
Green Cloudlet Network: A Sustainable Platform for Mobile Cloud
Computing

__

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

This material is presented to ensure timely dissemination of scholarly and
technical work. Copyright and all rights therein are retained by authors or by
other copyright holders. All persons copying this information are expected to
adhere to the terms and constraints invoked by each author's copyright. In most
cases, these works may not be reposted without the explicit permission of the
copyright holder.

Citation:
X. Sun and N. Ansari, “Green Cloudlet Network: A Sustainable Platform for Mobile
Cloud Computing,” in IEEE Transactions on Cloud Computing, DOI:
10.1109/TCC.2017.2764463, early access.

URL:
https://ieeexplore.ieee.org/document/8074759/

1

Green Cloudlet Network: A Sustainable Platform for Mobile Cloud
Computing

Xiang Sun, Student Member, IEEE, and Nirwan Ansari, Fellow, IEEE
In the Green Cloudlet Network (GCN) architecture, each User Equipment (UE) is associated with an Avatar (a private virtual

machine for executing its UE’s offloaded tasks) in a cloudlet located at the network edge. In order to reduce the operational
expenditure for maintaining the distributed cloudlets, each cloudlet is powered by green energy and uses on-grid power as a
backup. Owing to the spatial dynamics of energy demands and green energy generations, the energy gap (i.e., energy demand
minus green energy generation) among different cloudlets in the network is unbalanced, i.e., some cloudlets’ energy demands can
be fully provisioned by their green energy generations but others need to utilize on-grid power to meet their energy demands. The
unbalanced energy gap increases the on-grid power consumption of the cloudlets. In this paper, we propose the Green-energy aware
Avatar Placement (GAP) strategy to minimize the total on-grid power consumption of the cloudlets by migrating Avatars among
the cloudlets according to the cloudlets’ residual green energy, while guaranteeing the service level agreement (the End-to-End
(E2E) delay requirement between a UE and its Avatar). Simulation results show that GAP can save 57.1% and 57.6% of on-grid
power consumption as compared to the two other Avatar placement strategies, i.e., Static Avatar Placement and Follow me AvataR,
respectively.

Index Terms—Mobile cloud computing, cloudlet, energy optimization, Avatar placement, migration.

I. INTRODUCTION

The emergence of Mobile Cloud Computing (MCC) [1],
[2] is enabling User Equipments (UEs) to offload their
computation-intensive tasks (e.g., augmented reality, natural
language translation, face and object recognition, dynamic
activity interpretation, and body language interpretation) to a
data center, which provisions flexible resource allocation and
efficient parallel computing [3], [4]. The data center can help
UEs execute these tasks to reduce the task execution time
and the energy consumption of UEs. However, the existing
MCC architecture, as shown in Fig. 1, suffers from the long
End-to-End (E2E) delay between a UE and a remote data
center because the communications between a UE and the
remote data center usually traverses the Internet, which incurs
unbearable and uncontrollable E2E delay (especially during
peak hours). Note that the E2E delay is a critical Quality of
Service (QoS) parameter in provisioning MCC applications. It
is reported that augmented reality applications require an E2E
delay of less than 16 ms [5] and virtual desktop applications
require an E2E delay of less than 60 ms [6].

Fig. 1. The existing MCC architecture.

X. Sun and N. Ansari are with the Advanced Networking Lab., Helen
and John C. Hartmann Department of Electrical & Computer Engineering,
New Jersey Institute of Technology, Newark, NJ 07102, USA. E-mail:{xs47,
nirwan.ansari}@njit.edu.
This work was supported in part by NSF under grant no. CNS-1320468.

In order to maintain low E2E delay between UEs and
computing resources, a green cloudlet network architecture [7]
was proposed, in which computing resources are placed close
to UEs. Specifically, as shown in Fig. 2, each Base Station
(BS) in the mobile network is connected to a cloudlet, which
is considered as a self-maintained tiny data center comprising
a number of interconnected Physical Machines (PMs) [8],
[9]. Since BSs have already been deployed in the network
and provide seamless wireless connections for UEs, UEs can
actually offload their computation-intensive tasks to nearby
cloudlets via one wireless hop [10]. This can tremendously
reduce the E2E delay between UEs and computing resources.
In order to preserve privacy when UEs offload their tasks
to cloudlets, each UE is associated with a dedicated Avatar
to execute its offloaded tasks [11]. An Avatar is considered
as a private high performance Virtual Machine (VM), which
comprises two parts, i.e., baseVM and overlayVM. baseVM is
a minimally configured guest Operating System (OS) running
on top of hardware implementations in a PM; normally, the
guest OS of an Avatar is the same as the one of its UE such
that the Avatar can run unmodified application components
in its UE [12]. overlayVM, whose size is much smaller than
baseVM, contains the private data of its UE, such as the MCC
applications and the states of these MCC applications. The
detailed configuration of an Avatar can be found in [13].

Note that Avatars can not only execute the offloaded tasks
from their UEs but also analyze the data streams sensed by
their UEs [14]. A typical example of utilizing GCN to analyze
the big data is the terrorist localization application [15], which
is to identify and trace terrorists by analyzing the photos and
videos captured by UEs. Specifically, the terrorist localization
application (which is to identify and trace terrorists) would
send the terrorists’ photos to each Avatar, which runs the
face matching algorithm locally to compare the recent photos
and videos (which are captured and uploaded from UEs)
with the terrorists’ photos. If matched, the information (i.e.,
the locations and timestamps) of the photos/videos would be

2

Fig. 2. The GCN architecture.

uploaded to the terrorist localization application for further
processing. As compared to the traditional method (where all
the captured photos and videos would be uploaded to a remote
data center for further processing), GCN based distributed
big data processing can substantially reduce the traffic of
the network and the response time for identifying terrorists.
Therefore, an Avatar plays two roles in GCN, i.e., the big
data analyzer and the MCC application outsourcer of its UE.

On the top of cloudlets and BSs, Software Defined Net-
work (SDN) based cellular core network [16], [17] has been
introduced to replace the traditional cellular core network to
establish efficient and flexible communications paths between
Avatars in different cloudlets as well as between UEs in
different BSs. In the SDN based cellular core, a number of
OpenFlow switches are interconnected together to provision
data plane functionalities (e.g., packet routing). All the control
functions are extracted from OpenFlow switches and cen-
tralized in the OpenFlow controller, which controls all the
OpenFlow switches based on the OpenFlow protocol [18].
The OpenFlow controller manages the forwarding plane of
BSs and OpenFlow switches, monitors the traffic at the data
plane, and establishes user sessions. Also, it provides applica-
tion programming interfaces (APIs) to network management
operators so that different network functionalities, such as
mobility management, user authentication, authorization and
accounting, network visualization, and QoS control, can be
added, removed, and modifed flexibly. Moreover, every UE
and its Avatar in a cloudlet can communicate with public data
centers via the Internet to provision scalability, i.e., if cloudlets
are not available for UEs because of the capacity limitation,
Avatars can be migrated to the remote data centers to continue
serving their UEs.

GCN facilitates the application workloads offloading pro-
cess as well as big data networking, but maintaining a number
of distributed cloudlets incurs a huge operational expenditure
(OPEX) to the cloudlet provider by paying an expensive
energy bill to the on-grid power suppliers. In order to reduce
on-grid power1, “greening” is introduced in GCN, i.e., each
cloudlet is powered by green energy, which is considered as
a “free” energy supply for the cloudlet provider, and uses on-

1Note that we assume GCN is a time-slotted system, and so ”power” and
”energy” are interchangeable in the rest of the paper.

grid power as a backup. The power supply system of each
cloudlet is shown in Fig. 2, in which the green energy collector
absorbs energy from renewal resources and converts it into
electrical power, the charge controller regulates the electrical
power from the green energy collector, and the electrical
power is converted between AC and DC by the inverters. The
smart meter records the electric energy from the power grid
consumed by the cloudlet and BS.

A. Avatar Migration in GCN

Avatars can be statically deployed in their initiated cloudlets
even if their UEs roam far away from the BSs, whose con-
nected cloudlets contain these Avatars. Static Avatar Placement
(SAP) may result in long E2E delay between UEs and their
Avatars. In order to minimize the E2E delay, Follow me
AvataR (FAR), which is inspired by the idea in [19], is
proposed to migrate a UE’s Avatar to the cloudlet (whose
connected BS is serving the UE) when the UE roams away.
As shown in Fig. 3, when a UE moves from BS-A’s coverage
area into BS-B’s coverage area, its Avatar is migrated from
Cloudlet A into Cloudlet B such that the E2E delay between
the UE and its Avatar can still be maintained at a low level.

Fig. 3. The illustration of migrating Avatars among cloudlets to reduce the
energy consumption from the power grid.

The Avatar migration process comprises two steps. First, the
guest OS (i.e., baseVM) is launched in the destination Avatar.
This can be achieved by waking up an asleep VM installed
with the corresponding guest OS. Second, the overlayVM
from the source Avatar is migrated to the destination Avatar.
As mentioned before, the overlayVM comprises the MCC
applications (which are installed in the source Avatar) and

3

the states of these MCC applications. The MCC applications
are stored in the virtual disk of the source Avatar and can be
proactively migrated to the destination Avatar. Specifically, a
UE is predicted to be in BS-B’s coverage area in the next
time slot, and thus a destination Avatar in Cloudlet B would
be created by launching the guest OS and transferring the
virtual disk of the source Avatar to the destination Avatar in
the current time slot. The states of the MCC applications are
stored in the virtual memory of the source Avatar. The virtual
memory is migrated when the Avatar migration is triggered
in the next time slot. Once the Avatar migration is completed
(i.e., the virtual memory and virtual disk of the source Avatar
have been transferred to the destination Avatar), the destination
Avatar, which incurs the low E2E delay to its UE, would start
to serve its UE by executing the offloaded tasks.

B. Unbalanced Energy Gap Among Cloudlets in GCN

Fig. 4. The illustration of migrating Avatars among cloudlets to reduce the
energy consumption from the power grid.

Owing to the spatial dynamics of the distribution of UEs
among different BSs’ coverage areas and the dynamics of
application workloads among Avatars, different cloudlets may
demand different amounts of energy for running the applica-
tion workloads of the hosting Avatars. Meanwhile, green en-
ergy generation also exhibits spatial dynamics among different
cloudlets [20], [21]. Therefore, some cloudlets, which have
less energy demand and more green energy generated, would
have excess of green energy. Conversely, some cloudlets,
which have more energy demands and less green energy
generated, would pull energy from the power grid. Such
unbalanced energy gap (i.e., energy demand minus green
energy generation) among different cloudlets increases the
total on-grid power consumption [22]. For instance, as shown
in Fig. 4, suppose there are three cloudlets, i.e., Cloudlet
A, Cloudlet B and Cloudlet C, and different cloudlets host
different numbers of Avatars in serving their local UEs.
Assume that each Avatar consumes one unit of energy and
each cloudlet generates three units of green energy in a time
slot. Obviously, Cloudlet B does not have enough green energy
to host four Avatars and needs to pull one unit of energy from
the power grid. However, if one of the Avatars in Cloudlet
B (e.g., Avatar 1) can be migrated to one of the other two

cloudlets, no extra energy from the power grid needs to be
drawn. Therefore, fully utilizing green energy can reduce
the on-grid power consumption in GCN, thus decreasing the
OPEX of the cloudlet provider.

In this paper, we are focusing on designing an efficient
Avatar placement strategy in the context of GCN by migrating
Avatars from the cloudlets with positive energy gap (i.e., with
energy demand higher than green energy generation) into the
cloudlets with negative energy gap (i.e., with energy demand
lower than green energy generation). Thus, the total on-grid
power consumption of GCN is minimized and the Service
Level Agreement (SLA), which is defined as the E2E delay
requirement between the UE and its Avatar, is guaranteed.

The rest of the paper is organized as follows. In Section
II, we briefly review the related works. In Section III, we set
up a power consumption model of a cloudlet in GCN and an
E2E delay model between a UE and its Avatar in the cloudlet,
upon which we formulate the Avatar placement problem to
minimize the total on-grid power consumption, and prove its
NP hardness. In Section IV, we propose the Green-energy
aware Avatar Placement (GAP) heuristic algorithm to solve
the problem. In Section V, we demonstrate the performance
and scalability of GAP via simulation results. The conclusion
is presented in Section VI.

II. RELATED WORKS

Offloading computing intensive tasks from resource con-
strained UEs to other computing facilities is intriguing to
reduce the energy consumption of UEs and task execution
time. Li and Wang [23] proposed that a UE (i.e., an initiator)
can offload its tasks to nearby UEs (i.e., UEs within one
wireless hop coverage to the initiator). However, owing to the
mobility of UEs and randomness of inter-contact time between
the initiator and other UEs, the initiator can only offload delay
tolerant tasks to nearby UEs. To overcome the drawbacks of
randomness of accessing computing facilities, the Mobile Edge
Computing (MEC) concept has been proposed to enable a UE
to offload its computing intensive tasks to facilities placed at
the mobile edge. Currently, many MEC frameworks have been
designed to achieve task offloading process to benefit UEs.
Satyanarayanan et al. [24] first proposed to apply a cloudlet
to execute tasks offloaded from local UEs. They designed a
system named Kimberley [24], whose architecture is applied to
design Avatars, to facilitate task offloading. The MAUI project
[25] provides method level code offloading based on the
.NET framework. Different from Kimberley, MAUI provides a
method to enable each UE in determining whether to offload
the source codes of an application (based on some context
information, i.e., the computing resource demands, execu-
tion time, network condition, and state transfer requirements)
such that the energy consumption of the UE is minimized.
CloneCloud [26] and ThinkAir [27] are designed for Java
applications written for Android based UEs in offloading their
tasks to cloudlets. ThinkAir focuses on how to efficiently
and flexibly request computing resources in cloudlets, while
CloneCloud takes the advantage of high compatibility, i.e.,
source codes of mobile applications can be executed in a VM

4

(in a nearby cloudlet) without any modification. Instead of
designing MEC frameworks to maximize the benefits from
UEs, Hoang et al. [28] designed an admission control scheme
of a cloudlet to determine which offloaded tasks should be
executed in the cloudlet. The admission control scheme is to
maximize the revenue for cloudlet service providers.

In order to solve the UE mobility problem (i.e., the E2E
delay between a UE and its Avatar becomes unbearable when
the UE roams far away from its original place), migrating
Avatars among cloudlets based on their UEs’ locations has
been proposed to reduce the E2E delay. Ha et al. [6] demon-
strated the feasibility of migrating an Avatar between two
cloudlets over the local area network. The results show that
the Avatar migration can be completed within one minute over
a 25 Mbps wired link. Sun and Ansari [16] proposed that
Avatars can be migrated among the cloudlets over SDN based
cellular core. They proposed an Avatar placement strategy
to optimize the tradeoff between the migration gain and the
migration cost. In order to reduce the Avatar migration cost
in terms of the extra traffic volume generated during the
migration, Sun and Ansari [29] proposed to place a number of
replicas of an Avatar’s overlayVM in the cloudlets, which are
commonly visited by UEs. This can significantly reduce the
migration time as well as the migration traffic. Our previous
work [7] introduces the concept of the GCN architecture by
powering each cloudlet with green energy to reduce the OPEX
of cloudlet network providers. However, it does not provide the
solution on how to fully utilize green energy among cloudlets.

As compared to the previous efforts, this paper has made
several contributions.
1) We demonstrate the unbalanced energy gap among different

cloudlets in GCN.
2) We formulate the Avatar placement problem, which is to

minimize the total on-grid power consumption of GCN
while guaranteeing the SLA in terms of the E2E delay
bound for each UE and its Avatar. We prove the Avatar
placement problem to be NP-hard.

3) We design a novel heuristic algorithm (i.e., GAP) to solve
the problem efficiently.

4) As the results generated by GAP are comparable to those
generated by CPLEX2 (which is considered to be the
optimal solution of the Avatar placement problem) in a
small-scale network deployment, we demonstrate that GAP
is a good heuristic algorithm to solve the problem.

5) We show the total amount of on-grid power consumption
incurred by GAP is less than that incurred by other
two Avatar placements, i.e., SAP and FAR. The results
prove that GAP can significantly reduce the on-grid power
consumption while guaranteeing the SLA.

III. SYSTEM MODEL

We assume that PMs in each cloudlet of GCN are ho-
mogeneous, i.e., the configuration of each PM is the same.

2CPLEX is a common commercial solver to generate near opti-
mal solutions of most optimization problems at the cost of long ex-
ecution time and huge CPU as well as memory resource require-
ments. The detailed description of CPLEX can be found in https://www-
01.ibm.com/software/commerce/optimization/cplex-optimizer/.

Meanwhile, the configuration of each UE’s Avatar is also
homogeneous, but the application workloads vary among
Avatars. Therefore, each PM can host a fixed number of
Avatars, but the application workloads in different PMs vary.

A. Cloudlet power consumption

Let I and K be the sets of UEs and cloudlets, respectively.
Denote xik as a binary variable to indicate whether UE i’s
Avatar (i ∈ I) is located in cloudlet k (i.e., xik = 1, where
k ∈ K) or not (i.e., xik = 0). Meanwhile, we assume the
power consumption of each PM is approximately linear with
respect to the PM’s CPU utilization [30], [31], i.e.,

pm = pidle + αµm, (1)

where pm is the power consumption of PM m, pidle is the
power consumption of the PM in the idle mode (i.e., the CPU
utilization of the PM is zero), µm is the CPU utilization of
PM m, and α is the power coefficient that maps the CPU
utilization into power consumption. The power consumption
of the cloudlet is equal to the sum of the awake PMs’ power
consumption. Since each PM can host a fixed number of
Avatars ϵ, the number of the awake PMs in cloudlet k is:

Mk =

∑
i∈I

xik

ϵ

 , (2)

where ⌈•⌉ is the ceiling function.
The power consumption of cloudlet k, denoted as pk, is:

pk =

Mk∑
m=1

pm = Mkp
idle + α

Mk∑
m=1

µm. (3)

Note that the total CPU utilization of the awake PMs in

cloudlet k (i.e.,
Mk∑
m=1

µm) is equal to the total CPU utilization

of the Avatars located in cloudlet k, i.e.,
Mk∑
m=1

µm =
∑
i∈I

µixik, (4)

where µi is the CPU utilization of UE i’s Avatar. By approx-

imating Eq. 2 into Mk ≈
∑
i∈I

xik

ϵ , the power consumption of
cloudlet k, i.e., Eq. 3, becomes:

pk =
∑
i∈I

(
pidle

ϵ
+ αµi

)
xik. (5)

Based on Eq. 5, we define the power consumption of UE
i’s Avatar, denoted as ρi, as:

ρi =
pidle

ϵ
+ αµi. (6)

B. E2E delay model

Maintaining the low E2E delay between a UE and its
Avatar is critical for MCC applications and real-time big data
networking. The proposed GCN architecture has the potential
to provide the low E2E delay between UEs and their Avatars.
However, UEs are roaming among BSs over time, and so
the E2E delay may worsen if their Avatars remain in their

5

original cloudlets. Also, as mentioned in Sec. I, the E2E delay
may become worse when Avatars migrate to the cloudlets
with more residual green energy. Therefore, it is necessary to
migrate the UE’s Avatar to a suitable cloudlet if the E2E delay
between the UE and its Avatar is larger than the predefined
SLA (i.e., the E2E delay bound). Note that the E2E delay
between a UE and its Avatar comprises three parts: first, the
E2E delay between a UE and its serving BS; second, the E2E
delay between the BS and the cloudlet which contains the UE’s
Avatar; third, the E2E delay within the cloudlet. Normally, the
E2E delay between the BS and the cloudlet is the main factor
in degrading the overall E2E delay. Thus, we refer to the E2E
delay between a UE and its Avatar as the E2E delay between
the BS (which is serving the UE) and the cloudlet (which
contains the UE’s Avatar) in the rest of the paper.

Let J be the set of BSs. Denote yij as a binary indicator to
indicate whether UE i is in BS j’s coverage area (i.e., yij = 1)
or not (i.e., yij = 0). Note that it has been demonstrated that
about 10% to 30% of all human movement can be accounted
for by their social relationship, while 50% to 70% is attributed
to periodic behaviors [32]; thus, we believe that the dynamics
of future human movement can be reliably predicted based on
the mathematical models [32]–[34]. Also, denote tjk as the
average E2E delay between BS j and cloudlet k. Note that
the value of tjk can be measured and recorded by the SDN
controller periodically [35], [36], and if j = k, we say that
cloudlet k is BS j’s attached cloudlet. Thus, the E2E delay
between UE i and its Avatar, denoted as τi, is:

τi =
∑
j∈J

∑
k∈K

yijtjkxik. (7)

C. Problem formulation
As mentioned earlier, energy demands and green energy

generations among different cloudlets exhibit spatial dynamics,
and so the energy demands of some cloudlets can be met
by green energy, but some cannot and need to consume on-
grid power. Such unbalanced energy gap among the cloudlets
results in more on-grid power consumption. Therefore, we
propose to schedule the placement of Avatars in GCN in each
time slot to balance the energy gap among the cloudlets, while
guaranteeing the SLA for each UE. Denote Gk as the green
energy generation of cloudlet k and denote nk as the total
number of PMs in cloudlet k; meanwhile, let φ be the SLA in
terms of the E2E delay bound. Then, we formulate the problem
as follows:

P0 : argmin
xik

∑
k∈K

max

{∑
i∈I

(
pidle

ϵ
+αµi

)
xik−Gk, 0

}
(8)

s.t. ∀i ∈ I,
∑
j∈J

∑
k∈K

yijtjkxik ≤ φ, (9)

∀k ∈ K,
∑
i∈I

xik ≤ ϵnk, (10)

∀i ∈ I,
∑
k∈K

xik = 1, (11)

∀i ∈ I ∀k ∈ K, xik ∈ {0, 1} , (12)

where
∑
i∈I

(
pidle

ϵ +αµi

)
xik in Eq. 8 is the power consumption

of cloudlet k, max

{∑
i∈I

(
pidle

ϵ +αµi

)
xik−Gk, 0

}
is the on-

grid power consumption of cloudlet k, and thus the objective
is to minimize the total on-grid power consumption of all
the cloudlets in GCN. Constraint (9) imposes the E2E delay
between each UE and its Avatar not to be larger than the
predefined SLA; Constraint (10) imposes the total number of
Avatars assigned to the cloudlet not to exceed the cloudlet’s
capacity; Constraint (11) imposes each Avatar to be placed in
only one cloudlet.

The solution to Problem P0 is to determine the placement
of each Avatar in the next time slot. If an Avatar will be
placed in Cloudlet A in the next time slot but is placed in
Cloud B in the current time slot, we say the Avatar will be
migrated from Cloudlet A into Cloudlet B. The whole schedule
of migrating the Avatar from Cloudlet A into Cloudlet B is
shown in Fig. 5. Specifically, 1) if a UE’s Avatar is determined
to migrate from Cloudlet A into Cloudlet B, a new VM would
be resumed in Cloudlet B and is considered as the destination
Avatar (which will serve its UE in the next time slot) of the
UE; 2) after resuming the destination Avatar, the source Avatar
(which is currently serving the UE in Cloudlet A) starts to
migrate its virtual disk (i.e., the installed MCC applications)
to the destination Avatar in the current time slot. Migrating
the virtual disk can be optimally scheduled, i.e., the virtual
disk can be scheduled and migrated as long as the source
Avatar currently has enough available bandwidth. Virtual disk
migration needs to be completed during the current time slot;
3) once the next time slot starts, the source Avatar begins to
migrate its virtual memory (i.e., the states of the installed MCC
applications) to the destination Avatar; 4) after virtual memory
migration finishes, the destination Avatar starts to serve the UE
and the source Avatar may go to sleep.

Fig. 5. Avatar migration schedule.

Note that we do not consider the energy consumption for
conducting Avatar migration because the total energy con-
sumption of each cloudlet depends on the energy consumption
of its hosting PMs, whose energy consumption is mainly
determined by their CPU utilization [30], [31], [41]–[43].
Yet, the Avatar migration process is considered as a network
intensive application running on both source and destination
Avatars [16], [44], i.e., the Avatar migration process does
not significantly affect the CPU utilization of both source
and destination Avatars, and thus the energy consumption for
conducting Avatar migration is assumed to be negligible.

6

Theorem 1. The problem of minimizing the on-grid power
consumption of GCN (i.e., P0) is NP-hard.

Proof: Suppose there are 2 cloudlets in GCN (i.e., |K| =
2) and the capacity of each cloudlet is large enough to host
all the UEs’ Avatars in the network. Meanwhile, every Avatar
can be placed in any of the two cloudlets without violating
the SLA. Moreover, assume the green energy generation of
each cloudlet is the same, and it is equal to half of the
total energy demands of the network, i.e., G1 = G2 =
1
2

∑
i∈I

(
pidle

ϵ + αµi

)
. Thus, P0 can be transformed into:

P1 : argmin
xik

2∑
k=1

max

{∑
i∈I

(
pidle

ϵ
+ αµi

)
xik −Gk, 0

}
s.t. Constraints (11), (12).

Obviously, the optimal solution of P1 is to place the Avatar
into the two cloudlets so that the total energy demands of
the two cloudlets are the same, i.e.,

∑
i∈I

(
pidle

ϵ + αµi

)
xi1 =∑

i∈I

(
pidle

ϵ + αµi

)
xi2 = G1 = G2. Thus, P1 is equivalent

to the partition problem, which is a well-known NP-hard
problem. Therefore, we conclude that the partition problem
is reducible to P0, and so P0 is NP-hard.

IV. GREEN-ENERGY AWARE AVATAR PLACEMENT (GAP)

In this section, we propose a heuristic algorithm, namely,
Green-energy aware Avatar Placement (GAP), to find the
suboptimal solution of P0. Generally, GAP comprises two
steps. In the first step, GAP tries to find the feasible Avatar
placement, denoted as X = {xik|i ∈ I, k ∈ K}, so that
Constraints (9)–(12) are satisfied. In the second step, based
on the Avatar placement generated in the first step, GAP tries
to shift the energy demands (i.e., migrating Avatars) among
cloudlets so that the on-grid power consumption is minimized
while the SLA and each cloudlet’s capacity requirement are
satisfied.

A. Feasible Avatar placement

As mentioned previously, GAP tries to find the feasible
Avatar placement in the first step. However, there is no
guarantee that the feasible Avatar placement exists in any
scenario. For instance, as shown in Fig. 6, there are 4 UEs
and each UE’s Avatar is placed in its nearby cloudlet. Assume
the capacity of each cloudlet is 3 (each cloudlet can host
3 Avatars) and φ = 0 (which indicates that if a UE roams
from source BS into destination BS, its Avatar should be
migrated to the cloudlet associated with the destination BS
in order to satisfy the SLA). Then, we consider the case
that UE A roams from BS 1 into BS 2, and so UE A’s
Avatar should migrate to Cloudlet 2 in order to guarantee the
SLA. However, Cloudlet 2 cannot host any Avatar without
violating its capacity limitation. Thus, obviously, there is no
feasible Avatar placement that can satisfy Constraints (9)–(12)
simultaneously in this scenario. Therefore, we try to minimize
the number of Avatars, which violate the SLA.

Fig. 6. The scenario with no feasible Avatar placement.

Definition 1. If UE i’s Avatar is placed in cloudlet k and the
E2E delay between UE i and its Avatar does not exceed the
SLA φ, we say cloudlet k is UE i’s feasible cloudlet. Denote
Ki as UE i’s feasible cloudlet set, which contains all the UE

i’s feasible cloudlets, i.e., Ki =

{
k|

∑
j∈J

yijtjk ≤ φ

}
.

Based on Def. 1, we define bik as the profit for placing UE
i’s Avatar into cloudlet k, i.e.,

∀i ∈ I,∀k ∈ K,

{
bik = 1, if k ∈ Ki,

bik = 1
|I|

φ∑
j∈J

yijtjk
, ifk ∈ K\Ki,

(13)
where |I| is the total number of UEs in the network. Eq. 13
indicates that if UE i’s Avatar is placed in one of the UE
i’s feasible cloudlets (i.e., the SLA is not violated), the GCN
provider can obtain one unit profit (i.e., bik = 1). Otherwise,
the GCN provider only obtains 1

|I|
φ∑

j∈J
yijtjk

unit of profit.

Note that the SLA is violated by placing UE i’s Avatar in
cloudlet k for k ∈ K\Ki, and so φ∑

j∈J
yijtjk

< 1. Assume

there are a huge number of UEs in GCN (i.e., 1
|I| → 0), then

bik → 0 (k ∈ K\Ki). Therefore, we can formulate the feasible
Avatar placement problem, denoted as P2, as follows:

P2 : argmax
xik

∑
i∈I

∑
k∈K

bikxik (14)

s.t. Constraints (10), (11), (12).

The objective of P2 is to maximize the total profit of the
GCN provider. In order to achieve the goal, UE’s Avatars are
preferred to be placed in the their feasible cloudlets as much
as possible. This is equivalent to the goal of minimizing the
number of the Avatars, which violate the SLA.

In order to efficiently solve P2, we design a FeasiblE
Avatar placemenT (FEAT) algorithm, as shown in Algorithm
1. Specifically, FEAT comprises two parts: in the first part
(i.e., Step 1 in Algorithm 1), without considering the cloudlet
capacity constraint, each UE’s Avatar is placed in one of the
UE’s feasible cloudlets that has the largest residual capacity
(we define cloudlet k’s residual capacity as ck = ϵnk−

∑
i∈I

xik)

to host the Avatars. This is done by balancing the residual
capacity among the cloudlets so that the number of cloudlets,
whose hosting Avatars exceed their respective capacities, is
minimized after all the Avatars have been placed. However,
the mentioned Avatar placement is not the feasible solution

7

of P2. FEAT needs to adjust the placement to satisfy the
capacity constraint for each cloudlet while minimizing the
profit reduction.

After all the Avatars are placed in their feasible cloudlets,
we separate the cloudlets into two sets, denoted as Z1 and
Z2. The cloudlets in Z1 violate their capacity limitations,

i.e., Z1 =

{
k|

∑
i∈I

xik > ϵnk

}
, and the cloudlets in Z2

still have enough space to host the Avatars, i.e., Z2 ={
k|

∑
i∈I

xik < ϵnk

}
. In the second part (Steps 3 − 8 in

Algorithm 1), FEAT tries to move a suitable Avatar from
cloudlet k ∈ Z1 to a suitable cloudlet in Z2 (so that the
profit reduction is minimized) in each iteration until none of
the cloudlets violate their capacity limitations, i.e., |Z1| = ∅.
Specifically, denote I

′
as the set of UEs, whose Avatars are

placed in the cloudlets in Z1.

Definition 2. For each i ∈ I
′
, if ki (ki ∈ Z2) is the cloudlet,

which generates the maximum profit biki by hosting UE i’s
Avatar, i.e., ki = argmax

k
{bik|k ∈ Z2}, we say ki is UE i’s

alternative cloudlet and biki
is UE i’s alternative profit. Note

that if there are many cloudlets in Z2 that generate the same
maximum profit with respect to UE i’s Avatar, we will pick
the cloudlet with the maximum residual capacity as UE i’s
alternative cloudlet; if more than one cloudlet has the same
maximum profit and the same residual capacity with respect
to UE i’s Avatar, we will randomly pick the one among those
cloudlets as UE i’s alternative cloudlet.

Based on Def. 2, for each UE i ∈ I
′
, FEAT can find its

alternative cloudlet in Z2. In order to minimize the profit
reduction, FEAT will pick a suitable Avatar, which is originally
placed in Z1, and move it into its alternative cloudlet based
on the following definition.

Definition 3. In order to minimize the profit reduction
after the Avatar replacement, FEAT will pick the Avatar,
which has the maximum alternative profit (i.e., i =

argmax
i′

{
i′|bi′ki′ , i

′ ∈ I
′
}

), and move it into its alternative

cloudlet. Note that if more than one Avatar has the same
maximum alternative profit, we will pick the Avatar, whose
alternative cloudlet has the maximum residual capacity, and
move it into its alternative cloudlet; if more than one Avatar
has the same maximum alternative profit and their alternative
cloudlets have the same residual capacity, we will randomly
pick the one among those Avatars and move it into its
alternative cloudlet.

After moving the suitable Avatar, which is selected based on
Def. 3, into its alternative cloudlet, two cloudlet sets (i.e., Z1

and Z2) and the Avatars’ alternative cloudlets will be updated
accordingly. FEAT will iteratively move the suitable Avatar
into its alternative cloudlet until |Z1| = ∅. The following
lemma proves the convergence of the FEAT algorithm:

Lemma 1. If |I| ≤
∑

k∈ K
ϵnk, FEAT converges and produces

a feasible solution of P2 after a finite number of iterations.

Proof: |I| ≤
∑

k∈ K
ϵnk implies the capacity of the total

cloudlets in GCN is no less than the total number of Avatars.
Thus, for each UE i ∈ I

′
, there always exists an alternative

cloudlet k ∈ Z2 for UE i so that FEAT can move UE i’s
Avatar from its original cloudlet (whose number of hosting
Avatars exceeds its capacity limitation) into its alternative
cloudlet k (which has enough space to host at least one
Avatar).

Denote ϑ as the number of excessive Avatars (note that
the number of excessive Avatars equals to the total number
of Avatars hosted by the cloudlets in Z1 minus the total
capacity of these cloudlets) generated in the first part of FEAT
(i.e., Step 1 in Algorithm 1), i.e., ϑ =

∑
k∈Z2

(xik − ϵnk),

where ϑ ≤ ϵnk. In each iteration of the second part of FEAT
(Steps 4 − 7 in Algorithm 1), one excessive Avatar will be
moved into its alternative cloudlet (which is proven to exist if
|I| ≤

∑
k∈ K

ϵnk), i.e., ϑ = ϑ − 1. FEAT will terminate when

ϑ = 0, which implies |Z1| = ∅.
Note that the complexity of FEAT depends on the

number of iterations and the complexity of each itera-
tion (i.e., the complexity of Steps 4 − 7 in Algorithm
1) in the algorithm. Specifically, O (|K|) is the complex-
ity of Step 4 in Algorithm 1, O (|I| |K|) is the com-
plexity of Step 5, O (|I|) is the complexity of Step 6,
and O (1) is the complexity of Step 7. Meanwhile, there
are at most |I| iterations, and thus the complexity of
FEAT is |I| (O (|K|) +O (|I| |K|) +O (|K|) +O (1)) =

O
(
|I|2 |K|

)
.

Algorithm 1 FEAT algorithm
Input: 1) The location vector for all the UEs in GCN, i.e.,

Y = {yij |i ∈ I, j ∈ J }. 2) The average E2E delay
vector T = {tjk|j ∈ J , k ∈ K}.

Output: The Avatar placement vector for all the UEs, i.e.,
X i = {xik|i ∈ I, k ∈ K}.

1: Place each UE into one of its feasible cloudlets.
2: Initialize Z1 and Z2.
3: while |Z1| ̸= ∅ do
4: Update I

′
;

5: Update the alternative cloudlet and alternative profit
for each UE i’s Avatar (i ∈ I

′
) based on Def. 2;

6: Select a suitable UE i’s Avatar (i ∈ I
′
) based on Def.

3 and move it into its alternative cloudlet;
7: Update Z1 and Z2;
8: end while
9: return X i.

B. Balancing the energy demands among the cloudlets

By applying the FEAT algorithm, we can find the feasible
solution of P2, i.e., minimizing the number of Avatars (which
violate the SLA) while guaranteeing the capacity limitation of
each cloudlet. However, the energy gap (energy demand minus
green energy generation) among the cloudlets in GCN is still

8

unbalanced, which may tremendously increase the total energy
consumption of GCN. In the second part of our proposed GAP
algorithm, we try to adjust the Avatar placement in order to
balance the energy gap among the cloudlets, while ensuring
the SLA as well as the capacity limitation for each cloudlet.

Denote X = {xik|i ∈ I, k ∈ K} as the Avatar place-
ment vector, which is generated by FEAT. We define two
cloudlet sets, denoted as Ω1 and Ω2, where cloudlets in
Ω1 lack green energy and need to pull the energy from
the power grid to satisfy the their energy demands, i.e.,

Ω1 =

{
k|

∑
i∈I

(
pidle

ϵ + αµi

)
xik −Gk < 0, k ∈ K

}
, while

cloudlets in Ω2 have superfluous green energy, i.e., Ω2 ={
k|

∑
i∈I

(
pidle

ϵ + αµi

)
xik −Gk > 0, k ∈ K

}
. The basic idea

of GAP is to iteratively select a suitable Avatar, which is
placed in a cloudlet in Ω1, and move it to a suitable cloudlet
in Ω2 in order to reduce the on-grid power consumption while
satisfying the SLA as well as the capacity limitation.

Definition 4. Denote I
′′

as the set of UEs, whose Avatars
are placed in the cloudlets in Ω1. We define the available
cloudlet set for UE i’s Avatar (where i ∈ I

′′
) as the set

of cloudlets in Ω2, each of which has space to host UE
i’s Avatar, while satisfying the SLA requirement, i.e., ai ={
k|

∑
i′∈I

xi′k + 1 ≤ ϵnk,
∑
j∈J

yijtjk ≤ φ, k ∈ Ω2

}
, where ai

is the available cloudlet set for UE i’s Avatar and each
cloudlet in ai is the available cloudlet for UE i’s Avatar.

In order to reduce the on-grid power consumption, GAP
can move UE i’s Avatar (i ∈ I

′′
) from its original cloudlet

into one of its available cloudlets in Ω2. Since there are
probably more than one available cloudlets for UE i’s Avatar
(i.e., |ai| > 1), GAP will select the available cloudlet with
the maximum residual green energy to host UE i’s Avatar in
order to balance the energy gap among cloudlets. We define
this available cloudlet, denoted as ςi, as the backup cloudlet
for UE i’s Avatar, i.e.,

ςi = argmax
k∈ai

{Gk − pk} , (15)

where Gk is the green energy generation of cloudlet k and
pk is the energy demand of cloudlet k, which can be obtained
from Eq. 5. Denote ∆i (i ∈ I

′′
) as the total amount of on-grid

power savings by migrating UE i’s Avatar from its original
cloudlet into its backup cloudlet ςi, i.e.:

∆i =
∑
k∈Ω1

xik (pk−Gk)−max

{ ∑
k∈Ω1

xik (pk−Gk−ρi), 0

}
+max {(pςi−Gςi+ρi) , 0} , (16)

where ρi is the energy demand of UE i’s Avatar, which
can be derived based on Eq. 6;

∑
k∈Ω1

xik (pk−Gk)

implies the total on-grid power consumption of
the cloudlet, in which UE i is originally placed;{
max

[∑
k∈Ω1

xik (pk−Gk−ρi), 0

]
+max [(pςi−Gςi+ρi) , 0]

}

indicates the total on-grid power consumption of the original
cloudlet and the backup cloudlet for UE i’s Avatar after

the migration, where max

{ ∑
k∈Ω1

xik (pk−Gk−ρi), 0

}
refers to the on-grid power consumption of the original
cloudlet by removing the energy demands of UE i’s Avatar
and max {(pςi−Gςi+ρi) , 0} refers to the on-grid power
consumption of backup cloudlet ςi by adding the energy
demands of UE i’s Avatar. If UE i’s Avatar does not have
its backup cloudlet (i.e., the available cloudlet set of UE i’s
Avatar is empty), ∆i = 0.

In each iteration, GAP would select the Avatar, which can
save the maximum on-grid power consumption, and move it
into its backup cloudlet. Denote i∗ as the selected UE’s Avatar
in the current iteration, i.e.,

i∗ = argmax
i

{
∆i|i ∈ I

′′
}
. (17)

GAP continues to select a suitable Avatar and move it
into its backup cloudlet until max

{
∆i|i ∈ I

′′
}

= 0, which
indicates that GAP cannot reduce the on-grid power consump-
tion by moving any Avatar into its backup cloudlet. GAP is
summarized in Algorithm 2. The following lemma proves the
convergence of the GAP algorithm.

Lemma 2. GAP produces a feasible Avatar placement with
respect to P0 after a finite number of iterations.

Proof: For each iteration, GAP will select UE i∗’s Avatar
(where i∗ is determined by Eq. 17) and move it into its backup
cloudlet in order to save e units of on-grid power consumption,
where e = ∆i∗ = max

{
∆i|i ∈ I

′′
}

. For any UE i’ Avatar

(i ∈ I
′′

) whose available cloudlet set is not an empty set (i.e.,
ai = ∅), we have

max

{ ∑
k∈Ω1

xik (pk−Gk−ρi), 0

}
<

∑
k∈Ω1

xik (pk−Gk).

Thus,

∆i =
∑
k∈Ω1

xik (pk−Gk)−max

 ∑
k∈Ω1

xik (pk−Gk−ρi), 0

+max {(pςi−Gςi+ρi) , 0}

>
∑
k∈Ω1

xik (pk −Gk)−
∑
k∈Ω1

xik (pk −Gk) = 0.

Thus, if ai = ∅, ∆i = 0; otherwise, ∆i > 0. Consequently,
if the available set of any UE i’s Avatar (i ∈ I

′′
) is an empty

set, e = 0 (note that if e = max
{
∆i|i ∈ I

′′
}
= 0, the GAP

algorithm is terminated/has converged); otherwise, e > 0. In
other words, in order to keep the GAP algorithm running, e
should be larger than 0.

Consider that if GAP does not converge, i.e., the total num-

ber of the iterations n → +∞, then
+∞∑
n=1

en → +∞. Denote E

(E ≪ +∞) as the total on-grid power consumption for apply-
ing the Avatar placement based on the FEAT algorithm; denote
E∗ (E ≥ E∗ ≥ 0) as the optimal on-grid power consumption
for solving P0. Thus, we have

∑
n
en ≤ E−E∗ ≤ E ≪ +∞,

9

which contradicts the fact that GAP does not converge (i.e.,
+∞∑
n=1

en → +∞). Therefore, we conclude that GAP can reduce

the total on-grid power consumption in each iteration and
converge after finite iterations.

Algorithm 2 GAP algorithm
Input: 1) The location vector for all the UEs in GCN, i.e.,

Y = {yij |i ∈ I, j ∈ J }. 2) The average E2E delay
vector T = {tjk|j ∈ J , k ∈ K}. 3) The average CPU
utilization vector for all the UEs’ Avatars, i.e., M =
{µi|i ∈ I}. 4) The green energy generation vector for all
the cloudlets, i.e., G = {Gk|k ∈ K}.

Output: The Avatar placement vector for all the UEs, i.e.,
X = {xik|i ∈ I, k ∈ K}.

1: X = FEAT (Y ,T). ◃ Execute FEAT.
2: Initialize Ω1 and Ω2.
3: Initialize I

′′
.

4: ∀i ∈ I
′′

, initialize the available cloudlet set ai for UE i’
Avatar based on Def. 4.

5: ∀i ∈ I
′′

, initialize the backup cloudlet ςi for UE i’ Avatar
based on Eq. 15.

6: ∀i ∈ I
′′

, initialize ∆i based on Eq. 16.
7: while max

{
∆i|i ∈ I

′′
}
̸= 0 do

8: Select UE i∗’s Avatar based on Eq. 17 and move it
into its backup cloudlet.

9: Update I
′′

;
10: ∀i ∈ I

′′
, update ai, ςi and ∆i;

11: end while
12: return X .

Note that the complexity of executing Steps 1−6 in Algo-
rithm 2 is O

(
|I|2 |K|

)
(which is mainly determined by the

complexity of FEAT in Step 1). The complexity of executing
Steps 7 − 11 is O

(
|I|2

)
. Consequently, the complexity of

GAP is O
(
|I|2 |K|

)
+O

(
|I|2

)
= O

(
|I|2 |K|

)
.

V. SIMULATION RESULTS

In this section, we first evaluate the performance (i.e.,
the optimality) of the proposed GAP algorithm in a small-
scale network. For comparisons, we will use the commercial
solver, i.e., CPLEX, by applying the branch and cut method to
generate the solution of P0 (i.e., the optimal solution of the
Avatar placement problem). Note that the reason for applying a
small-scale network to evaluate the performance of GAP is that
CPLEX cannot solve P0 in a large-scale network because as
the number of UEs and BSs increases, the branch and cut tree
becomes so large that it requires a huge amount of memory
to solve the problem (e.g., over 17,000 GB size of memory
for a network with 13,000 UEs and 2360 BSs).

Second, we simulate the GAP algorithm in a large-scale
network in order to demonstrate its scalability and how much
power it can save. For comparisons, we show the total on-grid
power consumption incurred by other two Avatar placement
methods, i.e., FAR and SAP. The basic ideas of FAR and SAP
have been explained in the Introduction section.

A. Performance of the GAP algorithm

We will first investigate the optimality of the GAP algorithm
in a small-scale network topology, which is shown in Fig. 7
with 16 cloudlet-BS combinations (4× 4) in a square area of
64 km2. The coverage of each BS is a square area of 4 km2.
The whole area is divided into 2 parts, i.e., urban and rural
areas. Initially, there are 1000 UEs uniformly distributed in
the network and each UE’s Avatar is placed in its nearest
feasible cloudlet (which has enough capacity to host the
Avatar). UE mobility adopts the modified random waypoint
model, i.e., each UE randomly selects a speed between 0 and
10 m/s in every time slot and moves toward its destination,
and the locations of UEs destinations (i.e., the values of
x and y coordinates) are randomly selected according to a
normal distribution N(4km, 2km), which implies that UEs
more likely move toward the center of each urban area (i.e.,
based on the characteristics of the normal distribution, UEs
more likely select their destinations which are close to the
center of the network). Moreover, in order to guarantee the
E2E delay between a UE and its Avatar in meeting the SLA,
we assume that the UE’s Avatar can only be placed in the
cloudlet, whose connected BS is a neighbor of the UE’s BS.
For instance, as shown in Fig. 7, if one UE is located in the
coverage area of BS 1, its Avatar can only be placed in BS
2, BS 3, BS 4 or BS 5’s cloudlet in order to satisfy the SLA
requirement.

Fig. 7. Network topology.

The resource capacity of each Avatar is homogeneous; each
Avatar is configured with 2-core CPU, 4GB memory, and
500 Mbps bandwidth. The Google cluster data trace [45]
is applied to emulate the CPU utilization of each Avatar.
Specifically, we select the machines with CPU and memory
capacity of 0.5 (normalized) in the Google cluster data trace,
and calculate their CPU utilization in each time slot; then, the
resource utilizations of Avatars are emulated to be the same
as those of the machines. The capacity of each cloudlet is 20
homogeneous PMs and each PM can host at most 5 Avatars.

For the daily green energy generation (from 6 am to 6
pm), we use the local solar radiation3 data trace (Millbrook,
NY in Apr. 30th, 2015) from National Climatic Data Center

3Green energy generation (G) = Solar radiation (S) × Solar pannel size
(ι) × Efficiency (η)

10

[46]. As shown in Fig. 8, the trace collects the solar radiation
generation of different locations in the area in each hour. The
figure does exhibit the spatial and temporal dynamics of green
energy generation, i.e., the amount of solar radiation varies
among different locations in the area (especially when the
solar radiation generation is relatively large) and the amount
of solar radiation in the same location varies over time. In the
simulation, we randomly select each cloudlet’s solar radiation
between Smax and Smin at time slot t, where Smax and Smin

equal to the values of max and min solar radiation generation
at time slot t in Fig. 8, respectively. The other parameters are
shown in Table I.

6 7 8 9 10 11 12 13 14 15 16 17 18
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

So
la

r r
ad

ia
tio

n
ge

ne
ra

tio
n

(W
at

ts/
m

2)

Time

 Average solar radiation
 Max solar radiation
 Min solar radiation

Fig. 8. The daily solar radiation trace.

TABLE I
SYSTEM PARAMETERS

Parameter Value

Power consumption of the PM in idle mode, pidle 135 Watts

CPU uutilization to power mapping coefficient, α 0.65 Watts/%

The efficiency of converting solar rediation to power, η 0.2
Solar panel size, ι 15 m2

Lemma 3. P0 is a Mixed Integer Linear Programming
(MILP) problem.

Proof: Denote sk as the on-grid power consumption of

cloudlet k, i.e., sk = max

{∑
i∈I

(
pidle

ϵ +αµi

)
xik−Gk, 0

}
.

Thus, P0 is equivalent to:

P3 : argmin
sk,xik

∑
k∈K

sk (18)

s.t. ∀k ∈ K, sk ≥
∑
i∈I

(
pidle

ϵ
+αµi

)
xik−Gk, (19)

∀k ∈ K, sk ≥ 0, (20)
and Constraints (9), (10), (11), (12).

where xik is a binary variable (the placement of UE i’s Avatar)
and sk is a continuous variable indicating the on-grid power
consumption of cloudlet k. Obviously, P3 is a MILP problem
and can be solved by applying the cplexmilp() function in the
CLPEX solver during the simulations.

We simulate GAP during the day (from 6 am to 6 pm) and
the performance of GAP is shown in Fig. 9. We can see that
the on-grid power consumption in each time slot incurred by
GAP is quite similar to that incurred by CLPEX. We further
calculate the total on-grid power consumption during the day
by adopting GAP and CLPEX. As shown in Fig. 10, GAP only
consumes about 12.8% more on-grid power during the day as
compared to the result generated by CPLEX. Yet, CLPEX
consumes 52.7% more average execution time in each time
slot during the day as compared to that consumed by GAP.
Thus, we conclude that the performance of GAP is close to
CLPEX, but GAP is much more computationally efficient.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

Po
w

er
 (k

W
)

Time slot

 Green energy generation
 CPLEX
 GAP

Fig. 9. The performance of GAP during the day.

1126

1270

0

376

0

181

0

300

600

900

1200

1500

52.7%

 CLPEX
 GAP

To
ta

l o
n-

gr
id

 p
ow

er
 c

on
su

m
pt

io
n

(k
W

)

12.8%

100

150

200

250

300

350

400

Avgerage
simulation time

A
ve

ra
ge

 si
m

ul
at

io
n

tim
e

Total on grid
power consumption

Fig. 10. The total on-grid power consumption and the average execution time.

B. Energy saving of GAP in a large-scale network

In this section, we will demonstrate the scalability and the
economic gain (i.e., the amount of energy saving) of GAP
as compared to the other two Avatar placement strategies,
namely, FAR and SAP, in a large-scale cloudlet network. As
mentioned previously, CPLEX requires tremendous memory
resources (over 17,000 GB) to solve the problem in a large-
scale network topology. This makes CPLEX infeasible to solve
the problem in a real network.

We have obtained data traces of more than 13,000 UEs
collected from an operating mobile network and extracted their

11

mobility in one day. The whole area contains 2,360 BSs and
each UE’s location (i.e., the UE within BS’s coverage area)
is monitored for each ten minutes during the day (from 6 am
to 6 pm). Suppose all the UEs’ mobility can be accurately
predicted, and we use this UE mobility trace as input param-
eters (i.e., the values of Y) to show the performance of the
algorithms. Fig. 11 shows the maximum, the minimum and
the variance of the number of local UEs for a BS (i.e., the
number of UEs within the coverage area of a BS) among all
the BSs in GCN in each time slot. Interestingly, the variance
of the number of local UEs among BSs remains stable over
time because different UEs’ mobilities exhibit similar trends,
i.e., most of the users move from their homes to workplaces
in the morning, and return back from working places to their
homes at night. Thus, these periodical movements result in the
stability of the UE density variance among BSs over time. Fig.
11 also shows the spatial dynamics of the UE density among
BSs during each time slot, i.e., the energy demands among
different cloudlets vary in each time slot if each cloudlet serves
its local UEs’ Avatars.

0

10

20

30

40

50

60

70

19181716151413121110987

 Average variance of the number of local UEs
 Maximun number of local UEs among BSs
 Minimum number of local UEs among BSs

Th
e

nu
m

be
r o

f l
oc

al
 U

Es
 a

m
on

g
BS

s

6
Time

Fig. 11. The statistical results of the UE mobility trace.

Each BS is attached with a cloudlet and the solar radiation
generation for each cloudlet during the day also follows the
data from National Climatic Data Center. Meanwhile, we still
adopt the Google data trace to emulate the CPU utilization of
each Avatar in each time slot during the day. Since the average
UE density per BS in the large-scale network is smaller than
that in the small-scale network, we reduce the capacity of each
cloudlet, i.e., 6 PMs are deployed in each cloudlet and each
cloudlet can host at most 5 Avatars; meanwhile, the size of
solar panel equipped in each cloudlet is 2 m2 and the E2E
delay bound between a UE and its Avatar (i.e., SLA) is 25
ms. The rest of the simulation parameters are the same as
those in the small-scale network.

We calculate the total on-grid power consumption in the
cloudlet network in each time slot and the results are shown
in Fig 12. Intuitively, there is a big on-grid power consumption
gap between GAP and SAP/FAR because GAP can migrate the
energy demands (i.e., the Avatars) from the cloudlets with no
residual green energy to the cloudlets with sufficient residual
green energy so that the green energy can be fully utilized.
As shown in Fig. 13, the total on-grid power consumptions

of GAP, SAP and FAR during the day are 6423.1 kW ,
14952.2 kW and 15141.8 kW , respectively, i.e., GAP can save
57.1% and 57.6% of on-grid power consumption as compared
to SAP and FAR, respectively. Note that the on-grid power
consumption of SAP and FAR are quite similar. This can be
explained by the similar trends among different UEs as well,
i.e., during the morning, UEs are mostly located at home,
and so the on-grid power consumption of SAP and FAR are
mainly generated by the cloudlets located in the residential
areas; during the working hours, UEs are mostly located in
the working places, and so the on-grid power consumption
of FAR is mainly attributed to the cloudlets located in the
working places (note that the on-grid power consumption of
SAP is still mainly generated by the cloudlets in the residential
areas because the location of each Avatar is static after it is
initially placed). This kind of energy demands shifting between
the residential areas and the working places incurs the similar
on-grid power consumption by applying SAP and FAR. We
further test the average SLA violation rate4 during the day by
applying GAP, SAP and FAR, and the results are shown in Fig.
13. Clearly, GAP and FAR can guarantee that the E2E delay
between a UE and its Avatar is no longer than the SLA, which
is 25 ms. In SAP, all the Avatars’ locations are static, and so
the SLA may be violated if some UEs roam further away.
Consequently, on average, 41% of Avatars violate the SLA in
each time slot. Although SAP consumes the similar on-grid
power consumption as FAR and generates the highest SLA
violation rate, SAP does not introduce extra Avatar migrations,
which may consume extra power and increase the traffic load
of the SDN-based cellular core [47], [48]. In the future study,
we will establish a migration cost model and incorporate it
into the Avatar placement strategy.

We further test the total on-grid power consumption in
the cloudlet network by increasing the number of UEs. The
mobility trace of each additional UE is the same as that of the
existing UE, which is randomly selected among the existing
UEs. As shown in Fig. 14, the total amount of energy saving
(between GAP and FAR/SAP) increases as the total number
of UEs increases because as the number of UEs increases,
more cloudlets tend to lack green energy or the cloudlets
(which already lack green energy) will consume more on-grid
power, and thus GAP can potentially reduce the on-grid power
consumption by migrating the Avatars among the cloudlets.

We also analyze how the value of SLA affects the per-
formance of GAP. As shown in Fig. 15, when the value of
SLA increases, the total on-grid power decreases accordingly
because as the value of SLA increases, each Avatar will have
more available cloudlets, which can increase the chance of a
cloudlet (which has higher energy demands and lacks green
energy) to migrate its Avatars into other cloudlets (which
have sufficient green energy) in order to reduce its on-grid
power consumption without violating the SLA and the cloudlet
capacity constraint. For instance, assume that there is a UE
in GCN and its Avatar can only be placed in Cloudlet-A in
order to satisfy the SLA (e.g., 20 ms), i.e., Cloudlet A is

4SLA violation rate=the number of Avatars violate the SLA ÷ the total
number of Avatars

12

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
0

50

100

150

200

250

300

350

400

450

500

550

600

O
n

gr
id

 p
ow

er
 c

on
su

m
pt

io
n

(k
W

)

Time slot

 SAP
 FAR
 GAP

Fig. 12. The on-grid power consumption of the cloudlet network in each time
slot.

15141.8

6423.1

14952.2

0 0

0.4161

0

2500

5000

7500

10000

12500

15000

17500

 FAR
 GAP
 SAP

To
ta

l o
n-

gr
id

 p
ow

er
 c

on
su

m
pt

io
n

(k
W

)

0.0

0.2

0.4

0.6

0.8

1.0

Average SLA
violation rate

A
ve

ra
ge

 S
LA

 v
io

la
tio

n
ra

te

On-grid
power consumption

Fig. 13. The total on-grid power consumption of the cloudlet network and the
average SLA violation rate during the day.

Fig. 14. The total on-grid power consumption of the cloudlet network during
the day over different number of UEs.

Fig. 15. The total on-grid power consumption of the cloudlet network during
the day over different values of SLA.

the only available cloudlet of the UE’s Avatar. If the value
of the SLA increases (e.g., 25 ms), Cloudlet-B becomes the
available cloudlet of the UE’s Avatar as well, i.e., the Avatar
can be placed in either Cloudlet-A or Cloudlet-B to satisfy the
SLA. Consequently, the Avatar can be placed in Cloudlet-B to
further reduce the on-grid power consumption if Cloudlet-A
does not have residual green energy but Cloudlet-B has. This
indicates that a larger value of the SLA facilitates GAP to
further reduce the total on-grid power consumption.

VI. CONCLUSION

In this paper, we have proposed the GCN architecture to
facilitate big data networking as well as MCC applications.
Specifically, each UE can access its own Avatar, considered
as the UE’s private computing resources, with the low E2E
delay. In order to reduce the operational cost for maintaining
the distributed cloudlets, each cloudlet is powered by both
green and brown energy. Fully utilizing green energy can
significantly reduce the operational cost of cloudlet providers.
However, owing to the spatial dynamics of energy demand and
green energy generation, some cloudlets’ energy demands can
be fully provided by green energy but others need to utilize
on-grid power to satisfy their energy demands. In order to
minimize the total on-grid power consumption of GCN, we

have proposed the GAP algorithm to distribute the energy
demands by migrating the Avatars among cloudlets according
to the cloudlets’ residual green energy, while satisfying the
SLA and cloudlet capacity constraints. We have demonstrated
via simulations that the performance of GAP is compatible
to that of CPLEX, but with a much lower computational
complexity. By applying the data traces extracted from the real
world, we have demonstrated the scalability and the economic
gain of GAP. Spefically, as compared to the other two Avatar
placement strategies, i.e., SAP and FAR, GAP can save 57.1%
and 57.6% of on-grid power consumption, respectively, while
satisfying the SLA. Meanwhile, as the number of UEs in GCN
increases, GAP can save more on-grid power consumption.

REFERENCES

[1] Y. Xu and S. Mao, “A survey of mobile cloud computing for rich media
applications,” IEEE Wireless Commun., vol. 20, no. 3, pp. 46–53, June
2013.

[2] S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani and R. Buyya, “Cloud-
based augmentation for mobile devices: motivation, taxonomies, and
open challenges,” IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 337-
368, First Quarter 2014.

[3] X. Sun, N. Ansari and R. Wang, “Optimizing resource utilization of a
data center,” IEEE Commun. Surveys Tuts., vol. 18, no. 4, pp. 2822–
2846, Fourth Quarter, 2016.

[4] Y. Zhang and N. Ansari,“On architecture design, congestion notification,
TCP incast and power consumption in data centers,” IEEE Commun.
Surveys Tuts., vol. 15, no. 1, pp. 39–64, First Quarter 2013.

13

[5] S.R. Ellis, K. Mania, B.D. Adelstein, and M.I. Hill, “Generalizeability
of latency detection in a variety of virtual environments,” Proc. Human
Factors and Ergonomics Soc. Annual Meeting, New Orleans, LA, Sep.
20–24, 2004, vol. 48, no. 23, pp. 2632–2636.

[6] K. Ha, et al., Adaptive VM handoff across cloudlets, Technical Report
CMU-CS-15-113, CMU School of Computer Science, 2015.

[7] X. Sun and N. Ansari, “Green cloudlet network: a distributed green
Mobile cloud network,” IEEE Netw., vol. 31, no. 1, pp. 64–70, Jan./Feb.
2017.

[8] M. Whaiduzzaman, A. Naveed, and A. Gani, “MobiCoRE: mobile
device based cloudlet resource enhancement for optimal task response,”
IEEE Trans. Services Comput., doi: 10.1109/TSC.2016.2564407, early
access.

[9] M. Chen, et al., “Privacy protection and intrusion avoidance for
cloudlet-based medical data sharing,” IEEE Trans. Cloud Comput., doi:
10.1109/TCC.2016.2617382, early access.

[10] X. Sun and N. Ansari, “Latency aware workload offloading in the
cloudlet network,” IEEE Commun. Lett., vol. 21, no. 7, pp. 1481–1484,
July 2017.

[11] N. Ansari and X. Sun, “Mobile edge computing empowers internet of
things,” IEICE Trans. Commun., doi: 10.1587/transcom.2017NRI0001,
early access.

[12] C. Borcea, X. Ding, N. Gehani, R. Curtmola, M. A. Khan and H.
Debnath, “Avatar: mobile distributed computing in the cloud,” 2015 3rd
IEEE Intl. Conf. Mobile Cloud Comput., Serv., and Eng., San Francisco,
CA, 2015, pp. 151–156.

[13] A. Wolbach, J. Harkes, S. Chellappa, and M. Satyanarayanan, “Transient
customization of mobile computing infrastructure,” Proc. First Wksp.
Virtualization Mobile Comput., Breckenridge, CO, Jun. 17–20, 2008,
pp. 37–41.

[14] X. Sun and N. Ansari, “EdgeIoT: mobile edge computing for the Internet
of Things,” IEEE Commun. Mag., vol. 54, no. 12, pp. 22-29, Dec. 2016.

[15] X. Sun and N. Ansari, “Cloudlet networks: empowering mobile net-
works with computing capabilities,” IEEE COMSOC MMTC Commun.-
Frontiers, vol. 12, no. 4, pp. 6-11, July 2017.

[16] X. Sun and N. Ansari,“PRIMAL: PRofIt Maximization Avatar pLace-
ment for Mobile Edge Computing,” Proc. IEEE Intl. Conf. Commun.
(ICC), Kuala Lumpur, Malaysia, May 23–27, 2016, pp. 1–6.

[17] X. Jin, L.E. Li, L. Vanbever, and J. Rexford, “Softcell: Scalable and
flexible cellular core network architecture,” Proc. the ninth ACM conf.
Emerging Netw. Experiments Technol., Santa Barbara, CA, Dec. 09–12,
2013, pp. 163–174.

[18] A. Lara, A. Kolasani and B. Ramamurthy, “Network innovation using
OpenFlow: a survey,” IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp.
493–512, First Quarter 2014.

[19] T. Taleb and A. Ksentini, “Follow me cloud: interworking federated
clouds and distributed mobile networks,” IEEE Netw., vol. 27, no. 5,
pp. 12–19, Sep.–Oct. 2013.

[20] T. Han and N. Ansari, “On optimizing green energy utilization for
cellular networks with hybrid energy supplies,” IEEE Trans. Wireless
Commun., vol. 12, no. 8, pp. 3872–3882, Aug. 2013.

[21] T. Han and N. Ansari, “On greening cellular networks via multicell
cooperation,” IEEE Wireless Commun., vol. 20, no. 1, pp. 82–89, Feb.
2013.

[22] X. Sun, N. Ansari and Q. Fan, “Green energy aware Avatar migration
strategy in green cloudlet networks,” 2015 IEEE 7th Intl. Conf. Cloud
Comput. Technol. Sci. (CloudCom), Vancouver, BC, 2015, pp. 139–146.

[23] Y. Li and W. Wang, “Can mobile cloudlets support mobile applications?”
IEEE Intl. Conf. Comp. Commun. (INFOCOM), Toronto, ON, 2014, pp.
1060–1068.

[24] M. Satyanarayanan, P. Bahl, R. Caceres and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Comput.,
vol. 8, no. 4, pp. 14–23, Oct.–Dec. 2009.

[25] E. Cuervo, et al., “MAUI: making smartphones last longer with code
offload,” Proc. the 8th Intl. Conf. Mobile Syst., Appl., and Serv., San
Francisco, CA, Jun. 15–18, 2010, pp. 49–62.

[26] B.G. Chun, et al., “Clonecloud: elastic execution between mobile device
and cloud,” Proc. of the sixth Conf. Comp. Syst., Salzburg, Austria, Apr.
10–13, 2011, pp. 301–314.

[27] S. Kosta, et al., “ThinkAir: dynamic resource allocation and parallel
execution in the cloud for mobile code offloading,” 2012 Proc. IEEE
INFOCOM, Orlando, FL, 2012, pp. 945–953.

[28] D.T. Hoang, D. Niyato and L. B. Le, “Simulation-based optimization for
admission control of mobile cloudlets,” 2014 IEEE Intl. Conf. Commun.,
Sydney, NSW, 2014, pp. 3764–3769.

[29] X. Sun and N. Ansari, “Avaptive Avatar handoff in the cloudlet network,”
IEEE Trans. Cloud Comput., doi: 10.1109/TCC.2017.2701794, early
access.

[30] S. Rivoire, P. Ranganathan, and C. Kozyrakis, “A comparison of high-
level full-system power models,” Proc. 2008 Conf. Power aware Comput.
and Syst., San Diego, CA, Dec. 7, 2008, pp. 3–7.

[31] X. Zhang, J.J. Lu, X. Qin, and X.N. Zhao, “A high-level energy con-
sumption model for heterogeneous data centers,” Simulation Modelling
Practice and Theory, vol. 39, pp. 41–55.

[32] E. Cho, S.A. Myers, and J. Leskovec, “Friendship and mobility: user
movement in location-based social networks,” Proc. the 17th ACM
SIGKDD Intl. Conf. Knowl. Discovery and Data Mining, San Diego,
CA, Aug. 21–24, 2011, pp. 1082–1090.

[33] W. Su, S.J. Lee, and M. Gerla. “Mobility prediction in wireless
networks,” 21st Century Mil. Commun. Conf. Proc.(MILCOM), Los
Angeles, CA, Oct. 22–25, 2000, pp. 491–495.

[34] A. Nadembega, A. Hafid, and T. Taleb, “A destination and mobility path
prediction scheme for mobile networks,” IEEE Trans. Veh. Technol., vol.
64, no. 6, pp. 2577–2590, June 2015.

[35] N.L.M. Adrichem, C. Doerr, and F. Kuipers, “OpenNetMon: network
monitoring in openflow software-defined networks,” 2014 IEEE Netw.
Operations and Manag. Symposium (NOMS), Krakow, Poland, May. 05–
09, pp. 1–8.

[36] C. Yu, et al., “Software-defined latency monitoring in data center
networks,” Passive and Active Measurement, vol. 8995, pp. 360-372,
Mar., 2015.

[37] M. Musolesi, “Big mobile data mining: good or evil?,” IEEE Internet
Comput., vol. 18, no. 1, pp. 78–81, Jan.–Feb. 2014.

[38] J. Liu, Y. Liang, and N. Ansari, “Spark-based large-scale matrix in-
version for big data processing,” IEEE Access, vol. 4, pp. 2166-2176,
2016.

[39] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Commun. of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[40] M. Isard, et al., “Dryad: distributed data-parallel programs from sequen-
tial building blocks,” ACM SIGOPS Operating Syst. Rev., vol. 41, no.
3, pp. 59–72, 2007.

[41] N. Quang-Hung, et al., “A genetic algorithm for power-aware virtual
machine allocation in private cloud,” Inform. and Commun. Technol.-
EurAsia Conf., Yogyakarta, Indonesia, Mar. 25–29, 2013, pp. 183–191.

[42] A. Beloglazov and R. Buyya. “Adaptive threshold-based approach for
energy-efficient consolidation of virtual machines in cloud data centers,”
2010 ACM/IFIP/USENIX Intl. Middleware Conf., Bangalore, India, Nov.
29–Dec. 3, 2010, pp. 4–9.

[43] R. Nathuji and K. Schwan, “Virtualpower: coordinated power manage-
ment in virtualized enterprise systems,” ACM SIGOPS Operating Syst.
Rev., vol. 41, no. 6, pp. 265–278, October 2007.

[44] U. Deshpande and K. Keahey, “Traffic-sensitive live migration of virtual
machines,” 2015 15th IEEE/ACM Intl. Symposium on Cluster, Cloud and
Grid Comput., Shenzhen, China, 2015, pp. 51-60.

[45] Google Cluster Data. [Online]. Avail-
able: https://github.com/google/cluster-
data/blob/master/ClusterData2011 2.md.

[46] Daily solar radiation data trace from National Climatic Data
Center. [Online]. Available: http://www1.ncdc.noaa.gov/pub/data/uscrn/
products/hourly02/2015/CRNH0203-2015-NY Millbrook 3 W.txt

[47] H. Liu, H. Jin, C.Z. Xu, and X. Liao, “Performance and energy modeling
for live migration of virtual machines,” Cluster Comput., vol. 16, no. 2,
pp. 249–264, 2013.

[48] A. Strunk and W. Dargie, “Does live migration of virtual machines cost
energy?” 2013 IEEE 27th Intl. Conf. Advanced Inform. Netw. and Appl.
(AINA), Barcelona, Spain, Mar. 25–28, 2013, pp. 514–521.

Xiang Sun [S’13] received a B.E. degree in elec-
tronic and information engineering and an M.E.
degree in technology of computer applications from
Hebei University of Engineering, Hebei, China. He
is currently working towards the Ph.D. degree in
electrical engineering at the New Jersey Institute
of Technology (NJIT), Newark, New Jersey. His
research interests include mobile edge computing,
big data networking, green computing and com-
munications, content/resource caching in Internet of
Things, and drone-aided mobile access networks.

14

Nirwan Ansari [S’78, M’83 ,SM’94, F’09] is Dis-
tinguished Professor of Electrical and Computer
Engineering at the New Jersey Institute of Tech-
nology (NJIT). He has also been a visiting (chair)
professor at several universities such as High-level
Visiting Scientist at Beijing University of Posts and
Telecommunications.

He recently authored Green Mobile Networks: A
Networking Perspective (Wiley-IEEE, 2017) with T.
Han, and co-authored two other books. He has also
(co-)authored more than 500 technical publications,

over 200 in widely cited journals/magazines. He has guest-edited a number
of special issues covering various emerging topics in communications and
networking. He has served on the editorial/advisory board of over ten journals.
His current research focuses on green communications and networking, cloud
computing, and various aspects of broadband networks.

He was elected to serve in the IEEE Communications Society (ComSoc)
Board of Governors as a member-at-large, has chaired ComSoc technical
committees, and has been actively organizing numerous IEEE International
Conferences/Symposia/Workshops. He has frequently delivered keynote ad-
dresses, distinguished lectures, tutorials, and invited talks. Some of his recog-
nitions include IEEE Fellow, several Excellence in Teaching Awards, some
best paper awards, the NCE Excellence in Research Award, the IEEE TCGCC
Distinguished Technical Achievement Recognition Award, the ComSoc AHSN
TC Technical Recognition Award, the NJ Inventors Hall of Fame Inventor of
the Year Award, the Thomas Alva Edison Patent Award, Purdue University
Outstanding Electrical and Computer Engineer Award, and designation as a
COMSOC Distinguished Lecturer. He has also been granted 35 U.S. patents.

He received a Ph.D. from Purdue University in 1988, an MSEE from the
University of Michigan in 1983, and a BSEE (summa cum laude with a perfect
GPA) from NJIT in 1982.

	Post-cover
	final_submission - Copy

