay and
computing delay. To reduce the network delay, different
types of requests of a UE are favorably assigned to closer
cloudlets. On the other hand, each application is assumed to
be handled by a dedicated virtual machine in each cloudlet,
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the capacity of which can be dynamically allocated in each
time slot [5]; when a cloudlet is overloaded, the computing
resources available for each application are not enough to
handle the type of requests, and thus the computing delay
becomes the dominating factor of the response time. Hence,
different types of requests of a UE should be assigned to
other lightly loaded cloudlets to reduce their computing
delay.

• Since different applications require different QoS constraints
in terms of the maximum allowed computing delay, we
will allocate different types of requests of each UE to
suitable cloudlets to guarantee that their corresponding QoS
constraints are satisfied.

• To solve the application aware workload allocation problem
in each time slot, we design the novel AREA algorithm that
decomposes the problem into two sub-problems and solve
them sequentially. First, we design a heuristic algorithm to
allocate each UE’s different types of requests to suitable
cloudlets according to the workloads of cloudlets and the
network delays between the UE and cloudlets. Afterwards,
when different types of requests of each UE have been
assigned among cloudlets, the above problem becomes a
resource allocation problem in each cloudlet that has been
proved to be a convex problem, and thus we can optimally
allocate the computing resources of each cloudlet to differ-
ent types of applications by solving the convex problem.

The remainder of this paper is organized as follows. In
Section II, we briefly review related works. In Section III,
we illustrate the cloudlet network architecture and describe
the system model. In Section IV, we formulate and analyze
the application aware workload allocation problem. In Section
V, the AREA algorithm is proposed to obtain the suboptimal
solution of the application aware workload allocation problem.
Section VI shows the simulation results, and concluding
remarks are presented in Section VII.

II. RELATED WORKS

Mobile edge computing, by moving computing resources
close to UEs, has been proposed to improve UE experience for
mobile applications. Tonget al.[6] proposed a workload place-
ment algorithm in a hierarchical edge cloud network, which
selects the cloudlet and allocates the computing resourcesfor
each task to minimize the response time for all offloaded
tasks. Fanet al. [7] proposed to migrate UEs’ virtual machines
(VMs) among distributed cloudlets to reduce the brown energy
consumption of cloudlets by considering the green energy
generation among cloudlets and energy consumption of VM
migrations. Some works [8], [9] look into placing a certain
number of cloudlets among a given set of available sites and
then assigning workloads to the cloudlets.

Owing to the proximity of edge computing resources to
IoT devices and IoT users, some studies have focused on
integrating IoT with mobile edge computing. Chianget al.
[10] summarized the opportunities and challenges of edge
computing in the networking context of IoT and advocated
that edge computing can fill the technology gaps in IoT.
Sun and Ansari [11] proposed the IoT architecture (EdgeIoT)

to handle the data streams from IoT devices at the mobile
edge. Moreover, Jutila [12] proposed adaptive edge computing
solutions for IoT networking in order to optimize traffic
flows and network resources. Denget al. [13] proposed an
algorithm to balance the power consumption and service delay
by allocating workloads among fog nodes and the cloud.
Yousefpouret al. [14] proposed a delay aware policy for
the IoT-fog-cloud network to minimize the service delay for
IoT applications. Zhanget al. [15] proposed an edge IoT
framework to allocate the limited computing resources of
fog nodes to IoT users to achieve the optimal and stable
performance in the IoT based network. Fanet al. [16] proposed
a workload allocation scheme, referred to as WALL, in a
hierarchical edge network to optimize the response time of task
requests. Jiaet al. [17] proposed to place a certain number of
cloudlets and allocate workloads among cloudlets to minimize
the response time. Yanget al. [18] studied the joint optimiza-
tion of application service placement and load dispatching
among cloudlets where all users’ workloads are the same, and
then designed a set of efficient algorithms to achieve various
trade-offs among the average latency of users’ requests and
the cost of service providers. As we know, the computing size
per request for different applications is heterogeneous while
their QoS requirements are different. However, all the above
works assume that application requests are homogeneous and
then allocate the workloads among cloudlets to minimize the
response time of requests. Considering the diverse computing
sizes and QoS requirements of different types of requests, we
formulate the problem of minimizing the average response
time of different types of Apps by assigning UEs’ different
types of Apps to distributed cloudlets and allocating optimal
computing resources for different applications in each cloudlet.
The problem is formulated such that the QoS constraint of each
application in terms of the maximum allowable computing
delay is satisfied individually.

III. SYSTEM MODEL

Fig. 1. Cloudlet network architecture.

A distributed cloudlet network architecture is illustrated
in Fig. 1, where cloudlets are co-located with some base
stations (BSs). The software defined network (SDN), which
consists of a SDN controller and open flow switches, is
employed as the cellular core network, thus enabling flexible
routing and communications resource among BSs. All BSs are
equipped with two interfaces (i.e., NB-IoT and LTE) to offer
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the seamless coverage for both IoT devices and IoT users
(UEs). Thus, the sensed data of IoT devices can be stored
at their closest cloudlets and the remote cloud, which act as
brokers. Meanwhile, a Resource Directory (RD) is located at
the SDN controller to help each IoT application discover the
location of its required IoT data. On the other hand, each
UE can access different cloudlets through its BS and the
SDN based cellular core network. Within one cloudlet, we
assume that each virtual machine (VM) only processes the
workloads of one application, i.e., each application is mapped
to a dedicated VM. Note that each IoT application has only one
VM in a cloudlet. Considering the diversity of applications, the
computing capacities of VMs are heterogeneous in a cloudlet
and can be adjusted dynamically [5]. We define an IoT App
as the software program running on a UE that requests the
specific type of application service. As a UE may run multiple
IoT Apps, each type of application requests of the UE can
be offloaded to a cloudlet having the corresponding type of
VMs. Thus, when an application VM in a cloudlet receives
an application request, it quickly retrieves the required IoT
data from other brokers under the direction of RD and then
processes the request to get the result.

TABLE I
L IST OF SYMBOLS

Symbol Definition

I Set of distributed cloudlets.

J Set of UEs.

K Set of different IoT applications.

R Set of BSs.

xijk Binary indicator of UEj ’s App k being assigned to cloudleti.

yrj Binary indicator of UEj being covered by BSr.

Kj Set of Apps run by UEj.

µik Computing capacity of typek VM in cloudlet i.

τri E2E delay between BSr and cloudleti.

λjk Average request arrival rate of type-k App in UE j.

λik Average request arrival rate of typek VM in cloudlet i.

lk Average computing size of a type-k request.

dij Network delay between UEj and cloudleti.

Dk Maximum allowed computing delay of Applicationk.

Z Set of Apps of all UEs.

jz Index of the UE where Appz ∈ Z is located.

diz Network delay between Appz and cloudleti.

Note that each UE may have several types of IoT Apps. As
each App in a UE is assigned to only one cloudlet individually,
the size of the set of Apps in the network can be derived as:
|Z| =

∑

j∈J

|Kj |, in which the variables are defined in the list

of symbols shown in Table I.

A. Computing Delay

Assume that typek requests of UEj are generated ac-
cording to a Poisson Process with the average arrival rate
λjk. Thus, the workload of typek VM in cloudlet i can be
expressed as:

λik =
∑

j∈J

xijkλjk , (1)

and it also follows a Poisson Process. On the other hand, the
computing capacity (in terms of CPU cycles per second) of
type k VM in cloudlet i (i.e., µik) is fixed in each time slot;
the computing size of a typek application request (in terms of
the CPU cycles) follows an exponential distribution with the
average value oflk. Thus, we can derive the service time for
type k requests running in a cloudlet’s VM aslk/µik, which
also follows an exponential distribution. Since the arrival rate
of each VM of a cloudlet follows a Poisson Process while the
corresponding service time follows an exponential distribution,
each VM of a cloudlet can form an M/M/1 queuing model
to process its corresponding application requests. Note that
to keep the queue stable, the average arrival rate of the VM
(i.e., λik) should be smaller than its average service rate (i.e.,
µik/lk), and thus we can derive thatµik/lk − λik > 0. We
define the computing delay of typek requests in cloudleti,
tik, as the average system delay of typek VM’s queue (i.e.,
including the waiting delay and service time):

tik =
1

µik/lk −
∑

j∈J

xijkλjk
, ∀i ∈ I, k ∈ K. (2)

B. Network Delay

When a request of a UE is sent to a cloudlet, the request
goes through its BS and the SDN-based cellular core network.
Therefore, the E2E delay between a UE’s App and its cloudlet
consists of two parts: first, the E2E delay between the UE and
its associated BS, i.e., the wireless delay; second, the E2E
delay between its BS and its assigned cloudlet. However, the
cloudlet selection for a UE does not affect its wireless delay,
which only depends on the UE’s service plan and the mobile
provider’s bandwidth allocation strategy [19]. Thus, we just
consider the E2E delay between the BS and cloudlet in this
paper. Denoteτri as the E2E delay between BSr and cloudlet
i, and Y as a given indicator matrix to reflect the UE-BS
association at the beginning of each time slot, in whichyrj ∈
Y represents whether UEj is covered by BSr or not. Note
that the value ofτri can be measured and recorded by the
SDN controller [20], [21]. Thus, the network delay between
UE j and cloudleti ∈ I can be expressed as

dij =
∑

r∈R

yrjτri, ∀i ∈ I, j ∈ J . (3)

IV. PROBLEM FORMULATION

The response time of a UE’s App consists of both the com-
puting delay and network delay. In the workload allocation,
both of them should be taken into account. On one hand, owing
to the dynamic distribution of workloads among different
cloudlets, the overloaded cloudlets incur remarkably higher
computing delay than other lightly loaded cloudlets. Thus,if
the closest cloudlet of a UE is overloaded, the requests of each
App of the UE should be allocated to alternative cloudlets to
reduce the response time. On the other hand, offloading an
App’s requests from its closest cloudlet to other cloudletswill
increase the network delay. The main goal of this paper is to
minimize the response time of all IoT Apps in the network
by assigning the requests of each App among cloudlets and
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flexibly allocating the computing resource of each cloudlet
to different types of VMs to serve the assigned Apps. Thus,
we can formulate the application aware workload allocation
problem in each time slot as follows:

P1 : min
xijk,µik

∑

i∈I

∑

j∈J

∑

k∈Kj

xijk






dij +

1

µik/lk −
∑

j∈J

xijkλjk







(4)

s.t.
∑

k∈K

µik ≤ Ci, ∀i ∈ I, (5)

∑

i∈I

xijk = 1, ∀j ∈ J , ∀k ∈ Kj , (6)

xijk(
1

µik/lk −
∑

j∈J

xijkλjk
) ≤ xijkDk, (7)

∀i ∈ I, ∀j ∈ J , ∀k ∈ Kj ,

µik/lk −
∑

j∈J

xijkλjk > 0, ∀i ∈ I, ∀k ∈ K, (8)

xijk ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J , ∀k ∈ Kj , (9)

µik ∈ [0, Ci] , ∀i ∈ I, ∀k ∈ K. (10)

Here, Ci is the computing capacity of cloudleti and
Dk is the maximum allowed computing delay of application
k. Constraint (5) indicates that the aggregated computing
resources of all VMs in a cloudlet should be no larger than
the cloudlet’s computing capacity. Constraint (6) ensuresthat
each App of a UE is assigned to only one cloudlet. Constraint
(7) imposes the computing delay for each UE’s typek APP
to meet the QoS requirement of the application in terms of
the maximum allowed computing delayDk. Constraint (8)
imposes the average service rate of VMk in a cloudlet to be
smaller than the VM’s average task arrival rate, in order to
keep the queue of the VM stable.

Lemma 1. The problem of application aware workload allo-
cation (i.e., P1) is NP-hard.

Proof: Suppose there is only one IoT application; the
capacity of VM k equals to the capacity of a cloudlet, i.e.,
µik = Ci. Meanwhile, we assume that the computing delay
thresholdDk = +∞. Therefore, both Constraint (5) and (7)
can be relaxed from P1. Then, to prove that P1 is a NP-hard
problem, we can demonstrate that its corresponding decision
problem is NP-complete. The decision problem of P1 can be
expressed as: given a positive value ofb, is it possible to
find a feasible solutionX = {xijk|i ∈ I, j ∈ J } such that
∑

i∈I

∑

j∈J

xijk

(

dij +
1

µik/lk−
∑

j∈J

xijkλjk

)

≤ b, and Constraints

(6), (8) and (9) are satisfied?
In order to prove that the above decision problem

is NP-complete, only two cloudlets are considered and
the average service rate of either cloudlet is set to
be the same, i.e.,µ1/lk = µ2/lk = 1

2

∑

j∈J

λjk +

ǫ, where ǫ is a very small positive value, i.e.,ǫ ≪
1

2
min{λjk|j ∈ J }. Moreover, assume thatb → +∞. Thus,

∑

i∈I

∑

j∈J

xijk

(

dij +
1

µik/lk−
∑

j∈J

xijkλjk

)

≤ b is always sati-

fied for all solutions ofX and can be relaxed. To satisfy Con-
straint (8) (i.e.,µik/lk −

∑

j∈J

xijkλjk > 0, ∀i ∈ I ), we need

to guarantee that
∑

j∈J

λjkx1jk =
∑

j∈J

λjkx2jk = 1

2

∑

j∈J

λjk.

Consequently, the decision problem can be transformed into
a partition problem, i.e., whether the UEs can be partitioned
into two sets to make the average request arrival rates of the
two sets the same. Hence, the partition problem is reducible
to the decision problem of P1. As the partition problem is a
well-known NP-complete problem, the decision problem of P1
is also NP-complete, and thus P1 is NP-hard.

V. THE AREA ALGORITHM

Since P1 is NP-hard, which is challenging to achieve the
optimal solution, we propose the heuristic AREA algorithm
to effectively allocate different types of workloads among
cloudlets as well as flexibly allocate computing resources
for different VMs in each cloudlet, with low computational
complexity. Note that the major challenge of solving P1 is that
µik depends on the App assignmentxijk . To solve P1 more
efficiently, we decompose the original problem into two sub-
problems: the App assignment sub-problem and the resource
allocation sub-problem. We will first assign different types of
Apps among cloudlets (i.e., determiningxijk), and then try to
optimally allocate the computing resources to different types
of VMs in each cloudlet (i.e.,µik) based on the givenxijk .

A. App Assignment

When assigning Apps’ workloads among cloudlets, the
priority of assigning each App to its closest cloudlets should
be considered to reduce the total network delay. Therefore,
we will initialize the App assignment by allocating all Apps
to their closest cloudlets; then, the algorithm will iteratively
select a suitable App with the highest response time and
reallocate it to an alternative cloudlet which minimizes its
response time, until each App cannot find a better cloudlet.

Given the capacities of cloudlets, the initial App assignment
is determined by the network delay between UEs that host
Apps and cloudlets, and thus can be obtained by solving the
following problem:

P2 : min
xijk

∑

i∈I

∑

j∈J

∑

k∈Kj

xijkdij (11)

s.t.
∑

i∈I

xijk = 1, ∀j ∈ J , ∀k ∈ Kj , (12)

∑

j∈J

∑

k∈Kj

λjklkxijk ≤ Ci, ∀i ∈ I (13)

xijk ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J , ∀k ∈ K. (14)

As each App of a UE is assigned among cloudlets indi-
vidually, we denoteZ1 as the set of Apps of all UEs which
are waiting to be assigned among cloudlets, andI1 as the
set of cloudlets which have excess computing resources. At
the beginning, all UEs’ Apps have not be assigned and are
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included inZ1 (i.e., Z1 = Z), while all cloudlets are empty
without any assigned Apps, i.e., all cloudlets are includedin
I1. Denotediz as the network delay between an Appz (i.e.,
z ∈ Z1) and cloudleti, jz as the UE where Appz is located.
Hence, we havediz = dijz , ∀i ∈ I, ∀z ∈ Z1.

In the initialization, for Appz, the optimal cloudleti∗ ∈ I1
is the one that incurs the lowest network delay, i.e.,i∗ =
argmin{diz|i ∈ I1}; the suboptimal cloudleti

′

is the one that
incurs the second lowest network delay among the cloudlets
in I1, i.e., i

′

= argmin
i
{diz|i ∈ {I1\i∗}}.

As shown in P2, the capacity of each cloudlet is limited, and
thus it is impossible to allocate all Apps to their corresponding
optimal cloudlets. The basic idea of the initialization is to
iteratively select a suitable App, whose suboptimal cloudlet
i
′

incurs a significant network delay degradation as compared
to the optimal cloudleti∗, and then allocate the App into its
optimal cloudlet. It is easy to observe that the network delay
degradation incurred by the suboptimal cloudlet determines
the priority of assigning Appz to its optimal cloudlet. For
example, if Appz’s suboptimal cloudlet B leads to a remark-
ably higher delay than its optimal cloudlet A as compared to
other Apps, assigning Appz to the suboptimal cloudlet will
significantly impact the total network delay of all Apps. In
this case, Appz is given a higher priority than other Apps to
be assigned into its optimal cloudlet A.

Denote∆dz as the network delay degradation by allocating
App z from the optimal cloudleti∗ to the suboptimal cloudlet
i
′

, i.e.,

∆dz = di′z − di∗z , ∀z ∈ Z1. (15)

Thus, as shown in Algorithm 1, in each iteration of the
initialization, the algorithm will select and allocate a suitable
App z, which has the highest network delay degradation
(i.e., z = argmax{∆dz |z ∈ Z1}), to its optimal cloudlet.
Afterwards, if the workload of a cloudlet exceeds its capacity,
the cloudlet is removed fromI1. Note that onceI1 is updated,
the algorithm has to recalculatei∗, i

′

and∆dz for each App
z ∈ Z1. The above procedure is repeated until all Apps are
assigned among cloudlets, i.e.,Z1 = ∅.

Lemma 2. Algorithm 1 terminates after a finite number of
iterations, yielding a feasible IoT App assignment.

Proof: Let ξ = |I1| = N initially, i.e., ξ > 0. Then,
for each iteration, since the algorithm chooses a suitable App
z, wherez = argmax

z
{∆dz |z ∈ Z1}, and allocates it to its

optimal cloudleti∗ (i.e., i∗ = argmin
i
{diz|i ∈ I1}), ξ is

decremented by one. As a result,ξ will become zero after a
finite number of iterations, and thusI1 = ∅.

As shown in Algorithm 1, the complexity of Step 2 is|Z|.
After Step 2, the complexity of Steps 4-5 isO(|Z| + |I|) in
the worst case; as they repeat for|Z| times, the corresponding
complexity isO(|Z|(|Z| + |I|)). Meanwhile, as Steps 9-10
repeat for at most|I| times, the corresponding complexity is
O((|Z| + 1)|I|). Aggregating all these steps, the complexity
of Algorithm 1 becomesO(|Z|(|Z| + |I|)).

After the initialization, the AREA algorithm, as shown in
Algorithm 2, iteratively selects a suitable App with the highest

Algorithm 1
Input: The UE-BS association vectorY = {yrj|r ∈

R, j ∈ I}. The matrix of E2E delay between BSs and
cloudletsT = {τri|r ∈ R, i ∈ I}. The vector of the average
task arrival rate for UEs’ AppsΛ = {λjk|j ∈ J , j ∈ Kj}.

Output: The initial App assignment matrix, i.e.,X =
{xijk|i ∈ I, j ∈ J , k ∈ Kj}.

1: SetZ1 = Z andI1 = I based on their definitions;
2: ∀z ∈ Z1, calculate∆dz based on Eq. (15);
3: while Z1 6= ∅ do
4: Find App z, wherez = argmax

z
{∆dz|z ∈ Z1};

5: Allocate App z to its optimal cloudleti∗ (i.e., i∗ =
argmin

i
{dij |i ∈ I1});

6: Let xijzkz
= 1;

7: Update the App setZ1, i.e.,Z1 = Z1\z .
8: if cloudleti∗ is full then
9: Removei∗ from I1, i.e., I1 = I1\i∗;

10: ∀z ∈ Z1, recalcuate∆dz based on Eq. (15);
11: end if
12: end while
13: return X .

response time, and reallocates it to an alternative cloudlet. At
the beginning, all Apps are unmarked and we defineZ2 as
the set of unmarked Apps. Then, in each iteration, the AREA
algorithm finds the App with the highest response time among
all unsigned Apps, and searches for a new cloudlet for the
App to minimize its response time. Note that in each iteration,
the computing resource for each application in a cloudlet is
determined by the percentage of the application’s workloadin
the total workloads in the cloudlet, and thus we can derive the
response time of Apps in different cloudlets. If a new cloudlet
is found, AREA proceeds to the next iteration. Otherwise, the
algorithm marks the App (i.e., removing the App fromZ2) and
continues to the next iteration. The AREA algorithm repeats
the iterations untilZ2 = ∅.

We now analyze the computational complexity of Algorithm
2. In each iteration, the algorithm checks cloudlets for an App,
and the number of related cloudlets can be|I| in the worst
case. Therefore, the complexity of each iteration isO(|I|).
Then, we analyze the required number of iterations for the
algorithm to optimally place all Apps among the cloudlets.
Each App has a choice of up to|I| cloudlets. In each cloudlet,
the App can have at most|Z| different response times owing
to the different number of Apps allocated to the cloudlet. As
a result, the number of improvements for the App is limited
by |I||Z|. Thus, considering the number of Apps is|Z|, the
total number of iterations in the worst case is|I||Z|2. So,
the computational complexity of Algorithm 2 isO(|I|2|Z|2).
When we fix the number of cloudlets|I|, the complexity of
Algorithm 2 is polynomial with respect to the number of the
Apps.

B. Resource Allocation

After all UEs’ Apps are assigned to different cloudlets, the
problem can be transformed into a resource allocation problem
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Algorithm 2
1: Initialize App assignment by Algorithm 1 and obtainX ;
2: SetZ2 based on its definition, i.e.,Z2 = {z|z ∈ Z}
3: while Z2 6= ∅ do
4: Find App z ∈ Z2 with the highest response time;
5: Obtain the current cloudleti of App z;
6: Find the suitable cloudleti∗ for App z, i.e., i∗ =

argmin

(

dij +
1

µik/lk−
∑

j∈J

xijkλjk

)

;

7: if i∗ 6= i then
8: Assign Appz to the new cloudleti∗ and updateX ;
9: else

10: Mark App z and letZ2 = Z2\z;
11: end if
12: end while
13: return X .

for each cloudleti as follows:

P3 :min
µik

∑

j∈J

∑

k∈K

xijk






dij +

1

µik/lk −
∑

j∈J

xijkλjk






(16)

s.t. Constraints(5), (7), (8), (10).

We can then prove the following lemma:

Lemma 3. When eachxijk is determined,P3 is a convex
optimization problem.

Proof: For brevity, let f =
∑

j∈J

∑

k∈K

xijk

(

dij +
1

µik/lk−
∑

j∈J

xijkλjk

)

, and we use

µk to substitueµik in cloudlet i. Thus, we have

∂2f

∂µk∂µk′

=

{ ∑

j∈J

2xijkl
−2

k (µk/lk −
∑

j∈J

xijkλjk)
−3, ifk = k′,

0, otherwise.
(17)

Since (µk/lk −
∑

j∈J

xijkλjk) > 0, the Hessian matrix

H = ∂2f
∂µk∂µk′

of f is a positive definite matrix. As a result,
function f is convex. Moreover, because Constraints (5), (7),
(8), (10) are linear, the optimization problemP3 is a convex
optimization problem.

As P3 is a convex problem, we can derive the optimal
solution of P3 by solving the KKT condition ofP3 [22].
Therefore, the computing resource of each cloudlet is opti-
mally allocated to different VMs to minimize the response
time. Consequently, the suboptimal solution of P1 is achieved.

VI. RESULTS AND DISCUSSION

In this section, we set up simulations of the proposed
scheme to evaluate its performance. We select two other
workload allocation strategies for comparison: the density-
based clustering (DBC) strategy [17] and the latency-based
strategy [18]. The basic idea of DBC is to offload UEs’
workloads to suitable cloudlets until the workloads of the
cloudlets exceed the average workload among cloudlets. On

the other hand, the latency-based strategy is to minimize
the network delay between Apps and cloudlets by assigning
Apps to suitable cloudlets. In the above two strategies, the
computing resource of each cloudlet is allocated to different
types of VMs according to the percentage of different types
of workloads in the cloudlet.

The simulation environment consists of 25 BSs within an
area of 25km2, where the coverage of each BS is 1km2 and
each BS is attached with a cloudlet. Meanwhile, 1000 UEs
are uniformly distributed among the BSs and assumed to be
associated with their closest BSs. There are 10 types of IoT
applications in the cloudlet network, and we randomly choose
3 types of Apps for each UE (i.e., the total number of Apps
in the network is 3000). The length of each time slot is set
as 5 mins. As each App’s task arrival rate follows a Poisson
distribution, we randomly choose the average task arrival rate
of each App between 0 andλmax. As the computing sizes of
applicationk’s requests follow an exponential distribution with
the average value oflk, the average size of different types of
requests is chosen according to the Normal distribution with
an average of106 CPU cycles and a variance of2∗105 cycles,
i.e.,N(106, 2 ∗ 105). Moreover, we assume the network delay
between a BS and a cloudlet is a linear function of the distance
between them [4], [23], i.e.,τri = α× d+ β, whered is the
distance between BSr and cloudleti, andα and β are set
as 5 and 22.3, respectively. In addition, the maximum allowed
computing delay for different types of applications is chosen
according toN(60, 20) (ms).

Fig. 2. Average performance of an App for different algorithms (λmax = 1.5,
Ci = 2 ∗ 10

8).

Fig. 2 shows the average response time per App, in which
AREA achieves lower response time as compared to the other
two strategies. Specifically, the latency-based strategy always
assigns Apps’ requests to their closest cloudlets without con-
sidering the workload in each cloudlet; DBC assigns Apps
to the closest cloudlets until the workload of each cloudlet
exceeds the average workload among cloudlets, without con-
sidering the diversity of applications in each cloudlet. Thus,
both DBC and the latency-based strategy lead to a lower
network delay and a higher computing delay than AREA.
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AREA considers both the network delay of each App and
the different types of workloads for each cloudlet in the
workload allocation. To reduce the computing delay of all
Apps, it tends to assign Apps with small computing sizes
to the lightly loaded cloudlets. Furthermore, it also optimally
allocates computing resources for different types of VMs
based on their corresponding workloads, and thus significantly
reduces the average response time per App. Meanwhile, as
shown in Fig. 3, the average response time for different types
of applications in AREA is significantly smaller than those of
DBC and the latency-based strategy.

Fig. 3. Average response time for different types of IoT applications (λmax =

1.5, Ci = 2 ∗ 10
8).

Fig. 4. Average response time with respect toλmax (Ci = 3.8 ∗ 10
8).

We further analyze how the workloads of Apps affect the
performance of the three algorithms. Note that the value of
λmax reflects the workloads of Apps, i.e., increasingλmax

increases workloads of Apps. As shown in Fig. 4, with the
increase ofλmax, the average response time of the three
algorithms increases gradually. However, the average response
time of AREA is much lower and increases more slowly as

Fig. 5. Average response time with respect to the capacity ofeach cloudlet
(λmax = 1.5).

compared to those of the other two algorithms. When the
workloads of Apps are heavy, AREA can always offload the
App with the highest response time to an alternative cloudlet,
and thus iteratively minimize the maximum response time
among Apps. Meanwhile, AREA also optimally allocates the
computing resources of each cloudlet to different types of
applications based on their workloads and their corresponding
computing sizes, and thus further reduces the computing delay.

Moreover, we investigate the impact of cloudlets’ capacities
on the average response time. Fig. 5 shows that the response
time of the three algorithms when the capacities of cloudlets
increase. It can be seen that AREA achieves much lower
average response time when the capacities of cloudlets change.
When the capacities of cloudlets are small, since DBC and
the latency-based algorithm do not balance the workloads
among cloudlets based on different types of applications (i.e.,
considering all task requests are homogeneous), AREA leads
to a remarkably lower computing delay, and thus incurs lower
response time. However, when the capacities of cloudlets are
very high, the computing delay is no longer a dominating
factor for the average response time, and thus the average
response time of DBS and the latency-based algorithm get
close to that of AREA.

We also analyze the impact of the number of UEs on the
average response time of Apps. As shown in Fig. 6, the average
response time of AREA increases much slower than those of
the other two algorithms. Since AREA considers the difference
between applications, it tends to assign Apps with smaller task
sizes to lightly loaded cloudlets and allocates more computing
resources to them, thus minimizing the average response time
of all UEs’ Apps. Therefore, as the number of UEs increases
where the computing delay is the dominating factor in the
average response time, AREA is able to achieve a lower
computing delay than the other two algorithms, thus improving
the performance of the average response time.
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Fig. 6. Average response time with respect to different number of UEs
(λmax = 1.5, Ci = 3.8 ∗ 10

8).

VII. C ONCLUSION

In this paper, we have proposed the Application awaRE
workload Allocation (AREA) scheme for edge computing
based IoT. AREA assigns different types of workloads in
each UE to their corresponding VMs in each cloudlet and
optimally allocates the computing resources of each cloudlet
to its application based VMs. We have formulated the problem
of minimizing the average response time of Apps and designed
the AREA algorithm to achieve a suboptimal solution. Simu-
lation results have verified the performance of AREA.
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