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Adaptive Avatar Handoff in the Cloudlet Network

Xiang Sun, Student Member, IEEE, and Nirwan Ansari, Fellow, IEEE
In a traditional big data network, data streams generated by User Equipments (UEs) are uploaded to the remote cloud (for

further processing) via the Internet. However, moving a huge amount of data via the Internet may lead to a long End-to-End (E2E)
delay between a UE and its computing resources (in the remote cloud) as well as severe traffic jams in the Internet. To overcome
this drawback, we propose a cloudlet network to bring the computing and storage resources from the cloud to the mobile edge.
Each base station is attached to one cloudlet and each UE is associated with its Avatar in the cloudlet to process its data locally.
Thus, the E2E delay between a UE and its computing resources in its Avatars is reduced as compared to that in the traditional
big data network. However, in order to maintain the low E2E delay when UEs roam away, it is necessary to hand off Avatars
accordingly—it is not practical to hand off the Avatars’ virtual disks during roaming as this will incur unbearable migration time
and network congestion. We propose the LatEncy Aware Replica placemeNt (LEARN) algorithm to place a number of replicas of
each Avatar’s virtual disk into suitable cloudlets. Thus, the Avatar can be handed off among its cloudlets (which contain one of
its replicas) without migrating its virtual disk. Simulations demonstrate that LEARN reduces the average E2E delay. Meanwhile,
by considering the capacity limitation of each cloudlet, we propose the LatEncy aware Avatar hanDoff (LEAD) algorithm to place
UEs’ Avatars among the cloudlets such that the average E2E delay is minimized. Simulations demonstrate that LEAD maintains
the low average E2E delay.

Index Terms—cloudlet, mobile edge computing, big data, mobile cloud computing, Avatar, handoff, replica.

I. INTRODUCTION

Portable User Equipments (UEs), such as smart phones,
tablets, smart watches and smart glasses, come with a rich set
of embedded sensors already built-in [1]. By utilizing these
intelligent UEs, the location (e.g., GPS information), activity
(e.g., walking, speaking, sitting, etc.), mood (e.g., happy, calm,
alert, etc.), health information (e.g., blood pressure, heartbeat
rate, body temperature, etc.), and the ambient environment
information of each human being can be monitored and
recorded. Thus, UEs are considered as data stream generators
producing massive amounts of data, and analyzing these data
is not only extremely valuable for market applications, but
also has an incredible potential to benefit society as a whole
[2]. For instance, analyzing the videos and photos captured
by UEs is crucial to localize lost children or terrorists, and
analyzing the users’ activities, possible events and historical
traffic statistics can accurately forecast the traffic condition to
help drivers selecting optimal driving directions. However, the
value of the big data decreases as time passes by (for instance,
it is important to identify the terrorists from the recent pho-
tos/videos quickly). Therefore, analyzing the big data in real-
time is critical. In a traditional big data network, all the data
generated by UEs are transmitted to a data center (for further
analysis) via the Internet [3]–[5] because the data center can
provision efficient distributed computing architecture (such as
MapReduce [6], Dryad [7], and Storm [8]) as well as flexible
resource allocation [9]. However, transmitting the big data
from UEs to the data center through the Internet leads to long
network latency and drains the network resources. Thus, the
existing big data networking platform is not suitable for real-
time big data analysis.
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Rather than bringing the data to the computing resources, it
is more efficient to bring the computing resources to the data
in order to reduce the network latency and the traffic load
of the network. Thus, we propose a new cloudlet network
architecture to analyze UEs’ data streams at the mobile edge.
As shown in Fig. 1, each Base Station (BS) is attached to a
cloudlet, which can be considered as a distributed tiny data
center that is deployed close to UEs. Each UE is associated
with a specific Avatar, i.e., a dedicated Virtual Machine (VM)
providing private computing, communications and storage
resources to the UE, in the nearby cloudlet. Thus, the data
streams generated from UEs can be uploaded and analyzed in
their own Avatars with low End-to-End (E2E) delay. On the
top of the cloudlets, Software Defined Network (SDN) based
cellular core network [10]–[13] has been introduced in the
cloudlet network architecture to provide efficient and flexible
communications paths between Avatars in different cloudlets
as well as between UEs in different BSs. Moreover, every UE
and its Avatar in the cloudlet can communicate with public
data centers (e.g., Amazon EC2) and Storage Area Networks
(SANs) via the Internet in order to provision scalability, i.e.,
if cloudlets are not available for UEs because of the capacity
limitation, UEs’ Avatars can be migrated to the remote data
centers to continue serving their UEs. The communications
between a UE and a BS is orchestrated by the Packet Data
Convergence Protocol [14], which is specified by 3GPP. The
communications protocol between a BS and an OpenFlow
switch as well as between a BS and a cloudlet adopts the
TCP/IP protocol.

The proposed cloudlet network architecture facilitates the
real-time big data analysis. A typical example by utilizing the
cloudlet network architecture to analyze the big data is the
terrorist localization application, which is to identify and track
terrorists by analyzing the photos and videos taken by different
UEs. Specifically, each UE uploads its captured photos and
videos to its Avatar. The terrorist localization application sends
the terrorists’ photos to Avatars, which compare terrorists’
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Fig. 1. The cloudlet network architecture.

photos to the captured photos and videos by running face
matching algorithms. If matched, the information (e.g., lo-
cations and timestamps) of the photos and videos would be
transmitted to the terrorist localization application for further
processing. Applying the cloudlet network architecture to
implement terrorist localization has the following advantages.
First, Avatars are considered as private VMs for their UEs.
Avatars locally analyze the data streams generated from their
UEs and share metadata (rather than raw data) by removing
UEs’ personal information from raw data. For instance, in the
terrorist localization application, each Avatar only provides
the locations and the time stamps of the matched photos
and videos rather than the photos and videos to the terrorist
localization application. This can preserve the privacy of each
UE. Second, as compared to the traditional method (in which
all the captured photos and videos would be uploaded to a data
center for analysis), analyzing each UE’s captured photos and
videos in its Avatar (which is placed in the local cloudlet)
can significantly reduce the traffic load of the network and
network delay for uploading the photos and videos to the
computing resources, thus speeding up the process of terrorist
localization.

In order to encourage UEs in subscribing their own Avatars
in the cloudlet network, each Avatar can be considered as a
software clone [17] of its UE so that the UE can automatically
offload some computational intensive tasks to its Avatar by
utilizing Mobile Cloud Computing (MCC) technologies [10],
[15], [16]. Avatars execute the tasks and return back the
results to their UEs, and so the task execution time and
the energy consumption of UEs can be reduced significantly
[18]. Note that many MCC frameworks have been designed
to enable UEs to offload their resource-hungry tasks to the
cloud. For example, the MAUI project [19] provides method
level code offloading based on the .NET framework. Three
mobile applications, i.e., a face recognition application, an
arcade game application, and a voice-based language transla-
tion application, have been tested under MAUI and the results
demonstrated by conducting code offloading can significantly

reduce the energy consumption of mobile devices and im-
prove the performance in terms of the delay of these mobile
applications. The CloudClone project [17] designs an MCC
framework by migrating an application thread from the mobile
device at a chosen point to the application VM (which is
considered as the application-level clone of the mobile device)
in the cloud. Virus scanning, image search, and behavior
profiling applications have been tested under the designed
MCC framework to demonstrate the reduction of the mobile
device’s energy consumption and the application’s execution
time by offloading application workloads from mobile devices
to their clones. By applying the mentioned MCC frameworks,
it is feasible and beneficial to enable UEs to outsource their
computational intensive tasks to their Avatars in the nearby
cloudlet. Therefore, Avatars play two roles in the cloudlet
network, i.e., the big data analyzer and the MCC application
outsourcer.

The rest of the paper is organized as follows. In Section
II, we propose to hand off Avatars among cloudlets in or-
der to maintain the low E2E delay between UEs and their
Avatars when UEs roam away. In order to avoid virtual disk
migration during the Avatar handoff process, we propose to
place a number of replicas of the Avatar’s virtual disk among
suitable cloudlets. In Section III, we formulate the Avatar
replica placement problem and design the LatEncy Aware
Replica placemeNt (LEARN) algorithm to solve the prob-
lem. In Section IV, by considering the capacity limitation of
each cloudlet, we propose the LatEncy aware Avatar hanDoff
(LEAD) algorithm to optimally place UEs’ Avatars among
the cloudlets in each time slot such that the average E2E
delay between UEs and Avatars is minimized. In Section V,
we demonstrate the performance of the proposed LEARN and
LEAD algorithm via extensive simulations. In Section VI, we
briefly review the related works. The conclusion is presented
in Section VII.

II. AVATAR HANDOFF

UEs are roaming among BSs over time and so the E2E
delay between UEs and their Avatars may become worse if
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the Avatars remain in their original cloudlets. For instance, as
shown in Fig. 1, if UE 1 roams from BS 1’s coverage area into
BS 3’s coverage area and its Avatar still resides in Cloudlet A,
the communications path between UE 1 and its Avatar should
traverse the SDN based cellular core, which may increase the
E2E delay as well as the traffic load of the SDN based cellular
core. Note that the E2E delay between a UE and its Avatar
comprises three parts: first, the E2E delay between a UE and
its serving BS; second, the E2E delay between the BS and the
cloudlet which contains the UE’s Avatar; third, the E2E delay
within the cloudlet. Normally, the E2E delay between the BS
and the cloudlet is the main factor to determine the overall
E2E delay when UE roams away. Thus, we refer to the E2E
delay between a UE and its Avatar as the E2E delay between
the BS (which serves the UE) and the cloudlet (which contains
the UE’s Avatar) in the rest of the paper.

Long E2E delay can significantly degrade the performance
of the big data analysis as well as the MCC applications.
Obviously, spending less time for uploading the data streams
to Avatars will benefit real-time big data analysis to produce
more valuable results. Meanwhile, the E2E delay is critical
for MCC applications. It is reported that augmented reality
applications require an E2E delay of less than 16 ms [20] and
the cloud-based virtual desktop applications require an E2E
delay of less than 60 ms [21]. Thus, it is critical to preserve
the low E2E delay between a UE and its Avatar by migrating
the Avatar among cloudlets when the UE roams away. An
Avatar is considered as a private VM, which comprises isolated
vCPUs, memory, and virtual disks, and so migrating an Avatar
between cloudlets is to conduct live VM migration [22]
between cloudlets over the SDN based cellular core. We refer
to the Avatar migration process as the Avatar handoff in the
rest of the paper.

The Avatar handoff process needs to migrate the whole
Avatar (which includes the memory, the virtual disk1, and
the dirty blocks of the memory and the virtual disk gener-
ated during the migration process) from the source into the
destination cloudlet. The total Avatar handoff time determines
the performance of the Avatar handoff [10]. This is because,
first, the degraded E2E delay between a UE and its Avatar
persists until the Avatar handoff process is finished, and so
shorter handoff time will produce lower E2E delay; second, the
Avatar handoff process consumes extra resources of the Avatar
(especially the bandwidth resource), and thus degrades the
performance of applications currently running in the Avatar.
Therefore, short handoff time will improve the performance
of the applications. However, it is reported that migrating
the whole Avatar between two cloudlets over a network with
stable 10 Mbps bandwidth and 50 ms Round Trip Time (RTT)
consumes over two hours [21]; this indicates that handing off a
whole Avatar between cloudlets cannot maintain the low E2E
delay between the Avatar and its UE but exhausts the resource
of the network and the Avatar. The main reason for incurring

1In order to guarantee the performance of the big data analysis and the
MCC applications running in the Avatar, the whole virtual disk of the Avatar
should be located in the same physical machine with its vCPU and memory
providing low I/O latency.

the unacceptable handoff time is to migrate the large volume
of the Avatar’s virtual disk over the network [21].

In order to avoid virtual disk migration during the handoff
process, we propose to place a number of replicas of an
Avatar’s virtual disk in the suitable cloudlets. The replicas
of an Avatar2 are synchronized with the Avatar’s virtual disk
during a fixed time period (e.g., 5 min). Thus, if a UE’s Avatar
tries to hand off to the cloudlet which contains one of the
Avatar’s replicas, only the memory and the pre-handoff virtual
disk dirty blocks of the Avatar are needed to be transmitted
to the destination cloudlet. The pre-handoff virtual disk dirty
blocks of the Avatar means the virtual disk dirty blocks that
are generated after the last replica synchronization process.
For instance, as shown in Fig. 2, the Avatar’s replicas are
synchronized at t1; meanwhile, the Avatar handoff is triggered
at t2, and thus the number of the virtual disk blocks, which
are modified during the interval between t1 and t2, are defined
as the pre-handoff virtual disk dirty blocks, which need to be
migrated during the handoff process. Since the dirty block
generation rate of the virtual disk is relatively low, only very
small portion of the virtual disk is needed to be transmitted
to the destination cloudlet, which will significantly reduce the
handoff time.

Fig. 2. The illustration of pre-handoff virtual disk dirty blocks.

III. AVATAR REPLICA PLACEMENT

Migrating the whole virtual disk of an Avatar during the
Avatar handoff process incurs unbearable handoff time and
increases the traffic load of the SDN-based cellular core
significantly. Thus, in order to avoid the virtual disk migration
during the Avatar handoff process, we pre-deploy a number of
the Avatar’s replicas among the cloudlets. A cloudlet, which
contains one of an Avatar’s replicas, is defined as the Avatar’s
available cloudlet. Thus, an Avatar can only be migrated to
its available cloudlets.

Note that it is unnecessary and inefficient to place the
Avatar’s replicas in all the cloudlets in the network because
increasing the number of replicas for each Avatar increases
the capital expenditure (CAPEX) of the cloudlet provider (by
implementing more storage space in the cloudlets) as well as
the synchronization traffic in the SDN based cellular core.
Meanwhile, placing the Avatar’s replicas in the cloudlets,
which are never visited by the UE, cannot benefit the com-
munications between the UE and its Avatar. Therefore, it is
important to optimally place a limited number of replicas for
each Avatar among the cloudlets so that the average E2E delay
(during a period ∆T , e.g., one day) between the UE and its

2The replicas of an Avatar are referred to as the replicas of the Avatar’s
virtual disk in the rest of the paper.
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Avatar can be minimized (by utilizing Avatar handoff) when
the UE roams in the network.

Fig. 3. The illustration of the optimal Avatar replica placement.

Normally, the Avatar’s replicas will be placed where its
UE will commonly visit (it has been demonstrated that about
10% to 30% of all human movement can be explained by
their social relationship, while 50% to 70% is attributed to
periodic behaviors [23]; thus, we believe that the dynamics
of future human movement can be reliably predicted based
on the mathematical models [23]–[25]), such as home and
workplace. However, this is not the optimal Avatar replica
placement strategy. For instance, suppose the cloudlet network
topology is shown in Fig. 3, which contains 7 BS-Cloudlet
(BSC) combinations3, and two replicas of UE i’s Avatar need
to be placed. Meanwhile, suppose the occurrence probability
of UE i in BS j’s coverage area, denoted as pij

4 (where
j = 1, 2, · · · , 7), is also shown in Fig. 3. Thus, traditionally,
two replicas will be placed in BSC-1 and BSC-2 (because pi,1
and pi,2 are the two largest values, implying that UE i will
most commonly visit BSC-1 and BSC-2). Yet, deploying the
two replicas in BSC-1 and BSC-7 may be the optimal solution
for UE i. This is because, first, the value of pi,2 and pi,7 are
close; second, BSC-1 and BSC-2 are adjacent to each other,
and so the E2E delay between UE i and its Avatar is low even
if UE i is in the BSC-2’s coverage area and its Avatar is in
BSC-1. On the contrary, since BSC-7 is far away from BSC-1,
the E2E delay may be unbearable if UE i is in the BSC-7’s
coverage area and its Avatar is in BSC-1, and thus placing
the 2nd replica in BSC-7 may improve the average E2E delay
significantly.

Therefore, we conclude that the value of pij is not the only
determinant to affect the performance of the Avatar replica
placement. The E2E delay between different BSCs can also
affect the performance of Avatar replica placement.

A. System model

Let I , J and K be the set of UEs, BSs and cloudlets,
respectively. Denote xik as a binary variable indicating one
replica of UE i’s Avatar (i ∈ I) is located in cloudlet k (i.e.,

3A BSC combination indicates that a BS is attached to a dedicated cloudlet.
4pij = the total time that UE i stays in the BS j′s coverage area

the total time period (i.e., one day)

xik = 1, where k ∈ K) or not (i.e., xik = 0). Meanwhile,
let tjk be the average E2E delay between BS j and cloudlet
k. The value of tjk (j ̸= k) can be measured and recorded
by the SDN controller [26], [27]. Note that if j = k, we say
that cloudlet k is BS j’s attached cloudlet. Moreover, denote
yijk as a binary variable indicating UE i’s Avatar is located
in cloudlet k (i.e., yijk = 1) or not (i.e., yijk = 0) when
UE i is in BS j’s coverage area. Let τij be the average E2E
delay between UE i and its Avatar when UE i is in the BS
j’s coverage area, then we have:

τij =
∑
k∈K

tjkyijk. (1)

Denote τi as the average E2E delay between UE i and its
Avatar during the period ∆T (e.g., one day); meanwhile, let
pij be the predicted occurrence probability of UE i in BS j’s
coverage area during the period ∆T ; then, we have:

τi =
∑
j∈J

pijτij =
∑
j∈J

∑
k∈K

pijtjkyijk. (2)

The optimal Avatar replica placement for each UE i (i ∈ I)
is to minimize its average E2E τi during the period ∆T . Thus,
we formulate the problem as follows:

P0 : argmin
xik, yijk

∑
j∈J

∑
k∈K

pijtjkyijk (3)

s.t.
∑
k∈K

xik = κ, (4)

∀j ∈ J ,
∑
k∈K

yijk = 1, (5)

∀j ∈ J ∀k ∈ K, yijk ≤ xik, (6)
∀k ∈ K, xik ∈ {0, 1} , (7)
∀j ∈ J ∀k ∈ K, yijk ∈ {0, 1} , (8)

where κ is the total number of replicas that can be deployed
among the cloudlets for each UE’s Avatar. Constraint (4)
requires that exactly κ replicas are placed for UE i. Constraint
(5) indicates that UE i’ Avatar should be located in exactly
one cloudlet when UE i is in BS j’s coverage area. Constraint
(6) implies that UE i’ Avatar can only be located in a cloudlet
if and only if the cloudlet contains one of its replicas (i.e.,
in order to satisfy Constraint (6), yijk could equal to 1 iff
xik = 1; otherwise, yijk should be 0 if xik = 0). Constraints
(7) and (8) implies xik and yijk (j ∈ J and k ∈ K) are
binary variables.

Lemma 1. The Avatar replica placement problem (i.e., P0)
is NP-hard when κ > 1.

Proof: The formulation of the Avatar replica placement
problem is equivalent to the p-median problem [28] where
κ = p > 1, and the p-median problem has been proved to
be NP-hard on a general network topology (note that it has
been demonstrated that the p-median problem can be solved
in polynomial time O(n2p2) only if the network is a tree
[29]). Therefore, we need to demonstrate the topology of the
proposed cloudlet network is not a tree.
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Based on the cloudlet network proposed in Sec. I, each BS
can communicate with all the cloudlets over the SDN based
cellular core. Thus, the cloudlet network can be considered
as a complete graph in which every vertex represents the BS-
cloudlet pair. Every pair of distinct vertices is connected by a
unique edge, which represents a communications link with a
dedicated cost in terms of the E2E delay. Therefore, the Avatar
replica placement problem is NP-hard.

B. LatEncy Aware Replica placemeNt (LEARN)

Inspired by the Lagrangian relaxation algorithm for solving
the p-median problem [30], we design the LatEncy Aware
Replica placemeNt (LEARN) algorithm to optimally place
the replicas among cloudlets for each UE. The basic idea
of LEARN is to iteratively obtain the lower bound (LB) and
upper bound (UB) of the Avatar replica placement problem
through Lagrangian procedure until the differece between the
LB and UB is less than a predefined value ψ.

Specifically, we relax Constraint (5) in P0 to obtain the
following Lagrangian problem:

P1 :

max
λj

min
xikyijk

L=
∑
j∈J

∑
k∈K

pijtjkyijk+
∑
j∈J

λj

(
1−
∑
k∈K

yijk

)
=
∑
j∈J

∑
k∈K

(pijtjk − λj) yijk +
∑
j∈J

λj , (9)

s.t. Constraints (4), (6), (7), (8),

where λj (∀j ∈ J , λj ≥ 0) are the Lagrangian multipliers. For
fixed values of the Lagrange multipliers λj , the above relaxed
problem (i.e., P1) will yield an optimal objective value that is
an LB on any feasible solution of the original Avatar replica
placement problem (i.e., P0).

Lemma 2. Define vector ∆i = {∆ik|k ∈ K}, where ∆ik =∑
j∈J

min (0, pijtjk − λj); define the cloudlet set K
′

i (K
′

i ⊂

K), where
∣∣∣K′

i

∣∣∣ = κ and
{
∆ik|k ∈ K

′

i

}
are the κ number

of the smallest values in vector ∆i. Then, for any given set
of multipliers λ = {λj |j ∈ J }, the optimal solution of the
Lagrangian problem, denoted as X ∗

i = {x∗ik|k ∈ K} and
Y∗

i =
{
y∗ijk|j ∈ J , k ∈ K

}
, can be expressed as follows:

∀k ∈ K, x∗
ik =

{
1, k ∈ K

′
i.

0, otherwise.
(10)

∀j∈J , ∀k∈K, y∗
ijk=

{
1, pijtjk−λj < 0 & x∗

ik=1.
0, otherwise.

(11)

Proof: Obviously, in order to minimize the objective
function of the Lagrangian problem (i.e., P1), yijk should be
chosen its maximum value if pijtjk−λj ≤ 0 (j ∈ J , k ∈ K)
for any given set of Lagrangian multipliers λ = {λj |j ∈ J },
otherwise, yijk = 0. Thus, by considering Constraint (6),
the optimal solution of y∗ijk is given by: y∗ijk = xik, if
pijtjk − λj ≤ 0; y∗ijk = 0, otherwise.

By substituting the optimal solution of y∗ijk into L (Eq. (9)),
the Lagrangian problem is transformed into:

min
xik

L =
∑
k∈K

∆ikxik +
∑
j∈J

λj (12)

s.t. Constraints (4), (7),

where ∆ik =
∑
j∈J

min (0, pijtjk − λj). For any given set of

Lagrangian multipliers λ, the above problem is trivial to solve,
i.e., x∗ik = 1, if k ∈ K

′

i (where K
′

i is the set of κ number
of the cloudlets, which have the smallest values of ∆ik in
∆i = {∆ik|k ∈ K}); x∗ik = 0, otherwise. Thus, Eq. (10) and
Eq. (11) have been proved.

Note that solving the relaxed problem can provide the LB
of the original Avatar replica problem, i.e.,

LB =
∑
k∈K

∆ikx
∗
ik +

∑
j∈J

λj . (13)

However, the solution of the Lagrangian relaxation problem
may not be the feasible solution with respect to the original
Avatar replica problem (P0), i.e., Constraint (5) may not be
satisfied for the solution Y∗

i =
{
y∗ijk|j ∈ J , k ∈ K

}
. In order

to obtain a feasible solution of the original problem, denoted
as Yi =

{
yijk|j ∈ J , k ∈ K

}
, we can simply allocate the

Avatar of UE i to the cloudlet, which has the lowest E2E delay
among the cloudlets containing one replica of the Avatar, when
UE i is in BS j, i.e., for each j ∈ J , we have:

∀k∈K, yijk=
{

1, tjk = min
{
tjk|k ∈ K

′′

i

}
0, otherwise.

(14)

where K
′′

i is the set of available cloudlets (which contain
one replica of UE i’s Avatar) of UE i’s Avatar, i.e., K

′′

i =
{k|x∗ik = 1, k ∈ K}.

Substituting the feasible solution (i.e., Yi ={
yijk|j ∈ J , k ∈ K

}
) into the objective function of the

original problem (i.e., Eq. (3)), we have the UB of the
original problem:

UB =
∑
j∈J

∑
k∈K

pijtjkyijk. (15)

Note that the original problem always chooses its UB as its
objective value because the UB can guarantee the existence
of the feasible solution. However, selecting different values
of Lagrange multiplier vector (i.e., λ) may generate different
values of the UB. Thus, by applying the subgradient method
[31], we adjust the values of Lagrange multipliers in each
iteration in order to obtain the smaller value of UB. The
iteration terminates until UBopt − LB ≤ ψ, where UBopt

indicates the best (i.e., smallest) value of UB that has been
found in the previous iterations.

In the nth iteration (n > 1), the values of the Lagrangian
multipliers λnj (j ∈ J ) are calculated based on the following
expression:

∀j ∈ J , λnj =max

{
0, λn−1j −θn

{∑
k∈K

y∗ijk
n−1−1

}}
,

(16)
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where λn−1
j are the Lagrangian multipliers generated in the

previous iteration; y∗ijk
n−1 (j ∈ J , k ∈ K) are the optimal

solution of P1 (i.e., the relaxed problem) in the previous
iteration, which can be calculated based on Eq. (11) and θn

is the step length adopted in the nth iteration, which can be
calculate based on the following expression [32]:

θn =
α
(
UBopt − LBn−1

)
∑
j∈J

( ∑
k∈K

y∗ijk
n−1 − 1

)2 , (17)

where α (0 < α < 2) is a decreasing adaptation parameter
and LBn−1 is the value of LB in the previous iteration (i.e.,
LBn−1 =

∑
k∈K

∆ikx
∗
ik

n−1 +
∑
j∈J

λn−1
j ). The detail of the

LEARN algorithm is shown in Algorithm 1.

C. One example to illustrate the LEARN algorithm

Suppose there are three BSs in the network and each BS
is attached to one cloudlet. Assume the average E2E delay

vector is T =

 0 20 15
20 0 10
15 10 0

. There is a UE in the network

and the occurrence probability of the UE in the respective
BSs during the day is P= [0.5, 0.3, 0.2]. If we need to place
two replicas (i.e., κ = 2) for its Avatar’s virtual disk, then
LEARN shall apply the following procedure to obtain the
optimal replica placement for the UE:
• Steps 1-2 in Algorithm 1: randomly select the initial values

of Lagrangian multipliers, e.g., λ= [5, 5, 5]; initialize LB =
0 and UBopt = +∞;

• Steps 4-5 in Algorithm 1: given the value of λ, calculate
the values of X ∗ and Y∗ for the UE based on Lemma 2; in

this example, X ∗= [1, 1, 0] and Y∗ =

 1 0 0
0 1 0
1 1 0

. Then,

update the value of LB based on Eq. (13); in this example,
LB = 0;

• Steps 6-7 in Algorithm 1: calculate the value of Y based

on Eq. (14). In this example, Y =

 1 0 0
0 1 0
0 1 0

. Then,

update the value of UB based on Eq. (15); in this example,
UB = 3.5;

• Steps 8-11 in Algorithm 1: compare UB with UBopt; in
this example, UB < UBopt, and thus X opt = X ∗ =
[1, 1, 0] and UBopt = UB = 3.5;

• Steps 12-13 in Algorithm 1: update the value of Lagrangian
multipliers, i.e., λ, based on Eq. (16), and goes back to Steps
4-5 until UBopt − LB ≤ ψ.
The LEARN algorithm is executed offline, i.e., for a fixed

period ∆T , LEARN will update the replica placement for
different UEs during the off peak hours. Also, the replica
placement updating period ∆T can also vary among different
UEs. For instance, if UEs have similar behaviors during the
workdays, LEARN only needs to update the replica placement
of the UEs during the weekends; otherwise, it is preferred to
update the replica placement daily. It is worth to note that
a centralized controller (or a control function running in the

SDN controller) is used to predict the occurrence probability
for each UE, obtain the average E2E delay vector among
different cloudlets and BSs from the SDN controller, and
generate the replica placement vector for each UE by executing
the proposed LEARN algorithm.

Algorithm 1 LEARN algorithm
Input: 1) The occurrence probability vector for UE i among

BSs, i.e., Pi = {pij |j ∈ J }. 2) The average E2E delay
vector T = {tjk|j ∈ J , k ∈ K}.

Output: The replica placement vector for UE i, i.e., X opt
i ={

xoptik |k ∈ K
}

.

1: Initialize the set of Lagrangian multipliers λ =
{λj |j ∈ J }.

2: Initialize LB = 0 and UBopt = +∞.
3: while UBopt − LB > ψ do
4: Calculate X ∗

i and Y∗
i based on Lemma 2;

5: Update the value of LB based on Eq. (13);
6: Calculate Yi based on Eq. (14);
7: Calculate the value of UB based on Eq. (15);
8: if UB < UBopt then
9: X opt

i = X ∗
i ;

10: UBopt = UB;
11: end if
12: Update step length θn based on Eq. (17);
13: Update Lagrangian multipliers λ based on Eq. (16);
14: end while
15: return X opt

i .

IV. ADAPTIVE AVATAR HANDOFF

After the replicas of each UE’s Avatar being deployed
among cloudlets, the Avatar can be handed off among its
available cloudlets based on its UE’s location. Optimally, the
Avatar will be handed off to the available cloudlet, which
incurs the lowest E2E among its available cloudlets, when
the UE roams into a new location. However, each cloudlet
has its CPU and memory capacity, and so the Avatar may
not be handed off to the optimal cloudlet because the optimal
cloudlet may not have enough residual capacity to host the
Avatar. Therefore, it is necessary to design an adaptive Avatar
handoff strategy to determine the location of each UE’s Avatar
in each time slot in order to minimize the average E2E delay
between all the UEs and their Avatars during the time slot by
jointly considering the capacity limitation of each cloudlet.

Note that different from the Avatar replica placement prob-
lem (which tries to generate the replica placement solution
for each UE’s Avatar based on the statistics for a long time
period (e.g., one day)), the adaptive Avatar handoff problem
tries to obtain the location of each UE’s Avatar (rather the
Avatar’s replicas) based on real time information (e.g., the
current locations of all the UEs) and the problem should be
solved in real time.

A. Problem formulation
Let lij be a binary indicator to identify UE i in BS j’s

coverage area (i.e., li,j = 1) or not (li,j = 0) in the current
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time slot. Meanwhile, let zik be a binary variable to indicate
whether UE i’s Avatar is in cloudlet k (zik = 1) or not (zik =
0) in the current time slot. X opt

i =
{
xoptik |k ∈ K

}
, which is

generated by the LEARN algorithm, is the optimal replica
placement vector for UE i. In order to avoid the virtual disk
migration, UE i’s Avatar can only be allocated to its available
cloudlet k (i.e., zik could equal to 1 iff k ∈ K

′′

i , where K
′′

i ={
k|xoptik = 1, k ∈ K

}
). Thus, the average E2E delay between

UE i and its Avatar in the current time slot, i.e., τi, can be
expressed as follows:

τi =
∑
j∈J

∑
k∈K′′

i

lijtjkzik. (18)

Suppose all the UEs’ Avatars are homogeneous, i.e., all
the Avatars have the same CPU, memory and bandwidth
configurations. Denote qk as the capacity of cloudlet k, i.e.,
the total number of Avatars can be hosted by cloudlet k. Thus,
we formulate the Avatar handoff problem as follows:

P2 : argmin
zik

∑
i∈I

∑
j∈J

∑
k∈K′′

i

lijtjkzik (19)

s.t. ∀i ∈ I,
∑

k∈K′′
i

zik = 1, (20)

∀k ∈ K,
∑
i∈I

zik ≤ qk, (21)

∀i ∈ I ∀k ∈ K, zik ∈ {0, 1} , (22)

where the objective is to minimize the average E2E delay
between all the UEs and their Avatars in the current time
slot. Constraint (20) indicates each Avatar should be hosted by
one cloudlet, which contains one replica of the UE’s Avatar;
Constraint (21) implies that each cloudlet has its capacity
limitation; Constraint (22) indicates zik is a binary variable.

Note that it is not easy to solve P2 since the available
cloudlet set K

′′

i varies among different UEs’ Avatars that
makes the summation index k in the object function of P2
to vary among different UEs’ Avatars. The following lemma
facilitates a dual problem of P2, which can be readily solved
because the summation index k in the objective function of
the new problem does not vary among different UEs’ Avatars.

Lemma 3. Let τ
′

i be

τ
′

i =
∑
j∈J

∑
k∈K

lijtjk

xoptik + ε
zik, (23)

where ε is a very small positive value close to zero. Then, P2
can be equivalently transformed into:

P3 : argmin
zik

∑
i∈I

∑
j∈J

∑
k∈K

lijtjk

xoptik + ε
zik,

s.t. ∀i ∈ I,
∑
k∈K

zik = 1,

∀k ∈ K,
∑
i∈I

zik ≤ qk,

∀i ∈ I ∀k ∈ K, zik ∈ {0, 1} .

Proof: For each i ∈ I , if xoptik = 0 (i.e., k ∈ K\K
′′

i ),
lijtjk
xopt
ik +ε

→ +∞, and thus zik should be set to zero in order

to minimize the value of τ
′

i ; if xoptik = 1 (i.e., k ∈ K
′′

i ), the
expression of τ

′

i is approximately equal to τi. Thus, P2 and
P3 are equivalent.

By applying Lemma 3, the problem (i.e., P2) can be
transformed into:

argmin
zik

∑
i∈I

∑
k∈K

cikzik (24)

s.t. Constraints (20), (21), (22),

where cik =

∑
j∈J

lijtjk

xopt
ik +ε

is the weighted E2E delay between UE
i and its Avatar located in cloudlet k.

The proposed Avatar handoff problem is considered as a
special case of the generalized assignment problem (in which
Constraint (21) is depicted as ∀k ∈ K,

∑
i∈I

aikzik ≤ qk, where

aik > 0), which is proven to be NP-hard [1]. Recently, many
heuristics have been designed to find the suboptimal solution
of the generalized assignment problem and each of them has
its tradeoff between the complexity and the performance. In
the proposed network, we need to allocate tens of thousands of
UEs into tens of thousands of cloudlets in each time slot. Thus,
we design a novel LatEncy aware Avatar hanDoff (LEAD)
algorithm to efficiently solve the proposed Avatar handoff
problem.

B. LatEncy aware Avatar hanDoff (LEAD)

First, we build a relaxed Avatar handoff problem (i.e., P4)
by relaxing Constraint (21), i.e.:

P4 : argmin
zik

∑
i∈I

∑
k∈K

cikzik

s.t. ∀i ∈ I,
∑
k∈K

zik = 1,

∀i ∈ I ∀k ∈ K, zik ∈ {0, 1} .

The optimal solution of P4, denoted as Z
′

i ={
z

′

ik|k ∈ K
}

, can be easily derived, i.e.:

∀i ∈ I, z
′

ik =

{
1, k = argmin

k

{
cik|k ∈ K

}
.

0, otherwise.
(25)

The optimal solution of P4 generates the optimal cloudlet
(which incurs the minimum weighted E2E delay among the
cloudlets) for each Avatar. However, it may not be the feasible
solution of the original Avatar handoff problem, i.e., the total
number of Avatars that are hosted by some cloudlets may
exceed their capacity. Denote these set of cloudlets as K1, i.e.,

K1 =

{
k|
∑
i∈I

z
′

ik > qk, k ∈ K
}

; denote the set of cloudlets,

which have enough resources to host at least one Avatar,

as K2, i.e., K2 =

{
k|
∑
i∈I

z
′

ik < qk, k ∈ K
}

; denote the set

of UEs, whose Avatars are hosted by cloudlet k ∈ K1, as
I1, i.e., I1 =

{
i|z′

ik = 1, k ∈ K1, i ∈ I
}

. The basic idea
of the LEAD algorithm is to choose a suitable UE i’s Avatar,
whose optimal cloudlet has violated its capacity limitation (i.e.,
i ∈ I1), and reallocate the Avatar into its suboptimal cloudlet,
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which has enough space for hosting at least one Avatar, for
each iteration. The suboptimal cloudlet, denoted as k

′
, of UE

i is defined as the cloudlet that incurs the minimum weighted
E2E delay among the cloudlets, which have enough resources
to host at least one Avatar, i.e., k

′
= argmin

k

{
cik|k ∈ K2

}
.

Denote ∆ci (i ∈ I1) as the weighted E2E delay degradation
by reallocating UE i’s Avatar from its optimal cloudlet k into
its suboptimal cloudlet k

′
, i.e.:

∀i ∈ I1, ∆ci = cik − cik′ , (26)

where k = argmin
k

{
cik|k ∈ K1

}
and k

′
=

argmin
k

{
cik|k ∈ K2

}
. Thus, the LEAD algorithm will

select to reallocate a suitable UE i’s Avatar, where
i = argmin

i

{
∆ci|i ∈ I1

}
, in each iteration in order to

minimize the weighted E2E delay degradation. The iteration
continues until K1 = ∅. The detail of the LEAD algorithm is
shown in Algorithm 2.

The complexity of each iteration in LEAD (i.e., from Step-
5 to Step-9 in Algorithm 2) is O(|I| |K|) + O(|I|) + 3 ×
O(1) = O(|I| |K|), where O(|I| |K|) is the complexity of
Step-5, O(|I|) is the complexity of Step-6, and 3 × O(1) is
the complexity for executing Step-7 to Step-9. In the worst
case scenario, the total number of iterations of LEAD is |I|.
Thus, the complexity of LEAD is O(|I|2 |K|).

Note that the LEAD algorithm cannot guarantee that all
the Avatars can be placed in one of its available cloudlets,
i.e., it might happen that some Avatars, all of whose available
cloudlets are full, cannot be hosted by one of its available
cloudlets. Then, these Avatars will be placed in the central
cloud (by default, the central cloud contains at least one replica
of each UE’s Avatar).

Lemma 4. The LEAD algorithm terminates after a finite
number of iterations, producing an feasible solution to the
original Avatar handoff problem.

Proof: Let ξ =
∑

k∈K1

(∑
i∈I

z
′

ik − qk

)
. Assume K1 ̸= ∅

initially, and so ξ > 0. Then, in each iteration, the value
of ξ is decreased by one because LEAD will reallocate
UE i’s Avatar from cloudlet k (i.e., set z

′

ik = 0), where
k = argmin

k

{
cik|k ∈ K1

}
, into cloudlet k

′
, where k

′
=

argmin
k

{
cik|k ∈ K2

}
. Thus, ξ will be reduced to zero in a

finite number of steps, and hence K1 = ∅.
Similar to LEARN, the LEAD algorithm is also executed

in a centralized manner to determine the locations of Avatars
for their UEs in each time slot.

V. SIMULATION RESULTS

In order to evaluate our proposed replica placement algo-
rithm and Avatar handoff algorithm, we have obtained data
traces of more than 13,000 UEs and extracted their mobility
in one day in Heilongjiang province in China5. The whole area

5The authors acknowledge the Center for Data Science of Beijing University
of Posts and Telecommunications for providing these invaluable data traces.

Algorithm 2 LEAD algorithm
Input: 1) The replica placement vector for each UE, i.e.,

X opt
i =

{
xoptik |k ∈ K

}
,∀i ∈ I . 2) The average E2E delay

vector, i.e., T = {tjk|j ∈ J , k ∈ K}. 3) The location
indicator vector for all UEs in the current time slot, i.e.,
L = {lij |i ∈ I, j ∈ J }.

Output: Avatar location indicator vector for all UEs, i.e.,
Z

′
=
{
z

′

ik|i ∈ I, k ∈ K
}

.

1: Initialize z
′

ik by solving the relaxed problem (i.e., P4)
based on Eq. (25).

2: Initialize the cloudlet sets K1 and K2 based on their
definition.

3: Initialize the UE set I1 based on its definition.
4: while K1 ̸= ∅ do
5: ∀i ∈ I1, calculate ∆ci based on Eq. (26);
6: Find UE i, where i = argmin

i

{
∆ci|i ∈ I1

}
;

7: Reallocate UE i’s Avatar from its optimal cloudlet k
(i.e., set z

′

ik = 0) into its suboptimal cloudlet k
′
, (i.e., set

z
′

ik′ = 1);
8: Update the cloudlet sets K1 and K2;
9: Update the UE set I1;

10: end while
11: return Z

′
.

contains 5,962 BSs and each UE’s location is monitored during
one day period. Specifically, each packet that is transmitted
to/from a UE is monitored, and the packet analyzer extracts
the BS information (i.e., the BS’s ID and location) from each
packet and considers the BS’s location to be the current loca-
tion of this UE (for instance, if a packet from the UE contains
the information of BS-A, then we say the UE is currently
associated with BS-A and the current location of the UE is
BS-A’s location). We apply these UE mobility traces to obtain
the occurrence probability vector for each UE among BSs
during the day (i.e., the values of Pi = {pij |j ∈ J }, where
pij = the total amount of time UE i is associated with BS j

one day period ).
Meanwhile, we assume that each BS is attached to a cloudlet
and the average E2E delay between a BS and a cloudlet
(i.e., the value of tjk, where j ̸= k) is a function of the
geographic distance between the BS and the cloudlet [33],
i.e., tjk = 0.016djk+22.3, where djk is the distance between
BS j and cloudlet k in unit km and the unit of tjk is in
ms. Each BS’s geographic location (i.e., the longitude and
the latitude of the BS) is given by the UE mobility traces and
each cloudlet is attached to a BS, and thus the value of djk
is known; consequently, the value of tjk can be calculated for
all j ∈ J and k ∈ K based on the E2E delay model.

A. Performance of the LEARN algorithm

First, we simulate the proposed LEARN algorithm based
on the mentioned UE mobility trace. Specifically, we first
calculate the value of pij based on the mentioned UE mobility
trace. Then, by taking Pi and T as input parameters, we
further obtain the replica placement vector for each UE by
applying the LEARN algorithm. Consequently, the average
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E2E delay for all the UEs during the day is derived given the
replica placement vector for each UE. For comparisons, we
considered the scenario that all the UEs’ Avatars are located
in the central data center (i.e., UEs’ Avatars cannot migrate
when UEs are roamed among BSs), which is placed in the
southeast point of the area. In this scenario, we also calculate
the average E2E delay between UEs and the data center during
the day.

As shown in Fig. 4, given the number of replicas (i.e., the
value of κ), the average E2E delay achieved by LEARN is
significantly reduced as compared to that of the traditional
big data network (in which the UEs access their Avatars in
the remote cloud/data center via the Internet). Moreover, as the
number of replicas increases, the average E2E delay is reduced
accordingly. Specifically, as compared to the traditional data
center network, the average E2E delay achieved by LEARN
is improved by 75.79%, 93.12%, 97.27%, and 98.59% when
the value of is selected to be 1, 2, 3, and 4, respectively.
Note that κ = 1 (i.e., there is one replica for each UE)
indicates the location of each Avatar is fixed (i.e., the Avatar
is placed in the location where its UE most visit) and the
Avatar cannot handoff among the cloudlets because no extra
replicas are placed in other cloudlets. Also, when the value
of κ is greater than 4, the decrement of the E2E delay by
increasing the value of κ is not significant. We further analyze
the mobility trace by calculating at least how many locations,
i.e., the BSs’ coverage area, that each UE will stay over 90%,
95% and 99% of the time during the day, respectively. As
shown in Fig. 5, 92.22%, 86.93% and 75.65% of the UEs
spend 90%, 95% and 99% of the time during the day (in
terms of 21.6, 22.8 and 23.76 hours) to stay at only four
locations, respectively. Thus, placing five replicas for the UEs
may not significantly benefit the average E2E delay during the
day as compared to placing four replicas. Note that placing
more replicas for each Avatar may increase the CAPEX to
the cloudlet network provider by deploying more storage
resources. Also, allocating more replicas for each Avatar may
generate more synchronous traffic, and thus increase the traffic
load of the cloudlet network.

B. Performance of the LEAD algorithm

We further evaluate the performance of our proposed LEAD
algorithm. Each Avatar’s replicas have already been placed
to the corresponding cloudlets, which are calculated by the
LEARN algorithm. Still, UEs’ mobilities and the locations
of the BSs follow the mobility traces that we have sampled
from the real world. By applying the mobility traces, the
location indicator vector for all UEs (i.e., the values of L) in
different time slots during the day can be obtained. Initially,
we setup the capacity of all the cloudlet to be the same, i.e.,
∀k ∈ K, qk = 10 (each cloudlet can host at most 10 Avatars in
each time slot). We first test the average E2E delay between
UEs and their Avatars during the day. As shown in Fig. 7,
as compared to the results of the LEARN algorithm6 (which
generates the optimal average E2E delay between UEs and

6We consider the average E2E delay of the LEARN algorithm as the lower
bound in terms of the best case scenario of the LEAD algorithm.

their Avatars without considering the capacity constraints), the
average E2E delay generated by the LEAD algorithm is in-
creased because some Avatars cannot handoff to their optimal
cloudlets (due to the cloudlet capacity limitation) when the
UEs roam away. Consequently, these Avatars need to handoff
to their suboptimal cloudlets or to the remote data center.
Note that as the number of replicas increases, the average E2E
delay decreases accordingly. This is because as the number of
replicas increases, the Avatars, whose optimal cloudlets exceed
their capacity limitation, have higher probability to handoff to
their suboptimal cloudlets with lower E2E delay. For instance,
as shown in Fig. 6, assume there are two Avatar’s replicas
that have been optimally placed in cloudlet A and cloudlet B.
Suppose the optimal location of the Avatar is cloudlet A at the
current time slot but the cloudlet A is full, and so the Avatar
needs to handoff to the suboptimal cloudlet, which is cloudlet
B; this may increase the E2E delay between the Avatar and its
UE, and we denote the E2E delay increment as tA−B . Then,
if there are one more Avatar’s replicas that have been placed
in the cloudlet C, and so the Avatar can be handed off to the
suboptimal cloudlet, which can be cloudlet B or cloudlet C.
Thus, the E2E delay increment by handing off the Avatar to the
suboptimal cloudlet is min{tA−B , tA−C}, where tA−C is the
E2E delay increment by handing off the Avatar to cloudlet
C. Obviously, tA−B ≥ min{tA−B , tA−C}. Therefore, the
average E2E delay between UEs and their Avatars decreases
when the number of the replicas increases.

Note that, as mentioned in Sec. IV-B, the LEAD algorithm
cannot guarantee that all the Avatars can be handed off to
their available cloudlets, i.e., some Avatars need to be handed
off to the remote data center, which is the main factor of
increasing the average E2E delay because the average E2E
between the UEs and the remote data center reaches 254.8
ms, which is significantly longer than the average E2E delay
produced by the LEAD algorithm. Thus, we further test the
average number of the remote Avatars, which are defined as the
Avatars that have to be handed off to the remote data center,
during the day. As shown in Fig. 8, the average number of
the remote Avatars decreases as the number of each Avatar’s
replicas increases. This is because that the probability (that
all the Avatar’s available cloudlets are full) decreases as the
number of the Avatar’s replicas increases.

As mentioned previously, the average E2E delay of the
LEAD algorithm is longer than that of the LEARN algorithm
because LEARN does not consider the capacity limitation of
the cloudlets. In other words, owing to the capacity constraints,
some Avatars cannot be handed off to their optimal cloudlets,
thus resulting in the average E2E delay growth in LEAD.
In order to study how the cloudlet capacity impacts the
performance of the LEAD algorithm. We further record the
average E2E delay of the LEAD algorithm by changing the
capacity of each cloudlet. As shown in Fig 9, when the cloudlet
capacity increases (from 6 to 16), the average E2E delay of
the LEAD algorithm improves tremendously. As the cloudlet
capacity reaches 16, the average E2E delay of the LEAD
algorithm does not improve significantly. This is because most
of the Avatars can be handed off to their optimal cloudlets
as their UEs roam away. Although increasing the cloudlet
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Fig. 4. The average E2E delay of the cloudlet network by applying LEARN
and that of the traditional big data network.

Fig. 5. The statistical results of the UE mobility trace.

Fig. 6. The illustration of the average E2E delay reduction.

capacity can improve the average E2E delay, the average
cloudlet utilization7 is reduced accordingly. As shown in Fig.
10, the average cloudlet utilization drops from 35% to 10.9%
as the cloudlet capacity increases from 6 to 26.

Therefore, there is a tradeoff between the average E2E
delay and the cloudlet utilization. In order to optimize the
tradeoff, the capacity of different cloudlets should be varied.
Specifically, the cloudlets, whose connected BSs have higher
UE density (such as shopping malls and public transporta-
tions), should have larger capacity, and vice versa. Thus, in the
future, we will try to design a cloudlet deployment strategy to
determine the capacity of each cloudlet such that the average
cloudlet utilization can be maximized and the average E2E
delay is guaranteed.

VI. RELATED WORKS

Recently, telecommunications vendors have shown the great
interest on the concept of mobile edge computing (MEC).
European Telecommunications Standards Institute (ETSI) cre-
ated an industry initiative on MEC to standardize the MEC
platform by utilizing the concept of cloudlet. Also, in the
academic area, many works [35]–[39] have proposed to utilize
the cloudlet to reduce the E2E delay between users and
computing resources, and thus improve the performance of
MCC applications as well as big data networking. Chen et al.
[40] implemented a cognitive assistance application (which

7cloudlet utilization = total number of Avatars hosted by the cloudlet
the cloudlet capacity

provides step-by-step visual guidance for users to implement
a complex task) running in a wearable device (such as Google
Glass) with the help of cloudlet processing. The cloudlet is
deployed one wireless hop away to guarantee the stringent E2E
delay required by the applications. Quwaider and Jararweh
[41] developed a cloudlet-based wireless body area network.
The data streams generated by the users are transmitted to
the nearest cloudlet through WiFi. The cloudlet stores and
processes the data streams locally to reduce the latency as
well as the communications power consumption as compared
to the traditional cloud-based wireless body area network. Xu
et al. [42] proposed an efficient algorithm to optimally place a
fixed number of cloudlets among the wireless access points in
the wireless metropolitan area network while minimizing the
average access delay between mobile users and the cloudlets.
Ceselli et al. [43] also tried to optimally deploy a number of
cloudlets among the aggregation nodes and core nodes in the
cellular network in order to minimize the capital cost (i.e.,
installation costs) of the cloudlet providers while considering
the latency between users and their VMs in the cloudlets.

All the above papers do not consider how to optimally
handoff users’ Avatars/VMs among cloudlets when users are
roaming in the network. Dynamical Avatar/VM handoff is
critical in the cloudlet network because the E2E delay between
the users and their Avatars/VMs may become worse when
users roam away. Our previous work [15], [44] presented a
green cloudlet network architecture in which all the cloudlets
are powered by both green energy and on-grid energy. In order
to minimize the on-grid energy consumption, we proposed
to migrate the Avatars to the cloudlets with more green
energy generation and less energy demands while guaranteeing
the E2E delay requirement between users and their Avatars.
However, this work did not take the virtual disk migration
into consideration during the Avatar migration process and
the virtual disk migration may incur long E2E delay as well
as the network congestion as explained in Sec. II. In order to
avoid the virtual disk migration during the handoff process,
Ha et al. [21] proposed that a number of base VM images,
which contains a set of widely used software/content, are pre-
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Fig. 7. The average E2E delay of LEAD and LEARN. Fig. 8. The average number of remote Avatars.

Fig. 9. The average E2E delay over different cloudlet capacities. Fig. 10. The average cloudlet utilization over different cloudlet capacities.

deployed in each cloudlet. Thus, once the user’s VM is handed
off to another cloudlet, only the VM overlay (which is defined
as the difference between the user’s VM and the base VM
images in the cloudlet) need to be migrated over the network.
However, the VM handoff time is still rather long if the user’s
VM has a huge amount of private VM overlay. Moreover, in
our cloudlet network, each Avatar should store and process its
UE’s private data (such as photos, GPS information as well as
sensing data streams), which would incur larger VM overlay.

As compared to these previous efforts, this paper presents
several enhancements. First, we have proposed the cloudlet
network architecture by bringing the computing and storage
resources close to UE in order to reduce the E2E delay
between UEs and computing resources. Second, each UE is
assigned a dedicated VM in terms of the Avatar to process its
own data and applications. Meanwhile, each UE can access
its Avatar seamlessly based on the cloudlet network. Third, in
order to facilitate Avatar handoff (by avoiding the virtual disk
migration) and maintain low average E2E delay between UEs
and their Avatars, we have designed the LEARN algorithm
to place a number of replicas into suitable cloudlets. Fourth,
considering the capacity limitation of each cloudlet, we have
proposed the LEAD algorithm to optimize the locations of all

the Avatars in each time slot in order to minimize the average
E2E delay for all the UEs and their Avatars during each time
slot.

VII. CONCLUSION

In this paper, we have proposed the cloudlet network
architecture to facilitate big data networking as well as mobile
cloud computing. Specifically, each UE can access its own
Avatar, which is considered as private computing and storage
resources for the UE, with the low E2E delay. In order to
maintain the low E2E delay when UEs roam away, their
Avatars should be handed off among cloudlets accordingly.
However, migrating the high volume of the Avatar’s virtual
disk during the handoff process incurs unbearable handoff
time, which may significantly degrade the E2E delay as well
as the performance of the Avatar. Also, migrating the Avatar’s
virtual disk during the handoff process may tremendously
increase the traffic in the SDN based cellular core. Thus, in
order to avoid the virtual disk migration during the handoff
process, we have proposed to place a number of replicas of the
Avatar’s virtual disk among the cloudlets so that the Avatar can
be handed off among its available cloudlets (which contain one
of the Avatar’s replicas) based on its UE’s location. We have
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designed the LEARN algorithm to optimally place the replicas
among the cloudlets for each Avatar so that the average E2E
delay between the Avatar and its UE is minimized during the
day. Moreover, after optimally deploying the replicas for each
Avatar, we have designed the LEAD algorithm to determine
the locations of all the Avatars in each time slot so that the
average E2E delay between all the UEs and their Avatars is
minimized in each time slot, while the capacity of the each
cloudlet is not violated. The simulation results demonstrate
that applying the LEARN algorithm in the cloudlet network
architecture can significantly reduce the average E2E delay
between UEs and their Avatars during the day as compared to
the traditional centralized cloud architecture (i.e., all the UEs’
Avatars are located in the central cloud). Furthermore, the
LEAD algorithm can still maintain the low average E2E delay
by selecting suitable parameters in terms of the number of the
replicas for each Avatar and the capacity of each cloudlet. Note
that handing off a UE’s Avatar among its available cloudlets
when the UE roams away may still generate an extra overhead
[10], e.g., the extra traffic for migrating Avatar’s memory to
the destination cloudlet. Thus, there is a tradeoff between
minimizing the E2E delay (between a UE and its Avatar)
and minimizing the extra overhead. To optimize this tradeoff,
various aspects shall be considered, i.e., the memory utilization
of the UE’s Avatar, the network condition in the SDN-based
cellular core network, etc.

We have demonstrated that the tradeoff between the average
E2E delay and the average cloudlet utilization through the
simulations. Thus, in the future, we will study the cloudlet
placement problem, i.e., determining the suitable capacity for
each cloudlet, to optimize this tradeoff. Moreover, the number
of the replicas can also be varied among different UEs and
the suitable number of replicas can be selected based on the
UE’s behavior.
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