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Towards Throughput Aware and Energy Aware
Traffic Load Balancing in Heterogeneous Networks

with Hybrid Power Supplies
Qiang Fan, Student Member, IEEE, and Nirwan Ansari, Fellow, IEEE

Abstract—Green communications has attracted much research
attention for its environmental and economic benefits. For a
cellular network, base stations (BSs) incur more than 50% of
the energy consumption of the whole network. Therefore, BSs
can be powered by green energy to reduce its on-grid power
consumption. Meanwhile, the effective data rate (EDR) of a
user’s flow, which depends on both the user’s channel condition
and its BS’s workload status, is an important metric for user
performance. From the perspectives of a mobile provider, both
the aggregated EDR (sum of EDRs of all users within the
coverage area of a macro BS) and on-grid energy consumption
should be taken into account in the traffic load balancing process.
Therefore, we propose a Throughput aware and Energy Aware
(TEA) traffic load balancing scheme for heterogeneous cellular
networks to optimize the above two metrics. Since the EDR and
energy consumption mutually affect each other, saving on-grid
power is at the cost of sacrificing a certain loss of EDR. Thus, we
employ an energy-throughput coefficient α to adjust the tradeoff
between the two metrics based on the mobile provider’s practical
requirements. Simulation results demonstrate that TEA improves
the aggregated EDR and significantly saves on-grid power.

Index Terms—Throughput, green energy, user association,
heterogeneous cellular network.

I. INTRODUCTION

OWING to the direct impact of greenhouse gases on the
environment and the climate change, curbing the energy

consumption of mobile networks has attracted much attention.
Driven by the proliferation of data-hungry devices and applica-
tions, mobile data traffic is expected to increase exponentially
in the future [1]. In this situation, the increasing traffic not only
calls for expansion of network capacity, but also intensifies the
energy consumption [2]. Therefore, greening mobile networks
is important to mitigate the environmental problems and
reduce the operating cost of mobile operators [3], [4]. With the
development of green energy technologies, green energy such
as solar energy, wind energy and sustainable biofuels is being
utilized to power base stations (BSs). However, owing to the
unstable generation of green energy, hybrid energy supplies,
consisting of both green energy and on-grid power, are a
more practical option to power BSs [5]. Thus, green energy
can be utilized to reduce the on-grid power consumption and
therefore decrease the CO2 emission, with the on-grid power
as a backup power source [6]. Heterogeneous cellular networks
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(HCNs), in which the macro cells are overlaid with small
cells, are promising to increase the total capacity of cellular
networks [7]. Considering the dynamic workload distribution,
small cell base stations (SCBSs) are placed in areas with high
user density to facilitate more users to connect to a much
closer BS, thus improving the channel conditions of users.
Meanwhile, as the coverage of each SCBS is very small, the
transmission power required by each SCBS is significantly
smaller than those of traditional BSs [8], [9]. Therefore, the
low power of SCBSs can potentially improve the spectral
efficiency and energy efficiency of heterogeneous cellular
networks [10].

In a HCN with hybrid power supplies, the effective data rate
(EDR) of a user’s flow is based on both the channel condition
of the user towards its BS and the BS’s workload status [11].
As the user distribution is dynamic, if a user tends to associate
with BSs only based on the channel condition or received
power, it may connect to a congested BS, which degrades
its EDR. Consequently, some BSs may be congested by the
heavy traffic loads while other BSs are lightly loaded. The
unbalanced workload distribution among BSs has a negative
impact on user Quality-of-Service (QoS) in terms of the EDR.
On the other hand, the main operating cost of mobile providers
arises from the on-grid energy consumption. Owing to the
dynamic traffic workload distribution among BSs, the energy
demands of BSs may not match their available green energy,
thus incurring the increment of on-grid energy consumption.
In other words, while some BSs still have excessive green
energy, others have drained their green energy and started to
consume on-grid energy. To reduce the operating cost, traffic
load balancing can be employed to reduce the gap between the
energy demands of BSs and their green energy. Moreover, as
mobile providers need to consider the gain of the aggregated
EDR (sum of EDRs of all users within the coverage area
of a macro BS) and the operating cost in terms of on-grid
energy consumption simultaneously, the optimal traffic load
balancing strategy should take into consideration of the above
two factors. However, in the load balancing process, saving on-
grid power is always at the cost of sacrificing an amount of
EDR, i.e., the EDR and on-grid energy consumption exhibit a
trade-off relationship. How to balance the traffic loads among
BSs to optimize the aggregated EDR of the network and on-
grid energy consumption still remains to be a critical problem.

In this paper, to solve the above problem, we propose
a Throughput aware and Energy Aware (TEA) traffic load
balancing scheme for heterogeneous networks to satisfy mo-
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bile providers’ requirements by balancing traffic loads. The
scheme not only optimizes the utilization of green energy
in order to reduce the on-grid power consumption, but also
optimizes the aggregated EDR of the network. Since the power
consumption of a macro BS (MBS) is significantly larger
than that of SCBS, associating users with SCBSs may reduce
the on-grid power consumption. However, too many users
associating with SCBSs may incur traffic congestion in SCBSs
and thus degrades the EDRs of their users. The proposed TEA
algorithm makes a tradeoff between the aggregated EDR of the
network and on-grid energy consumption by assigning users
to the suitable BSs. Below are the major contributions of this
paper.
• We formulate the problem of making a tradeoff between

the aggregated EDR and on-grid energy consumption by
balancing traffic workloads among heterogeneous BSs.
The mobile providers desire to improve the aggregated
EDR while reducing on-grid energy consumption of the
network. Since the user association aiming to increase the
effective data may increase on-grid energy consumption,
we need to balance these two factors in the scheme. Thus,
we define an energy-throughput coefficient α to make a
tradeoff between the aggregated EDR and on-grid energy
cost, which can be predefined by each mobile provider
based on its practical requirement.

• The workload status of a BS has a critical impact on
the EDRs of its associated users. To guarantee the user
QoS, we assume that the workload of each BS should
be smaller than the BS’s maximum workload threshold
allowed by mobile providers.

• To solve the user association problem (i.e., load balanc-
ing) in each time slot, we propose a heuristic algorithm
which iteratively moves users to suitable BSs. Then, we
analyze the computational complexity of the algorithm.
We also analyze some critical issues of the proposed al-
gorithm in order to facilitate its practical implementation.

The rest of this paper is organized as follows. In Section
II, we briefly review related works. In Section III, we define
the system model. In Section IV, we formulate and analyze
the user association problem, and propose the TEA scheme.
Section V presents the heuristic TEA algorithm and its practi-
cal implementation. The viability of TEA is substantiated by
simulation results in Section VI, and the concluding remarks
are presented in Section VII.

II. RELATED WORKS

Some studies have considered powering mobile cellular
networks with hybrid energy supplies [12]–[15]. To maximize
the utilization of green energy, Fan et al. [8] proposed to
offload the traffic loads from BSs depleting of green energy
to other BSs with excessive green energy while satisfying
the QoS requirements of users in terms of their data rates.
Considering a network with multiple energy supplies, Han and
Ansari [16] also proposed to optimize the utilization of green
energy, and reduce the on-grid energy consumption in cellular
networks by the cell size optimization.

In addition, there have been many research efforts on user
association in cellular networks. Han et al. [17] proposed a

heuristic user association algorithm to assign users to different
green relays to maximize the minimum EDRs of users while
taking into account of the green load capacities of the relay
nodes. Ma et al. [18] studied the joint user association and
resource allocation in the heterogeneous network with back-
haul constraint in order to maximize the α-fairness network
utility. Wang et al. [19] proposed user association algorithms
to optimize the green energy utilization. In particular, they
decomposed the problem into two components: first, users
are allocated to different BSs based on the available green
energy; then, the optimal bandwidth allocation enables the on-
grid energy consumption of the network to be further reduced.
Kong et al. [20] proposed a biased user association scheme
with which users choose to associate with BSs in order to
optimize the delay for users. Han and Ansari [21] proposed a
distributed user association scheme named GALA for hetero-
geneous cellular networks that optimizes the trade-off between
the on-grid power consumption and the average traffic delivery
latency. Corroy et al. [22] developed a theoretical framework
and proposed a dynamic cell association heuristic algorithm
to maximize the sum rate of all users. Jo et al. [23] added an
offset/bias for small cells to attract more users, referred to as
the range expansion/extension association.

To the best of our knowledge, the existing published
works on user association in heterogeneous networks have
not considered to jointly optimize the EDRs of users and on-
grid energy consumption in heterogeneous cellular networks.
From the point view of mobile providers, both the aggregated
EDR and green energy utilization of the network are critical
components of their profits. Simply optimizing only one of
them cannot satisfy the requirement of the mobile providers.
Thus, we propose TEA to associate users to heterogeneous
BSs by taking into account of user channel condition, BS
workload status and available green energy. Since saving green
energy is at the cost of sacrificing a certain amount of the EDR,
the balance between the aggregated EDR and green energy
can be determined by an energy-throughput coefficient α, an
operating parameter determined by each mobile provider.

III. SYSTEM MODEL

In this paper, we consider an area consisting of one MBS
and several SCBSs, as shown in Fig. 1. All these BSs are
powered by both green energy (solar panel) and on-grid power.
Here, the downlink user-BS association scenario is considered.
Denote J and I as the set of BSs and the set of users,
respectively, where j0 is the MBS. In addition, we assume
that orthogonal channels (OFDMA) are available. Both the
MBS and SCBSs reuse the licensed spectrum to enhance the
frequency efficiency.

The MBS is overlaid with multiple SCBSs in the two-
tier heterogeneous network. All SCBSs are distributed around
the MBS according to a homogeneous Spatial Poisson Point
Process (PPP) with density λ0, where λ0 is the average number
of SCBSs per unit area [8], [24].

A. Communications Model
Denote Pj as the transmit power of BS j and gij as the

channel gain from BS j to user i. σ2 is the noise power.
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Fig. 1: Network architecture.

Thus, the signal to interference plus noise ratio (SINR) of BS
j towards user i can be derived as

γij =
Pjgij

σ2 +
∑
k∈J,k 6=j Pkgi,k

. (1)

Then, the data rate Cij of the ith user at the jth BS can be
generally expressed as a logarithmic function of the perceived
γij , according to the Shannon Hartley theorem,

Cij = Wj log(1 + γij), (2)

where Wj is the total bandwidth of the jth BS.

B. Traffic Model

Assume that the traffic for each user arrives at BS j
according to a Poisson Process with the arrival rate λi and the
lengths of flows have a general distribution with the average
value of li. Then, the average traffic load density of user i in
BS j is

%ij =
λiliηij
Cij

. (3)

Here, ηij is a binary variable indicating whether the ith user
is associated with the jth BS (1 if so; 0, otherwise).

By aggregating traffic load densities of users in a BS, we
get the average traffic load density ρj in the BS. The value of
ρj indicates the fraction of time during which BS j is busy.

ρj =
∑
i∈I

%ij . (4)

A BS is assumed to serve each user in the round-robin
fashion. While the traffic arrival rate of each user follows the
Poisson Process, the service time for the user’s traffic satisfies
the general distribution [21]. Then, a BS realizes a M/G/1-
processor sharing (PS) queue. In the queue, a user in BS j

is assumed to have the traffic load li and the communications
data rate Cij . In addition, to keep the queue stable, we need
to guarantee ρj to be smaller than 1.

In an M/G/1-processor sharing queue of a BS, the average
delivery time of user j’s flows can be expressed as:

Tij =
li

Cij(1− ρj)
. (5)

Consequently, according to [17], [25], the EDR for each flow
of user j (i.e., flow throughput) is derived as

Ceffij = Cij(1− ρj). (6)

In the paper, we define the EDR of a user as the EDR for each
flow of the user while the aggregated EDR of the network as
the sum of EDRs of all users within a MBS’s coverage area.

C. Energy Model

The power consumption of a BS consists of two parts:
the static power consumption and the dynamic power con-
sumption. The static power consumption psj is used to keep
a BS active even without traffic, while the dynamic power
consumption is directly attributed to the traffic load in the
BS. Here, the static power consumption of a BS is assumed
constant. As a result, we focus on reducing the dynamic power
which is related to the user association. The dynamic power
consumption of a BS depends on its traffic load density. Denot-
ing βj as the linear coefficient which reflects the relationship
between the traffic load and the dynamic power, then, the total
power pj of BS j is

pj = βjρj + psj . (7)

While both the MBS and SCBSs are equipped with solar
panels to generate green energy, all BSs can utilize both the
on-grid power and green energy. If green energy of a BS is
not sufficient, it may start to consume on-grid power. We
need to maximize the utilization of available green energy
of each BS in each time slot by assigning optimal user
associations, in order to minimize on-grid energy consumption
of BSs. Furthermore, according to [17], [21], the on-grid
power consumption of the jth BS is

pon−gridj = max(pj − pgreenj , 0), (8)

where pj is the power consumption of BS j and pgreenj is the
green energy generation rate of BS j.

IV. PROBLEM FORMULATION

We have two goals in this paper. One is to maximize the
aggregated EDR of the heterogeneous network. The other is to
reduce the on-grid power consumption. For a BS, to reduce its
on-grid power consumption, it has to shrink its coverage area.
Therefore, the traffic loads are offloaded to its neighboring
BSs that may result in traffic congestion in the neighboring
BSs. Traffic congestion decreases the EDRs of users in those
neighboring BSs. Considering both the aggregated EDR and
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on-grid power consumption, we can define the network utility
of HCNs as follows:

u =
∑
j∈J

∑
i∈I

Ceffij − α
∑
j∈J

pon−gridj (η), (9)

where the first term is the aggregated EDR of the network
as the gain of the mobile provider while the second term is
the on-grid power consumption of the network as the cost.
Moreover, α is an energy-throughput coefficient, which is
given by mobile providers. α is an important system param-
eter. Increasing the value of α would increase the ratio of
the on-grid power consumption to the aggregated EDR, and
encourage users to associate with BSs with excessive green
energy without considering the congestion problem. Thus,
this parameter adjusts the tradeoff between the aggregated
EDR and on-grid power consumption, and can be chosen via
experiments based on mobile providers’ detailed requirements
in different time slots.

In order to minimize the network utility that takes into
account of both the aggregated EDR and on-grid power
consumption in the network, we formulate the problem as
follows:

P1 :Max
η

∑
j∈J

∑
i∈I

Cij(1−
∑
i∈I

λiliηij
Cij

)ηij − α
∑
j∈J

pon−gridj (η)

(10)

s.t.
∑
j∈J

ηij = 1,∀i ∈ I (11)

ρj ≤ ρmax,∀j ∈ J. (12)

Here, Constraint (11) imposes each user to be associated
with only one BS; Constraint (12) imposes the workload of
each BS to be lower than the maximum workload threshold
of the BS, where ρmax is less than 1 and predefined by
mobile providers. The above optimization problem is a mixed
integer quadratic constraint problem, which is challenging to
achieve the optimal solution. In order to get the optimal user
association assignment, a brute-force search leads to O(MN )
iterations, where M and N represent the number of BSs and
users, respectively. Obviously, the computational complexity
of the brute-force search increases exponentially with respect
to the total number of users. Therefore, it is not practical for
real time applications especially for large scale networks. We
have further proved the problem to be NP-hard.

Lemma 1. The problem P1 is NP-hard.

Proof:
Suppose there are two BSs, which are located at the same

point, and thus the traffic load of a user towards either BS
is the same. Then, to prove that P1 is a NP-hard problem,
we need to demonstrate that its corresponding decision prob-
lem is NP-complete. The decision problem of P1 can be
expressed as: given a positive value of b, is it possible to
find a feasible solution η = {ηij |i ∈ I, j ∈ J } such that∑
j∈J

∑
i∈I

Cij(1−
∑
i∈I

λiliηij
Cij

)ηij − α
∑
j∈J

pon−gridj (η) ≤ b, and

Constraints (11), (12) are satisfied?
In order to prove that the above decision problem is NP-

complete, only two BSs are considered and the traffic load

threshold of either BS is set to be the same, i.e., ρmax =
1
2

∑
i∈I

%ij + ε, where ε is a very small positive value, i.e.,

ε � 1
2 min{%ij |i ∈ I}. Moreover, assume that b → +∞.

Thus,
∑
j∈J

∑
i∈I

Cij(1−
∑
i∈I

λiliηij
Cij

)ηij − α
∑
j∈J

pon−gridj (η) ≤ b

is always satisfied for all solutions of η, and can be relaxed.
To meet Constraint (12) (i.e., ρj ≤ ρmax − ε, ∀j ∈ J), we
need to guarantee that

∑
i∈I

ηi1%i1 =
∑
i∈I

ηi2%i2 = 1
2

∑
i∈I

%ij .

Consequently, the decision problem can be transformed into a
partition problem, i.e., whether the users can be partitioned
into two sets to equalize the traffic loads of the two sets.
Hence, the partition problem is reducible to the decision
problem of P1. As the partition problem is a well-known NP-
complete problem, the decision problem of P1 is also NP-
complete, and thus P1 is NP-hard.

V. THE TEA ALGORITHM

A. Heuristic Algorithm

In this section, we propose a heuristic algorithm, TEA,
which approaches the optimal solution with low computational
complexity. The basic idea of the TEA algorithm is to itera-
tively select a suitable user and reallocate it to an alternative
BS in order to improve the utility of the network, until all
users cannot find better BSs. In the algorithm, both the green
energy utilization and network throughput are considered.

We denote I
′

and J
′

as the set of unmarked users and the
set of unmarked BSs, respectively. The network utility of the
ith user in the jth BS can be expressed as:

uij = Ceffij − α
%ij
ρj
pon−gridj . (13)

The TEA algorithm, as shown in Algorithm 1 below, starts
with an initial assignment, in which each user is associated
with the BS providing the best SINR. At this time, all users
are unmarked, i.e., I

′
= {i|i ∈ I}. Then, in each iteration, the

TEA algorithm finds a user with the smallest utility among all
unmarked users, and searches for a new BS by Algorithm 2 to
improve the user’s utility uij , while increasing the total utility
of the whole network. If a new BS is found, TEA proceeds
to the next iteration. Otherwise, the algorithm marks the user
and continues to the next iteration. If all users are marked, the
TEA algorithm terminates.

In Algorithm 2, we try to find a new BS for user i. The
neighboring BSs, which can improve the utility of user i, are
found and sorted in the decreasing order of the corresponding
utility of user i. Then, each of these BSs is checked sequen-
tially. If the traffic load of BS j that includes user i’s traffic
load is still within the limit of the BS’s traffic load threshold
and the current utility of the whole network has been improved
as compared to the utility prior to this iteration, then BS j is
qualified to be a new BS for user i. Otherwise, we will find the
set of unmarked users in BS j and sort them in the increasing
order of the user utility. Then, we check each user in this set
to find out if the user can be moved to an alternative BS so
as to reduce the traffic load of BS j. If so, the traffic load of
BS j can be reduced and user i has a chance to be associated
with BS j.
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Fig. 2: An example of the algorithm.

Note that the main component of the proposed algorithm
is Algorithm 2, which aims to find an alternative BS for a
user. As Algorithm 2 is a recursive algorithm, η̂ is denoted
as the intermediate user association during the recursions. To
ease understanding, we take an example in Fig. 2 to illustrate
the recursive algorithm. As shown in Fig. 2, at the beginning,
we suppose that user i1 ∈ I

′
is the user with the minimum

utility, and set all BSs to be unmarked. Then, we need to
find a suitable alternative BS for user i1 to increase its utility.
The dotted lines indicate the potential alternative BSs for user
i1, i.e., BS j2 and j3 are alternative BSs for user i1. If BS
j2 is not marked, the algorithm checks whether user i1 can
be associated to it successfully and marks it accordingly. In
this case, if the total utility of the network is increased and
the updated workload of BS j2 is lower than the traffic load
threshold ρmax, the new suitable BS (i.e., j2) is assigned to
user i1, and the user association matrix η̂ is updated; otherwise,
the algorithm checks whether users i3, i4 or i5 of BS j2 can
be moved to other BSs to enable user i1 to associate with BS
j2. Since user i3 and i4 can only be assigned to BS j2, they
cannot be reassigned to other BSs. For user i5, to seek its
new BS, Algorithm 2 will be called but with user i5 as the
input to check if it can be assigned to BS j4 or j1 to reduce
the workload of BS j2. Suppose it is not successful, then the
algorithm will continue to check if user i1 can be successfully
assigned to BS j3 by the same procedures above. If user i1
cannot find a better BS in the end, the algorithm marks this
user. Then, Algorithm 2 ends, and the TEA algorithm proceeds
to the next iteration, i.e., seeking for an alternative BS for user
i2 ∈ I

′
that is unmarked and has the minimum utility.

We now analyze the computational complexity of the pro-
posed TEA algorithm. In each iteration, due to the BS marking
mechanism, which reduces the computational complexity, the
number of BSs checked by the TEA algorithm can be M in
the worst case. Therefore, the complexity of each iteration is
O(M). Since each user has a choice of up to M BSs and
a user assigned to a BS can have N different data rates, the
number of improvements for an individual user is limited by
NM . Thus, in the worst case, the total number of iterations

Algorithm 1 The TEA Algorithm
1: Initialize the user association matrix η;
2: Set all users as unmarked, i.e., I

′
= {i|i ∈ I} ;

3: while I
′ 6= ∅ do

4: Set flag = 0;
5: Find i∗ = arg mini∈I′ (ui) among unmarked users; let

umin = ui∗

6: Set all BSs as unmarked, i.e., J
′

= {j|j ∈ J};
7: (η̂, f lag) = find another bs(i∗, η, utotal);
8: if flag == 1 then
9: Let η = η̂;

10: Update the total utility utotal;
11: else
12: Mark user i∗, i.e., I

′
= I

′
/i∗;

13: end if
14: end while
15: return η;

Algorithm 2 (η̂, f lag) = find another bs(i∗, η, utotal)

1: Find Ji∗ = {j|ui∗j > umin, j ∈ J
′} for user i∗; sort Ji∗

in the decreasing order of ui∗j ;
2: Set flag = 0;
3: while Ji∗ 6= ∅ do
4: Find the suitable BS by j = arg minj∈Ji∗ (ui∗j);
5: Mark BS j, i.e., J

′
= J

′
/j;

6: Let ηi∗j=1;
7: Calculate ρj and the current total utility unew based on

η;
8: if ρj < ρmax then
9: if unew > utotal then

10: η̂ = η;
11: flag = 1;
12: end if
13: else
14: Find the set of unmarked users in BS j by Ij =

{i|ηij = 1&i ∈ I
′}, and sort it by the increasing

utility uij ;
15: for k = 1 : |Ij | do
16: if ρj − %k,j < ρmax then
17: (η̄, f lag) = find another bs(ik, η, utotal)
18: if flag == 1 then
19: η̂ = η̄, and break;
20: end if
21: end if
22: k=k+1;
23: end for
24: end if
25: if flag == 1 then
26: break;
27: end if
28: end while
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that the algorithm can reach is O(N2M). As a result, the
computational complexity of the heuristic TEA algorithm is
O(N2M2). When we fix the number of users deployed in
the network, the computational complexity of the algorithm is
polynomial with respect to the number of users.

B. Algorithm Implementation

In this section, we will present how to put the above
algorithm into practice, and then discuss how to determine
the energy-throughput coefficient in real applications from the
perspectives of mobile providers. The proposed algorithm is
operated in a controller located at each MBS to assign users
among heterogeneous BSs (i.e., the MBS and its SCBSs).
In a real HCN, in order to effectively balance the traffic
workloads to avoid the situation that some BSs are congested
while others are under-utilized, the controller should collect
the workload distribution, user channel condition and green
energy information of different SCBSs in advance. Then,
based on the collected network information, the proposed
scheme implemented in the controller optimizes the user
association, and thus achieves the optimal traffic loads for
different BSs (the MBS and its SCBSs). The optimization can
be triggered either periodically or by some predefined events,
e.g., a BS’s traffic load exceeds a threshold or a BS’s green
energy utilization is lower than a threshold. What are the best
strategies for triggering the algorithm can be determined by
mobile providers. In this paper, we just assume that the traffic
load balancing is executed in each time slot.

In the algorithm, users are just responsible for reporting
their measurements, e.g., channel gain, rather than deciding
the BS selection by themselves. From users’ point of view,
they may seek to maximize their QoS and violate the rule of
the proposed algorithm. However, the EDR of each user not
only depends on its capacity Cij , but also on the traffic load
of the selected BS ρj . Thus, the users, in fact, have no clue
about which BS can improve their QoS, because the users do
not have information about the traffic loads of BSs. In this
case, simply selecting a BS with the best channel condition
may direct users to a highly congested BS and thus degrades
their EDRs. Thus, the centralized controller is employed to
decide the user-BS association to improve the QoS of users and
green energy utilization in the network by suitably balancing
the traffic load among BSs.

From the point of view of mobile providers, the user
association is optimized with the consideration of both the
aggregated EDR and on-grid energy consumption. To balance
the weight of these two metrics of the network utility, the
proposed algorithm provides an energy-throughput coefficient
α, which reflects each mobile provider’s user association
strategy. A mobile provider can determine the value of α
for both MBS and SCBSs in a cell based on the comparison
between the gain of the aggregated EDR and the cost of on-
grid energy in different time slots. For a mobile provider,
the gain of increasing one unit of EDR may be temporal
and dynamic, i.e., it is remarkably higher during peak hours
than idle hours. Therefore, in the peak hours, the EDR is the
dominant factor of the network utility, and has a higher priority

in the user association than the on-grid energy consumption.
On the other hand, the price of on-grid energy always shows
temporal and spatial dynamics. When the price of on-grid
energy is very high in a certain slot, it is favorable to reduce
the on-grid energy consumption in the user association as
compared to improving the aggregated EDR. Thus, the mobile
provider can flexibly provide the values of α to BSs in different
areas at different time slots of one day. When a BS chooses
a small α, the BS is EDR sensitive; in contrast, when α
increases, the cost of on-grid energy becomes an important
factor of the network utility, and thus the user association tends
to be on-grid energy sensitive.

C. Overhead

As compared to the traditional user association mechanisms
where users select their BSs based on metrics such as the
received power or SINR, the proposed scheme needs to gather
information from users and SCBSs in advance, and then run
the algorithm in the MBS’s controller. Specifically, SCBSs
have to send their green energy states to the MBS while each
user sends the information consisting of its channel condition
and average traffic arrival rate to the MBS via a control
channel. Hence, the collected network information enables the
MBS’s controller to execute the proposed algorithm in each
time slot. However, the overhead arising from the proposed
scheme remains low owing to following reasons: (1) the time
slot is usually long (e.g., 1 min), and so the state information
is not exchanged frequently; (2) all the information can be
expressed in a few bits, thus incurring a short control message;
(3) as each MBS is only in charge of assigning a few users (in
its cell) among heterogeneous BSs, the scale of the network
is limited, and hence the algorithm can be executed very fast.

VI. SIMULATION RESULTS

Simulations are set up to evaluate the performance of the
proposed TEA algorithm in a heterogeneous network. In the
simulation, one MBS is placed at the center of an area of
1000×1000 m2, while four SCBSs are deployed in the MBS’s
coverage according to the PPP process. Meanwhile, users are
uniformly distributed in the area. The network topology is
shown in Fig. 3. The MBS’s transmission power is 20 W,
and each SCBS’s transmission power is 5 W. We employ
COST 231 Walfisch-Ikegami [26] as the propagation model
with 9 dB Rayleigh fading and 5 dB shadowing fading. The
carrier frequency is 2110 MHz, the bandwidth is 10 MHz, the
antenna feeder loss is 3 dB, the transmitter gain is 1 dB, the
noise power level is -104 dBm, and the receiver sensitivity is
-97 dBm. The solar cell power efficiency is 17.4 percent. We
assume that the weather condition is the standard condition
which specifies a temperature of 25 ◦C, an air mass of 1.5,
and an irradiance of 1000 W/m2 [27]. Thus, the green power
generation rate is 174 W/m2. Meanwhile, the solar panel size
of MBS is set as 4.6 m2, while that of each SCBS is 0.7
m2. In the simulation, the maximum workload threshold of
each BS is set as ρmax = 0.95. As the file (flow) length
follows a general distribution, we set the average file length as
0.2 Mbits. Meanwhile, as the user file arrival rate follows the
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Poisson process, we randomly choose the average file arrival
rate between 0 and 2 (files/second).

In the simulation, we compare our algorithm with the
heuristic green relay assignment (GRA) algorithm [17] and
the Best SINR algorithm. In the Best SINR algorithm, users
are associated to the BS with the best perceived SINRs. Thus,
users are more likely to connect to the closest BS. Meanwhile,
the GRA algorithm aims to iteratively maximize the minimum
EDR among users.

Fig. 3: Network topology.

Fig. 4: The network utility comparison (α = 106).

As shown in Fig. 4, the network utility of TEA is signifi-
cantly higher than those of other algorithms as the number of
users increases. The network utility is impacted by both the
aggregated EDR and on-grid energy consumption. For GRA
and Best SINR, as the number of users increases, the traffic
loads of some BSs become overloaded quickly, and thus the
aggregated EDR grows slowly. Meanwhile, the on-grid energy
consumption keeps increasing with the traffic load. Thus, when
the number of users is very large, the network utilities of GRA
and Best SINR deteriorate. In contrast, since TEA considers

Fig. 5: The aggregated EDR comparison (α = 106).

Fig. 6: The on-grid power comparison (α = 106).

Fig. 7: The aggregated EDR comparison with different α.

both the aggregated EDR and on-grid energy consumption,
when the aggregated EDR tends to be stable, the on-grid
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Fig. 8: The on-grid power comparison with different α.

Fig. 9: The aggregated EDR v.s. α (user number=70).

Fig. 10: The on-grid power v.s. α (user number=70).

energy consumption is still very low, thus achieving better
network utilities as compared to GRA and SINR.

Fig. 5 and Fig. 6 compare the aggregated EDR and on-
grid power consumption of the three algorithms with different
numbers of users, respectively. From the figures, we can see
that when the number of users is very small, the aggregated
EDR of the proposed algorithm is a little lower than the other
two algorithms. This phenomenon is attributed to the fact that
when the traffic load is low (i.e., the traffic congestion of BSs
is not an issue), the other two algorithms can associate users to
BSs with the best channel conditions. However, the proposed
scheme needs to consider the on-grid energy consumption,
and thus assigns some users to the BSs with excess green
energy instead of BSs providing the best channel conditions.
Afterwards, as the number of users increases, the aggregated
EDR of TEA is higher than those of the GRA and Best
SINR algorithm, while the on-grid power consumption is
remarkably lower than those of the other two algorithms. As
we know, when the number of users increases, the traffic
loads of BSs become an important factor for user EDR.
Considering the tradeoff of the aggregated EDR and on-grid
power consumption, TEA focuses on offloading the traffic
from overloaded BSs to BSs with more resources, in order
to optimize the performance of both the aggregated EDR and
the on-grid power. In contrast, Best SINR just decides the user
association based on user channel conditions, which may incur
traffic congestions in BSs and degrade the aggregated EDR.

As shown in Fig. 7 and Fig. 8, we study the aggregated
EDR and the on-grid power consumption of TEA under three
different energy-throughput coefficients α when the number
of users is increasing. A larger energy-throughput coefficient
indicates that the BSs are more energy sensitive. Hence, as
the number of users changes, TEA with a larger α maintains
lower on-grid power consumption as compared to a smaller
α. Correspondingly, TEA with a larger α will incur a lower
aggregated EDR of the network.

Fig. 9 and Fig. 10 show the aggregated EDR and the on-grid
power consumption of TEA when α changes continuously.
In this case, the total number of users is fixed as 70. We
can see that both the aggregated EDR and the on-grid power
consumption decrease gradually when α increases. A larger
energy-throughput coefficient indicates that the BSs are more
energy sensitive. As a result, TEA achieves less on-grid power
consumption. Meanwhile, the aggregated EDR is sacrificed in
order to save the on-grid power. As shown in Fig. 9 and Fig.
10, the loss of the EDR is not significant as compared to
the corresponding on-grid power savings. Then, the mobile
provider can choose a desired α to balance the aggregated
EDR and on-grid energy consumption in different time slots
based on their requirements.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a throughput aware and
energy aware traffic load balancing scheme, referred to as
TEA, to optimize the trade-off between the aggregated EDR
and on-grid energy consumption. The TEA algorithm not
only considers the network throughput, but also considers
the available green energy in each BS. By assigning user
association, the TEA algorithm reduces the on-grid power
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consumption while avoiding the related BS congestion, which
negatively influences the aggregated EDR of the network. As
a result, the algorithm optimizes the aggregated EDR as well
as the on-grid energy consumption of HCNs.

This work mainly focuses on the downlink communications
of mobile networks. In the future, we will further explore to
improve the EDRs of users in the uplink communications. In
particular, as mobile edge computing has become a potential
technology for various mobile applications [28], [29], the
optimized EDR of the uplink communications will enable
the workloads of users being readily offloaded to the edge
computing resources (e.g., cloudlet or fog node).
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