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Abstract—Cloud radio access network (C-RAN) is a promising
wireless network architecture that can reduce the energy con-
sumption by the centralized cloud architecture and subsequently
decrease the number of required traditional base station (BS)
sites and the site support equipments. C-RAN consists of the
baseband units (BBUs) and the remote radio heads (RRHs).
BBUs are pooled in a central cloud, i.e., the BBU pool to provide
powerful computation and storage resources while RRHs are
distributed across multiple sites to provide coverage and interact
with user equipments (UEs). In order to exploit the benefits
of C-RAN, each BBU can be actualized by a virtual machine
(VM), i.e., virtual BBU (VB). VBs can be initiated and shut
down as needed to serve clusters of RRHs (i.e., many-to-one
mapping between RRHs and BBUs). RRHs can be turned into
the sleep mode to reduce the energy consumption. In our work,
we jointly optimize BBU-RRH mapping and user association
with the objective to minimize the system cost incurred by the
energy bill from RRHs and VB rentals under the constraint
of user quality of service (QoS), which is formulated as an
integer linear programming (ILP) problem. Furthermore, we
decompose the joint problem into two subproblems and design a
time-efficient algorithm to solve the problem. Simulation results
demonstrate that our proposed algorithm performs close to the
optimal solutions obtained from CPLEX.

Index Terms—Cloud radio access network (Cloud-RAN), BBU-
RRH mapping, user association, power consumption.

I. INTRODUCTION

Nowadays, mobile data have grown exponentially owing to
the advances of wireless technologies and the proliferation of
mobile devices like smart phones, laptops, wearable devices,
and Internet of Things (IoT) devices. Bandwidth hungry
wireless Internet applications, such as video conferencing,
video streaming and online games have generated drastically
increased mobile communication demands. Cisco Systems
predicts that the global mobile data traffic will increase sev-
enfold between 2016 and 2021, reaching 49.0 exabytes per
month by 2021 [1]. The explosive increase in mobile traffic
leads to the increasing number of base stations (BSs), thus
incurring significantly higher power consumption as well as
costly capital and operating expenditure. Furthermore, due
to the non-uniform nature of mobile traffic, many BSs are
under utilization during non-peak hours. Therefore, a novel
and intelligent wireless network architecture is called for.

Cloud radio access network (C-RAN) has been proposed as
a prospective architecture to satisfy the fast growing mobile
traffic [2]. A typical C-RAN architecture (Fig. 1) consists of
three major parts: remote radio heads (RRHs), fronthaul links
and baseband units (BBUs). BBUs are aggregated in a BBU
pool to provide powerful computing capacities for baseband
processing. RRHs are distributed across multiple sites to

provide basic signal transmission and reception functionalities.
RRHs are connected to the BBU pool through fronthaul links.
By utilizing cloud computing technology and virtualization,
the BBU pool can reduce the power consumption and improve
hardware utilization. Specifically, several virtual machines
(VMs) are turned on and off according to the traffic load.
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Fig. 1. QoS-aware C-RAN architecture

IoT is forming a pervasive network by connecting various
kinds of devices which can communicate with Internet for var-
ious services or exchange information with other devices. The
rapid development of IoT has driven an enormous amount of
traffic with different qualify of service (QoS) [3]. However, the
traditional mobile network cannot accommodate such diverse
mobile services and fluctuating traffic patterns efficiently [4].
C-RAN, by utilizing the cloud computing technology to enable
network flexibility, is considered as a promising architecture
to address this challenge [5]. Specifically, all UEs in IoT
have easier access to the mobile core network due to the
densely deployed RRHs and various traffic with different QoS
requirements will be processed in the centralized BBU pool.

Explosive mobile data demands are driving a significant
growth in energy consumption in mobile networks. From the
network operators’ perspective, reducing energy consumption
can potentially reduce a great amount of expenditures on their
energy bills. C-RAN helps decrease the energy consumption
by reducing the cooling infrastructure due to the deployment
of lightweight RRHs and sharing of computing resources in
the BBU pool. However, energy consumption is still consumed
by densely deployed RRHs and for processing huge large data
traffic in the BBU pool. Therefore, several RRHs could be
turned into the sleep mode to save energy. Furthermore, the
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virtual machines, functioning as the virtual BBUs (VBs), can
also be turned off to save the system cost when there are no
traffic demands [6].

Selecting the serving RRH for each user, referred to as the
user association problem, plays a pivotal role in enhancing the
load balancing and energy efficiency of wireless networks. Un-
fortunately, it is a combinatorial problem of high complexity
[7]. The BBU-RRH mapping problem addresses the many-
to-one mapping between RRHs and BBUs. It is also known
as the RRH clustering problem because one BBU can serve a
cluster of RRHs. Decisions for each VB to serve which RRH is
important for resource scheduling and allocation. Furthermore,
since data traffic goes through both RRHs and BBUs before
being served, any long delays caused in either RRHs or BBUs
may degrade the user QoS. Hence, it is critical to jointly
consider both the user association problem and BBU-RRH
mapping problem.

The above facts motivate us to study the QoS-aware joint
BBU-RRH mapping and user association problem in C-RAN
with the objective to minimize the system cost of both RRHs
and the BBU pool. The rest of this paper is organized as
follows. We present related works in Section II. The problem
formulation is described in Section IV. The problem analysis is
discussed in Section V. Simulation results are given in Section
VI. The paper is concluded in Section VII.

II. RELATED WORKS

C-RAN is a promising paradigm to reduce both capital and
operating expenditures as well as to provide high spectral
efficiency (SE) and energy efficiency (EE) [8], and has hence
been advocated by both the industry and research community.
According to [8], C-RAN reduces the power consumption
by 41% and achieves 20-50% throughput gain as compared
with traditional cellular networks. Energy efficiency plays an
important role in the performance of C-RAN [2], [9]. In order
to save energy, UEs should be well scheduled to be served
by their optimal serving RRHs and RRHs should also be
appropriately assigned to respective BBUs [10]. Opadere et
al. [11] utilized C-RAN virtualization to enable inter-operator
traffic offloading and explored the energy saving potential
of the sleep mode scheme. Guo et al. [12] investigated a
joint RRH-BBU association and energy sharing problem to
minimize the brown energy usage in green energy powered C-
RAN. Zeng et al. [13] proposed an energy-efficient Re-CRAN
architecture which incorporates distributed renewable energy
resources into C-RAN and verified the advantages of their
architecture by investigating a renewable-energy-aware RRH
activation problem.

The EE-based user association problem can be formulated
into two forms including minimizing the power consumption
and minimizing the overall energy efficiency (e.g., the ratio of
the sum rate to the total energy consumption) [7]. Most of the
existing works focus on the former one. A common algorithm
is the nearest RRH association scheme, where the nearest RRH
is chosen to serve each UE to minimize the RRHs’ power con-
sumption [14]. Zuo et al. [15] considered the EE-based user
association problem in massive MIMO empowered C-RAN.

They proposed three algorithms including nearest-RRH based
user association, single-candidate RRH user association, and
multi-candidate RRHs user association to solve this problem.
Wang and Sun [16] proposed an effective user association
strategy under the constraints of power budget, and solved
this problem by an approximation algorithm. Han and Ansari
[17] proposed the network utility aware traffic load balancing
scheme to adapt the user association and investigated the
tradeoff between the brown power consumption and the traffic
delivery latency.

From the perspective of the BBU-RRH mapping problem,
also known as the RRH clustering problem, several works
[18]–[20] have formulated it as a bin packing problem with
the objective to reduce the number of active BBUs. In [18],
UE’s baseband tasks are first assimilated to objects of different
volumes and then packed into bins (e.g., BBUs). Boulos
et al. [19] minimized the network power consumption by
reducing the number of active BBUs and minimized the
handover frequency by clustering neighboring RRHs. Some
known heuristics, such as the first fit decreasing and the net fit
decreasing, are designed to find the acceptable solutions for
the BBU-RRH mapping problem. Qian et al. [20] proposed
a heuristic simulated annealing method by combining the bin
packing algorithm with a simulated annealing algorithm. They
utilized a two-layer algorithm which first maps one or many
RRHs to a single BBU and then maps each unmapped RRH
to another BBU with additional power consumption.

Although the above works attempt to minimize the energy
consumption in C-RAN by optimizing either the user asso-
ciation or BBU-RRH mapping, they do not take user QoS
into consideration. In order to characterize user QoS, Tang
et al. [6] proposed a queueing system to study the joint
VM activation and sparse beamforming problem in C-RAN.
However, they assumed that data traffic is homogenous, which
is not practical in the IoT environment. They also assumed that
all traffic from RRHs is distributed evenly among different
BBUs, which may result in underutilization of several BBUs.
Soliman et al. [21] investigated the joint RRH clustering
and RRH activation problem under the QoS constraint with
the objective to minimize the RRHs’ power consumption.
However, their work does not consider the BBU-RRH mapping
problem and their QoS model is only related to the signal to
interference and noise ratio (SINR) without the delays in the
BBU pool. Khan et al. [22] formulated the QoS as a weighted
combination of the number of blocked users and handovers in
C-RAN and provided load balancing solutions.

Different from the above works, we consider the QoS-
aware joint BBU-RRH mapping and user association problem
in C-RAN where our user QoS requirement is modeled as
delays of two queues in tandem, including the BBU processing
queue and the RRH transmission queue with heterogenous data
traffic. Our objective is to minimize the system cost caused by
both RRHs and the BBU pool. In order to reduce the system
cost, RRHs can be turned into the sleep mode and VBs can
be turned off in order to save energy when there is no traffic.
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III. SYSTEM MODEL

A. System Description

In our proposed QoS-aware C-RAN architecture, we assume
there are N UEs and R RRHs and each UE is served by
one RRH. The Boolean variable xi j indicates whether UE i
is served by RRH j. BBUs are actualized by VMs. As VBs
can be initialized and shut down according to the traffic load,
the number of VBs varies. However, the maximum number
of VBs is equivalent to the number of RRH R. Hence, we
assume there are R VBs among which several turned-off VBs
do not contribute any cost to the system. Each VB has a
fixed computing capacity Ck . We define the Boolean variable
yjk to denote whether RRH j is mapped to VB k. We use
I = {1, 2, ..., N}, J = {1, 2, ..., R}, and K = {1, 2, ..., R} to
denote the sets of UEs, RRHs and VBs respectively. We
summarize all notations in Table I.

Table I. Summary of notations.

Notation Definition
N Number of UEs.
R Number of RRHs.
B Number of BBUs
Ck Computing capacity of BBU k.
ri j Wireless data rate between UE i and RRH j.
p
sleep
j Power consumption of RRH j in sleep mode.

pst at ic
j Static power consumption of RRH j.

β Load-power coefficient which reflects the relationship be-
tween the traffic and dynamic power consumption of RRHs.

ρ j Traffic load of RRH j.
ρ̃k Traffic load of VB k.
η Electricity cost per milliwatt.
f Fixed cost of renting a VB.
li Average packet length of UE i.
λi Request arrival rate of UE i.
Qth QoS requirement of RRHs.
Q̃th QoS requirement of VBs.
xi j Boolean variable which equals 1 when UE i is served by

RRH j; otherwise, 0.
yjk Boolean variable which equals 1 when RRH j is associated

with VB k; otherwise, 0.
tj Boolean variable which equals 1 when RRH j is active;

otherwise, 0.
t̃k Boolean variable which equals 1 when VB k is active;

otherwise, 0.

In the downlink, a UE’s traffic is first processed by the
VB which is mapped to its serving RRH and routed to the
serving RRH through fronthaul links. We assume that the
links between the BBU pool and RRHs are high-bandwidth,
low-latency optimal fiber links with negligible transmission
delay. Then, the serving RRH transmits the traffic to the
UE via the wireless network. We also assume that the BBU
pool can schedule the spectral resources well and hence the
interferences between UEs can be neglected.

B. System Cost Model

The system cost is attributed from both RRHs and the BBU
pool. We characterize the cost from RRHs as the electricity bill
and hence the power consumption of RRHs should be reduced.
RRHs can be selectively turned into the sleep mode in which
case the power consumption of RRH j is psleepj . When RRH
j is active, its power consumption includes the static power

consumption and the dynamic power consumption [23]. The
static power consumption pstaticj is generated without carrying
any traffic load. The dynamic power consumption is incurred
by traffic load and hence can be denoted as a linear function of
the traffic load ρj . We denote β as the load-power coefficient
that reflects the relationship between RRH j’s traffic load and
its dynamic power consumption. The power consumption of
each RRH can be expressed as

pRRH
j =

{
βρj + pstaticj , if RRH j is active
psleepj , otherwise.

We assume all VBs have the same fixed cost, and so to
reduce the cost is to reduce the number of VBs. This is the
popular commercial cloud service model, e.g., Amazon Elastic
Compute Cloud (EC2) [24]. In EC2, there are several VMs for
rent. The mobile operator decides how many VMs they need
to rent for a period of time. After this period, the mobile
operators decide the number of VMs once again to adapt
to the dynamic traffic. Within one period, we denote η as
the electricity cost per milliwatt and f as the fixed cost for
renting a VM. Hence, the total system cost can be described
as ηPRRH + f NVB, where PRRH and NVB denote the power
consumption of RRHs and the number of VBs, respectively.

C. QoS Model

We model our downlink traffic demand and QoS model
based on queuing models. As data of a UE are first processed
in the VB and then transmitted by the RRH, we consider
a two-layer queueing network to represent each UE’s traffic
processing and transmission in the downlink, including the VB
processing queue and RRH transmission queue. Throughout
the paper, we assume that each queue behaves in a first in
first out (FIFO) manner.

1) VB Processing Queue: We assume that the traffic arrival
of each UE i follows the Poisson process with the arrival
rate λi and its packet size per arrival follows the exponential
distribution with the average value of li . We also assume
that the traffic arrivals of different UEs under a certain RRH
are independent with each other. Hence, the traffic arrivals
toward one VB is still a Poisson process. Furthermore, the
computation capacity Ck of each VB k is considered constant,
and so the average service time, which equals the packet
size divided by the processing rate, is also an exponential
distribution. Therefore, the traffic processing in each VB
realizes an M/M/1 queuing model. The traffic load in each
VB k can be expressed as

ρ̃k =

R∑
j=1

N∑
i=1

λili xi j yjk
Ck

, ∀k ∈ K,

where xi j and yjk are the user association and BBU-RRH
mapping indicators, respectively. According to the properties
of the M/M/1 queue [25], the average traffic delivery time in
each VB k can be calculated as

τ̃ik =
li

Ck(1 − ρ̃k)
.
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Then, the waiting time for each UE is

W̃ik = τ̃ik −
li

Ck
=

li ρ̃k
Ck(1 − ρ̃k)

.

Since UE’s traffic loads are diverse, different users may require
different amounts of service time. We utilize the average wait-
ing time per unit service time to reflect a queue’s performance
[25]. Specifically, we denote the latency ratio W̃ik

τ̃ik
=

ρ̃k
1−ρ̃k to

reflect the QoS performance. Note that a larger latency ratio
implies a longer waiting time, and thus leads to a worse QoS.
We denote Q̃th as the threshold of the latency ratio that each
VB cannot exceed. Hence, for each VB k, the QoS requirement
is

ρ̃k
1 − ρ̃k

≤ Q̃th .

2) RRH Transmission Queue: According to Burke’s Theo-
rem, the traffic departure process of an M/M/1 queue is still
a Poisson process with average departure rate equivalent to
the average traffic arrival rate [25]. Hence, for each RRH
transmission queue, the traffic arrival follows the Poisson
process. Since the users transmission rate ri j is generally
distributed, the service time, which equals li

ri j
, follows a

general distribution. Therefore, the RRH transmission queue
realizes an M/G/1 processor sharing queue where multiple UEs
share the RRH’s downlink service. Then, the traffic load in
RRH j can be calculated as

ρj =

N∑
i=1

λili xi j
ri j

.

Although there are various downlink scheduling algorithms
to enable sharing of the limited radio resource, we adopt the
round robin (RR) scheduling. For the M/G/1-RR queue [25] ,
the average traffic delivery time for UE i in RRH j is

τi j =
li

ri j(1 − ρj)
,

and the waiting time for each UE is

Wi j = τi j −
li
ri j
=

liρj
ri j(1 − ρj)

.

Similar to the BBU processing queue, we denote the latency
ratio for each RRH j as Wi j

τi j
=

ρ j

1−ρ j
to reflect the QoS

performance. Hence, for each RRH, the QoS requirement is
ρj

1 − ρj
≤ Qth .

IV. PROBLEM FORMULATION

In our work, we jointly consider the QoS-aware joint
BBU-RRH mapping and user association in C-RAN with the
objective to minimize the system cost of both RRHs and the
BBU pool. Our joint optimization problem is formulated as
follows.

P0: min
x,y,t, t̃

η[

R∑
j=1
(βρj + pstaticj )tj +

R∑
j=1

psleepj (1 − tj)]

+ f
R∑

k=1
t̃k

(1)

s.t.
R∑
j=1

xi j = 1, ∀i ∈ I, (2)

R∑
k=1

yjk = 1, ∀ j ∈ J, (3)

xi j ≤ tj, ∀i ∈ I, j ∈ J, (4)

yjk ≤ t̃k, ∀ j ∈ J, k ∈ K, (5)

ρj =

N∑
i=1

λili xi j
ri j

, ∀ j ∈ J, (6)

ρ̃k =

R∑
j=1

N∑
i=1

λili xi j yjk
Ck

, ∀k ∈ K, (7)

0 ≤ ρj < 1, ∀ j ∈ J, (8)

0 ≤ ρ̃k < 1, ∀k ∈ K, (9)

ρj

1 − ρj
≤ Qth, ∀ j ∈ J, (10)

ρ̃k
1 − ρ̃k

≤ Q̃th, ∀k ∈ K, (11)

xi j ∈ {0, 1}, ∀i ∈ I, j ∈ J, (12)

yjk ∈ {0, 1}, ∀ j ∈ J, k ∈ K, (13)

tj ∈ {0, 1}, ∀ j ∈ J, (14)

t̃k ∈ {0, 1}, ∀k ∈ K . (15)

Eq. (2) indicates that each UE can only be associated with
one RRH. Eq. (3) implies that each RRH is only mapped to
one VB. In Eqs. (4) and (5), tj and t̃k are Boolean variables
to indicate whether RRH j is active (tj = 1 if affirmative) and
VB k is active (t̃k = 1 if affirmative), respectively. Eqs. (4) and
(5) ensure that only active RRHs and VBs can be connected.
Eqs. (6) and (7) compute ρj and ρ̃k ; Eqs. (8) and (9) are the
constraints of the traffic loads of queues; Eqs. (10) and (11) are
the QoS requirements for RRHs and VBs, respectively. Eqs.
(12)-(15) indicate that xi j, yjk, tj and t̃k are Boolean variables.

Note that Eqs. (10) and (11) can be transformed into ρj ≤
Qth

1+Qth
and ρ̃k ≤

Q̃th

1+Q̃th
, respectively. These two provide tighter

bounds for ρj and ρ̃k than Eqs. (8) and (9), and so we can
combine them. In Eq. (1), when tj = 0, we must have ρj = 0.
On the other hand, if ρj > 0, we have tj = 1. Hence, we
can deduce that ρj tj = ρj . For ease of readability, we denote
p̂j

s = pstaticj − psleepj . In the actual wireless system, pstaticj is
usually greater than psleepj , and so we can assume p̂j

s > 0.
Unfortunately, this problem is non-linear due to the product

xi j yjk in Eq. (7). Therefore, we introduce another variable zi jk ,
which is also a Boolean variable, and assign zi jk = xi j yjk . To
guarantee the transformed problem is equivalent to the original
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one, the following additional inequality constraints should be
satisfied: 1) zi jk ≤ xi j ; 2) zi jk ≤ yjk ; 3) zi jk ≥ xi j + yjk − 1.

Our transformed formulation becomes:

P1: min
x,y,z,t, t̃

η

R∑
j=1

N∑
i=1

βλili xi j
ri j

+ η

R∑
j=1

p̂j
stj

+η

R∑
j=1

psleepj + f
R∑

k=1
t̃k

(16)

s.t. (2), (3), (4), (5), (12), (13), (14), (15),

zi jk ≤ xi j, ∀i ∈ I, j ∈ J, k ∈ K, (17)

zi jk ≤ yjk, ∀i ∈ I, j ∈ J, k ∈ K, (18)

zi jk ≥ xi j + yjk − 1, ∀i ∈ I, j ∈ J, k ∈ K, (19)

zi jk ∈ {0, 1}, ∀i ∈ I, j ∈ J, k ∈ K, (20)

N∑
i=1

λili xi j
ri j

≤
Qth

1 +Qth
, ∀ j ∈ J, (21)

N∑
i=1

R∑
j=1

λilizi jk
Ck

≤
Q̃th

1 + Q̃th

, ∀k ∈ K . (22)

This transformed problem P1, which is equivalent to prob-
lem P0, is an integer linear programming (ILP) problem. It can
be addressed via exhaustive search and can also be solved with
CPLEX by the branch-and-bound scheme. However, those two
approaches are both computationally expensive (exponential).
Hence, we design suboptimal algorithms to solve this joint
problem and compare their performances with the optimal
solutions obtained by CPLEX in Section VI.

V. PROBLEM ANALYSIS

We decompose this joint optimization problem into two
subproblems including the user association problem and the
BBU-RRH mapping problem. We try to solve the user asso-
ciation problem first and then utilize its optimal solutions to
address the BBU-RRH mapping problem. The total system
cost P = ηP1+ f P2, where P1 and P2 are optimal values from
the first problem (i.e., the minimum power consumption of
all RRHs) and the second one (i.e., the minimum number of
VBs), respectively. We next discuss these two subproblems.

A. User Association Problem

In the user association problem, UEs are scheduled to be
associated with their optimal RRHs to minimize RRHs’ power
consumption with consideration of wireless channel conditions
and QoS requirement. Hence, the user association problem can
be formulated as

P2: min
x

R∑
j=1

N∑
i=1

βλili xi j
ri j

+

R∑
j=1

p̂j
stj +

R∑
j=1

psleepj

s.t . (2), (4), (12), (14), (21).

To solve problem P2, we design a Lagrangian relaxation
algorithm where we relax Eq. (2) and Eq. (21), i.e., the
constraint that guarantees that each UE is only served by one
RRH and the QoS constraint for each RRH. The Lagrangian
relaxation problem can be formulated as

P3: max
u,v

min
x,t

R∑
j=1

N∑
i=1

βλili xi j
ri j

+

R∑
j=1

p̂j
stj +

R∑
j=1

psleepj

+

N∑
i=1

ui(1 −
R∑
j=1

xi j)

+

R∑
j=1

vj(

N∑
i=1

λili xi j
ri j

−
Qth

1 +Qth
)

=

R∑
j=1

N∑
i=1
[
(β + vj)λili

ri j
− ui]xi j +

R∑
j=1

p̂j
stj

+

N∑
i=1

ui −
Qth

1 +Qth

R∑
j=1

vj +

R∑
j=1

psleepj

(23)

s.t . (4), (12), (14),

vj ≥ 0, ∀ j ∈ J, (24)

where ui and vj are the Lagrangian multipliers. For fixed val-
ues of the Lagrangian multipliers, the above relaxed problem
P3 will yield an optimal objective value that provides the
lower bound (LB) of the original user association problem
(i.e., problem P2).

Lemma 1. The solutions of problem P3 with fixed u and v
are

xi j =

{
1, if (β+vj )λi liri j

− ui < 0 & tj = 1,
0, otherwise.

tj =
 1, if p̂j +

N∑
i=1

min{0, (β+vj )λi liri j
− ui} < 0,

0, otherwise.

Proof: For fixed multipliers u and v, in order to minimize
the objective function, it is preferable to set xi j = 1, if its
coefficient (β+vj )λi liri j

− ui < 0, and 0 otherwise. However,
setting xi j = 1 means that we must also set tj = 1 under
the constraint of Eq. (4) which stipulates xi j ≤ tj, ∀i, j. If
we set tj = 1, the value we add to the objective function is

∆V = p̂j +
N∑
i=1

min{0, (β+vj )λi liri j
− ui}. If only ∆V is negative,

the objective value is reduced. Hence, we set tj = 1 when
∆V < 0. Therefore, the lemma is proved.

We can obtain the optimal solutions for problem P3 by
Lemma 1. However, the solutions can only provide the LB
and hence may not be feasible because Eq. (2) and Eq.
(21) are relaxed, i.e., several UEs may be served by more
than one RRH and some RRHs’ QoS requirement may be
violated. Hence, we need to find the feasible solution. The
feasible solution acts as the upper bound (UB) for our original
problem P2 because the feasible solution cannot guarantee
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optimality, and so we can always find other feasible solutions
with performances not worse than the UB.

In order to attain the UB, we utilize t obtained from Lemma
1 and then substitute it into problem P2. We can observe that

Eq. (4) and Eq. (21) can be combined as
N∑
i=1

λi li xi j
ri j
≤

Qth

1+Qth
tj ,

because when tj = 0, we have xi j = 0. Contrarily, if tj =
1, xi j can be either 0 or 1; this equation imposes the QoS
requirement. Then, problem P2 can be transformed as

P4: min
x

R∑
j=1

N∑
i=1

βλili xi j
ri j

+

R∑
j=1

p̂j
st∗j +

R∑
j=1

psleepj

s.t . (2), (12),
N∑
i=1

λili xi j
ri j

≤
Qth

1 +Qth
t∗j , j ∈ J .

Problem P4 has the similar form of the generalized as-
signment problem (GAP), which has been demonstrated to
be an NP-hard problem [26]. We design a heuristic UB
searching algorithm to solve this problem. In order to minimize
the objective value, each UE prefers to connect with the
RRH with the minimum βλi li

ri j
if the QoS requirement is not

considered. Our idea is to define the reassignment gain weight
∆wi =

βλi li
ri jmin2

−
βλi li
ri jmin

for each UE, where jmin and jmin2
indicates the RRHs with the minimum and second minimum
value of βλi li

ri j
, respectively. The reassignment gain weight

measures how much we can add to the objective value if we
move the UE i from RRH jmin to RRH jmin2. We prefer to
assign the UE with the maximum ∆wi to its RRH jmin to avoid
the case that if we assign it to RRH jmin2, a large reassignment
gain weight ∆wi will be added to the objective value. The
specific process of the UB searching algorithm is shown in
Alg. 2. Lines 4-23 iteratively assign UE i with maximum value
∆wi until all UEs find their RRHs. The Loop in lines 5-16
calculates ∆wi for each UE. Two special cases are considered
in lines 7-12. If one UE cannot find any RRH to connect (e.g.,
t∗ = 0), this problem has no feasible solution. Hence, we set
Pub = +∞. Another case is when a UE can only find one
RRH, then the UE can only be assigned to the unique RRH.

Note that the original problem P2 always chooses its UB
as its objective value because the UB can guarantee the
feasibility. Different values of Lagrange multipliers lead to
different values of UBs and LBs. Thus, by applying the
subgradient method [27], we adjust the values of ui and vj
iteratively. The iteration terminates when the UB and LB
are close to each other or reaching the maximum number
of iterations. We denote Popt as the optimal UB in previous
iterations. In the n-th iteration, we denote Plb and Pub as the
values of LB and UB, respectively. The values of ui and vj
are calculated as follows.

un+1
i = un

i + θ
n(1 −

R∑
j=1

xnij), ∀i ∈ I, (25)

vn+1
j = max{0, vnj + θ

n(

N∑
i=1

λili xnij
ri j

−
Qth

1 +Qth
)}, ∀ j ∈ J, (26)

Algorithm 1: Lagrangian Relaxation Algorithm
Input : R, N, β, λi, li, ri j, p̂sj,Qth

Output: user association matrix x, RRH activation
vector t and optimal value Popt

1 Initialize the Lagrangian multipliers ui, vj ;
2 Initialize Plb = 0, Pub = +∞, Popt = +∞, n = 1;
3 while Plb 0 Pub and n < nmax do
4 Calculate the solution of problem P3, xlb and

t lb , by Lemma 1;
5 Calculate the LB Plb by Eq. (23);
6 tub = t lb;
7 Calculate the UB Pub and its solution xub, tub by

Algorithm 2 ;
8 if Pub < Popt then
9 x = xub;

10 t = tub;
11 Popt = Pub;
12 end
13 Update step size θ according to Eq. (27);
14 Update Lagrangian multipliers u j according to

Eq. (25) and Eq. (26);
15 n = n + 1;
16 end
17 return x, t, Popt ;

where θn is the step size in the n-th iteration, which can be
calculated as

θn =
δ(Popt − Pn

lb
)

N∑
i=1
(1 −

R∑
j=1

xlbni j )
2 +

R∑
j=1
(
N∑
i=1

λi li x
lbn
i j

ri j
−

Qth

1+Qth
)2
, (27)

where δ is the decreasing adaptation parameter. Usually, δ
can be a constant or is set to 2 and then halved if Plb does
not change for several iterations. The Lagrangian relaxation
algorithm is summarized in Algorithm 1. Lines 1-2 initialize
the Lagrangian multipliers, LB and the optimal value. Lines
3-16 iteratively change the Lagrangian multipliers as well as
update the LB and UB to find the optimal value. The iteration
terminates when the LB is close to the UB or the maximum
number of iterations nmax is reached.

B. BBU-RRH Mapping Problem

The BBU-RRH mapping problem determines which RRH
is served by which VB to minimize the number of VBs, on
the condition that the user association decisions have been
decided. Hence, the BBU-RRH mapping problem can be
formulated as

P5: min
y, t̃

R∑
k=1

t̃k

s.t . (3), (13), (15),
N∑
i=1

R∑
j=1

λili x∗i j yjk
Ck

≤
Q̃th

1 + Q̃th

t̃k, ∀k ∈ K .
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Algorithm 2: UB Searching Algorithm
Input : R, N, β, λi, li, ri j, p̂sj,Qth, t∗j
Output: user association matrix xub and UB Pub

1 Residential capacity Rcap
j =

Qth
1+Qth , ∀ j ∈ J;

2 Unassigned UE set φ = {1, ..., N};
3 Boolean variable f easible = 1, xub = 0;
4 while φ , ∅ do
5 for each UE ∈ φ do
6 Find the RRH set

A = { j | λi liri j
≤ Rcap

j , tj = 1};
7 if |A| = 0 then
8 f easible = 0;
9 break;

10 else if |A| = 1 then
11 Assign UE i to RRH j ∈ A, xubij = 1;
12 Update Rcap

j and φ;
13 else
14 Calculate ∆wi;
15 end
16 end
17 if f easible = 0 then
18 break;
19 end
20 Choose UE i = arg maxi{∆wi};
21 Assign UE i to RRH jmin, xubijmin

= 1;
22 Update Rcap

j and φ;
23 end
24 if f easible = 0 then
25 return xub = 0, Pub = +∞ ;
26 end
27 return xub, Pub ;

Problem P5 has the similar form of the bin packing problem
[28], where VBs are “backpacks” and RRHs are “objects”
to be put in the backpacks. We utilize the best-fit-decreasing
algorithm [28] to solve the problem. We consider Q̃th

1+Q̃th
as the

capacity of VB k if t̃k = 1, while
λi li x

∗
i j

Ck
indicates the weight

added to VB k by RRH j if they are connected. The idea is to
connect RRH j to VB k (i.e., put object RRH j to backpack
VB k) which will have the minimum remaining capacity after
adding the object RRH (i.e., “best fit”). The weights of RRHs
are sorted in descending order and RRHs with larger weights
are handled preferentially (i.e., “decreasing”). If no VB can
accommodate the RRH, a new VB is added to serve the RRH.

C. Computational Complexity Analysis

In the user association problem, we design a Lagrangian
relaxation algorithm. In Alg. 1, the while loop in lines 3-16
is executed nmax times in the worst case. In each iteration,
lines 4-5 yield an asymptotical factor of O(NR) to calculate
the lower bound. To obtain the upper bound, we design the
UB searching algorithm, where we have to enumerate all
UEs and RRHs to obtain the user association solutions in
the worst case and hence yields an asymptotical factor of

O(NR). Updating Lagrangian multipliers in line 14 produces
an asymptotical factor of O(N + R). Therefore, the computa-
tional complexity of Alg. 1 is O(nmax(NR + NR + N + R)) =
O(nmaxNR). In the BBU-RRH Mapping problem, the best
fit decreasing scheme is utilized to solve the problem, which
yields an asymptotical factor of O(NR) [28]. Hence, the
overall computational complexity of the joint problem is
O(nmaxNR + NR) = O(nmaxNR), which can be solved in
polynomial time.

VI. SIMULATION RESULTS

In this section, we set up simulations to investigate the
performance of our proposed joint BBU-RRH mapping and
user association algorithm, which is solved by LAGrAngian re-
laxation algorithm and Best Fit Decreasing algorithm (LAGA-
BFD). To evaluate the performance of this algorithm, we
choose the commonly used NEARest-first user association
scheme [14], and the BBU-RRH mapping policy in [6] where
user requests from each RRH are distributed EVENly among
the VBs (NEAR-EVEN). In addition, both LAGA-BFD and
NEAR-EVEN will be compared with the optimal solutions
obtained from the ILP by CPLEX.

In our simulation, 6 macro RRHs and 60 UEs are randomly
deployed in a 3000m×3000m area. All of RRHs’ and UEs’ x-
coordinates and y-coordinates follow the uniform distribution
ranging from 0 m to 3000 m. The system bandwidth is 10
MHz and the frequency reuse factor is one. We adopt the path
loss model 128.1 + 37.6 ∗ log10(D) (D in kilometers) based
on the 3GPP specification. The transmit power for each RRH
is 43 dBm and the noise power density is -174 dBm/Hz. The
static and sleep power consumption of a RRH are 84 W and
56 W, respectively [23]. The load-power coefficient of RRH
β = 500 W/Mb. The average traffic arrival rate for each UE is
1.0 request/s and the average traffic size for each UE is 1 Mb.
The system cost coefficient (i.e., the system cost incurred by
RRH power consumption) for RRHs η = 1 per watt and the
one (i.e., the system cost incurred by renting each VM) for
VBs f = 30 per VB. Throughout the simulation, we assume
the QoS latency ratio for all RRHs and VBs are the same (i.e.,
Qth = Q̃th).

We first evaluate the performance of LAGA-BFD with
different numbers of RRHs ranging from 6 to 14, shown in
Fig. 2. We also conduct the simulation under two different
QoS requirements of latency ratio 0.2 and 0.7, respectively.
Fig. 2(a) and Fig. 2(b) depict the comparisons with the stricter
requirement and the looser requirement, respectively. The gen-
eral trends of the system cost in Fig. 2 go up with the increas-
ing number of RRHs because building more RRHs potentially
increase power consumption of all RRHs and hence increase
the system cost. For example, an additional RRH consumes
the least power in the sleep mode and even more if it is active.
We can observe from Fig. 2 that LAGA-BFD performs close to
the ILP optimal solution and much better than NEAR-EVEN.
NEAR-EVEN exhibits a much steeper slope than those of
LAGA-BFD and ILP because NEAR-EVEN always connects
the UEs with the nearest RRHs; this will likely activate most
RRHs if UEs are distributed evenly and hence draws more
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Fig. 2. System cost vs number of RRHs.
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Fig. 3. System cost vs number of UEs.

power consumption. Moreover, NEAR-EVEN incurs a higher
system cost because it evenly distributes the requests from
each RRH among all VBs without considering different traffic
loads of all VBs; this may cause underutilization of some VBs
and hence more VBs are activated as compared to LAGA-
BFD.

In comparing Fig. 2(a) with Fig. 2(b), we can observe that
for a certain number of RRHs, a stricter QoS requirement
incurs a higher system cost. The reason is that with a looser
QoS requirement, each RRH and VB can serve more UEs’
requests and hence the active RRHs and VBs can be reduced.
In both figures, LAGA-BFD performs close to ILP and better
than NEAR-EVEN. ILP always provides the lowest system
cost because ILP from CPLEX uses the branch and bound
method to derive the exact optimal solutions.

We then compare the performances of the three algorithms
with different numbers of UEs. Fig. 3 illustrates the system
cost under different UE numbers from 30 to 70, and the
comparisons of different QoS requirements of latency ratios
are shown in Fig. 3(a) and Fig. 3(b). When the number of
UEs increases, the system cost rises because more RRHs and
VBs are needed to serve these UEs. In both Fig. 3(a) and
Fig. 3(b), LAGA-BFD performs close to ILP and better than
NEAR-EVEN. In comparing Fig. 3(a) with Fig. 3(b), a stricter
QoS requirement (Fig. 3(a)) introduces a higher system cost.
In addition, the solutions obtained by LAGA-BFD are closer
to those of ILP in Fig. 3(a) as compared to Fig. 3(b). A stricter
QoS requirement (Fig. 3(a)) implies that user association and
BBU-RRH mapping strategies should be better scheduled and
hence LAGA-BFD, the suboptimal solution, incurs a larger
deviation from the optimal value.

We also investigate the impact of different traffic arrival
rates on the system cost. Fig. 4 depicts the system cost under
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Fig. 4. System cost vs average arrival rate.

different average arrival rate λ from 0.06 to 1.0. The results
with different QoS requirements are shown in Fig. 4(a) and
Fig. 4(b). NEAR-EVEN always incurs the highest system cost
for the same reason as explained in Fig. 2. A larger arrival
rate implies more traffic from each UE, and so more active
RRHs and VBs are required to serve the requests and hence
a higher system cost is incurred, as observed in Fig. 4. We
can also observe that LAGA-BFD performs close to ILP and
even tigher when the QoS requirement is 0.7 in Fig. 4(b) for
the same reason observed in Fig. 3. Similarly, the system cost
incurred for a stricter QoS requirement (Qth = 0.2 in Fig. 4(a))
is higher than that for a less strict QoS requirement (Qth = 0.7
in Fig. 4(b)) because more active RRHs and VBs are required
with a stricter QoS requirement. In summary, we can observe
that LAGA-BFD incurs a lower system cost than the existing
algorithm NEAR-EVEN, and achieves a performance very
close to the optimal solution of ILP and performs even better
when the QoS requirement is not strict.

VII. CONCLUSION

In this paper, we have investigated the QoS-aware joint
BBU-RRH mapping and user association problem in C-RAN
with the objective to minimize the system cost incurred by
the power consumption of all RRHs and rentals of VBs. We
have modeled our QoS requirement model as the delays of two
queues in tandem, including the BBU processing queue and the
RRH transmission queue. An ILP model has been proposed to
address this joint optimization problem and to provide insights
on which RRH should be activated, how to associate UEs
to different RRHs, how many VBs are needed, and how to
connect RRHs with different VBs. However, the ILP model
incurs high computing complexity. Hence, we have further
decomposed this joint problem into two subproblems: the user
association problem and the BBU-RRH mapping problem. We
have designed a Lagrangian relaxation algorithm for the user
association problem and transformed the BBU-RRH mapping
problem into a bin-packing problem which is solved by the
BFD algorithm. Simulation results have demonstrated that
our proposed algorithm LAGA-BFD performs very close to
the optimal solution and performs even better when the QoS
requirement is not strict.

REFERENCES

[1] Cisco, “Cisco visual networking index: Global mobile data traffic
forecast update, 2016–2021,” White Paper, Mar. 2017.



9

[2] M. Peng, Y. Sun, X. Li, Z. Mao, and C. Wang, “Recent advances in
cloud radio access networks: System architectures, key techniques, and
open issues,” IEEE Communications Surveys & Tutorials, vol. 18, no. 3,
pp. 2282–2308, Third Quarter 2016.

[3] X. Sun and N. Ansari, “EdgeIoT: Mobile edge computing for the internet
of things,” IEEE Communications Magazine, vol. 54, no. 12, pp. 22–29,
December 2016.

[4] D. Wubben, P. Rost, J. S. Bartelt, M. Lalam, V. Savin, M. Gorgoglione,
A. Dekorsy, and G. Fettweis, “Benefits and impact of cloud computing
on 5G signal processing: Flexible centralization through cloud-RAN,”
IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 35–44, Nov 2014.

[5] Z. Zhou, M. Dong, K. Ota, G. Wang, and L. T. Yang, “Energy-efficient
resource allocation for D2D communications underlaying Cloud-RAN-
based LTE-A networks,” IEEE Internet of Things Journal, vol. 3, no. 3,
pp. 428–438, June 2016.

[6] J. Tang, W. P. Tay, T. Q. S. Quek, and B. Liang, “System cost
minimization in cloud RAN with limited fronthaul capacity,” IEEE
Transactions on Wireless Communications, vol. 16, no. 5, pp. 3371–
3384, May 2017.

[7] D. Liu, L. Wang, Y. Chen, M. Elkashlan, K. K. Wong, R. Schober, and
L. Hanzo, “User association in 5G networks: A survey and an outlook,”
IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1018–
1044, Second Quarter 2016.

[8] C. L. I, J. Huang, R. Duan, C. Cui, J. Jiang, and L. Li, “Recent progress
on C-RAN centralization and cloudification,” IEEE Access, vol. 2, pp.
1030–1039, 2014.

[9] Q. Liu, T. Han, N. Ansari, and G. Wu, “On designing energy-efficient
heterogeneous cloud radio access networks,” IEEE Trans. on Green
Communications and Networking, DOI: 10.1109/TGCN.2018.2835451,
early access.

[10] X. Huang and N. Ansari, “Joint spectrum and power allocation for
multi-node cooperative wireless systems,” IEEE Transactions on Mobile
Computing, vol. 14, no. 10, pp. 2034–2044, Oct. 2015.

[11] J. Opadere, Q. Liu, and T. Han, “Energy-efficient RRH sleep mode
for virtual radio access networks,” in GLOBECOM 2017 - 2017 IEEE
Global Communications Conference, Dec. 2017, pp. 1–6.

[12] S. Guo, D. Zeng, L. Gu, and J. Luo, “When green energy meets
cloud radio access network: Joint optimization towards brown energy
minimization,” Mobile Networks and Applications, Feb. 2018. [Online].
Available: https://doi.org/10.1007/s11036-018-1028-9

[13] D. Zeng, J. Zhang, S. Guo, L. Gu, and K. Wang, “Take renewable energy
into CRAN toward green wireless access networks,” IEEE Network,
vol. 31, no. 4, pp. 62–68, July 2017.

[14] M. Peng, S. Yan, and H. V. Poor, “Ergodic capacity analysis of remote
radio head associations in cloud radio access networks,” IEEE Wireless
Communications Letters, vol. 3, no. 4, pp. 365–368, Aug 2014.

[15] J. Zuo, J. Zhang, C. Yuen, W. Jiang, and W. Luo, “Energy efficient user
association for cloud radio access networks,” IEEE Access, vol. 4, pp.
2429–2438, 2016.

[16] S. Wang and Y. Sun, “Enhancing performance of heterogeneous cloud
radio access networks with efficient user association,” in 2017 IEEE
International Conference on Communications (ICC), May 2017, pp. 1–
6.

[17] T. Han and N. Ansari, “Network utility aware traffic load balancing
in backhaul-constrained cache-enabled small cell networks with hybrid
power supplies,” IEEE Transactions on Mobile Computing, vol. 16,
no. 10, pp. 2819–2832, Oct 2017.

[18] T. Sigwele, A. S. Alam, P. Pillai, and Y. F. Hu, “Evaluating energy-
efficient cloud radio access networks for 5G,” in 2015 IEEE Interna-
tional Conference on Data Science and Data Intensive Systems, Dec
2015, pp. 362–367.

[19] K. Boulos, M. E. Helou, and S. Lahoud, “RRH clustering in cloud radio
access networks,” in 2015 International Conference on Applied Research
in Computer Science and Engineering (ICAR), Oct 2015, pp. 1–6.

[20] M. Qian, W. Hardjawana, J. Shi, and B. Vucetic, “Baseband processing
units virtualization for cloud radio access networks,” IEEE Wireless
Communications Letters, vol. 4, no. 2, pp. 189–192, April 2015.

[21] H. M. Soliman and A. Leon-Garcia, “QoS-aware joint RRH activation
and clustering in cloud-RANs,” in 2016 IEEE Wireless Communications
and Networking Conference, April 2016, pp. 1–6.

[22] M. Khan, R. S. Alhumaima, and H. S. Al-Raweshidy, “QoS-aware
dynamic RRH allocation in a self-optimized cloud radio access network
with RRH proximity constraint,” IEEE Transactions on Network and
Service Management, vol. 14, no. 3, pp. 730–744, Sept 2017.

[23] G. Auer, V. Giannini, C. Desset, I. Godor, P. Skillermark, M. Olsson,
M. A. Imran, D. Sabella, M. J. Gonzalez, O. Blume, and A. Fehske,

“How much energy is needed to run a wireless network?” IEEE Wireless
Communications, vol. 18, no. 5, pp. 40–49, October 2011.

[24] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “A performance analysis of EC2 cloud computing services
for scientific computing,” in Cloud Computing, D. R. Avresky, M. Diaz,
A. Bode, B. Ciciani, and E. Dekel, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 115–131.

[25] L. Kleinrock, Queueing Systems: Computer Applications. Hoboken,
NJ, USA: Wiley-Interscience, 1976.

[26] G. T. Ross and R. M. Soland, “Modeling facility location
problems as generalized assignment problems,” Management
Science, vol. 24, no. 3, pp. 345–357, 1977. [Online]. Available:
https://doi.org/10.1287/mnsc.24.3.345

[27] M. S. Daskin, Network and Discrete Location : Models, Algorithms, and
Applications, 2nd ed. Hoboken, New Jersey: John Wiley & Sons, Inc.,
2013.

[28] E. G. Coffman Jr., J. Csirik, G. Galambos, S. Martello, and D. Vigo,
“Bin packing approximation algorithms: Survey and classification,” in
Handbook of Combinatorial Optimization, P. M. Pardalos, D.-Z. Du,
and R. L. Graham, Eds. New York, NY: Springer New York, 2013,
pp. 455–531.


