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Towards Workload Balancing in Fog Computing
Empowered IoT
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Abstract—As latency is the key performance metric for IoT applications, fog nodes co-located with cellular base stations can move the
computing resources close to IoT devices. Therefore, data flows of IoT devices can be offloaded to fog nodes in their proximity, instead
of the remote cloud, for processing. However, the latency of data flows in IoT devices consist of both the communications latency and
computing latency. Owing to the spatial and temporal dynamics of IoT device distributions, some BSs and fog nodes are lightly loaded,
while others, which may be overloaded, may incur congestion. Thus, the traffic load allocation among base stations (BSs) and
computing load allocation among fog nodes affect the communications latency and computing latency of data flows, respectively. To
solve this problem, we propose a workload balancing scheme in a fog network to minimize the latency of data flows in the
communications and processing procedures by associating IoT devices to suitable BSs. We further prove the convergence and the
optimality of the proposed workload balancing scheme. Through extensive simulations, we have compared the performance of the
proposed load balancing scheme with other schemes and verified its advantages for fog networking.

Index Terms—Fog node, Internet of Things (IoT), workload allocation, user association.
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1 INTRODUCTION

IN the past few years, a tremendous number of smart de-
vices and objects, such as smart phones, wearable devices,

industrial and utility components, have been equipped with
sensors to sense the real-time physical information from the
environment [1]. Hence, Internet of Things (IoT) has been
introduced as a concept, where various smart devices are
connected with each other via the internet and empowered
with data analytics. Various IoT applications, such as smart
transportation, smart health, smart city and smart home
have been widely studied to improve our daily life [2].
Owing to the high volume and fast velocity of data streams
generated by IoT devices, the cloud that can provision
flexible and efficient computing resources is employed as
a smart ”brain” to process and store the big data generated
from distributed IoT devices [3], [4]. However, as the data
streams generated from IoT devices are transmitted to the
remote cloud via Internet, the transferred data may con-
sume a huge amount of bandwidth and energy of the core
network [5]. On the other hand, since the remote cloud is
usually far from IoT devices, the latency for processing data
streams may be too long, especially unbearable for many
delay sensitive IoT applications [6]. Therefore, fog nodes,
which bring computing resources close to IoT devices and
IoT users, can be employed to alleviate the traffic load in the
core network and minimize the latency for IoT devices [7],
[8].

In a fog network, data flows sensed by IoT devices are
transmitted to respective BSs and then processed by fog
nodes that are co-located with the BSs. Thus, the latency
of each data flow consists of both the communications
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latency towards the corresponding BS and the computing
latency incurred by the respective fog node. Regarding mo-
bile networks, the communications latency of IoT devices’
data flows is jointly determined by IoT devices’ channel
conditions and their BSs’ traffic workload status. As the
traffic load increases, a BS tends to be congested and thus
data flows of IoT devices have to wait for more time to be
transmitted. As a result, the traffic load allocation among
BSs will significantly affect the delivery time (i.e., communi-
cations latency) of data flows. On the other hand, at the side
of fog nodes, the computing latency of data flows is directly
determined by the computing loads allocated to these fog
nodes. Specifically, the heavy computing load of a fog node
translates to a longer computing latency. Thus, provided
with the dynamic distribution of computing workloads,
the load allocation among fog nodes critically impacts the
computing latency of all data flows in the network. As each
fog node is assumed to be attached to a specific BS in this
paper, the workload of a fog node is related to the number
of IoT devices associated with its corresponding BS. In other
words, when one IoT device is associated with one BS, its
data flows are also offloaded to the BS’s co-located fog node.

Since adjacent BSs always have overlapped coverage
areas, IoT devices in these areas can be associated to suitable
BSs in order to balance the loads among BSs; this asso-
ciation critically impacts both the traffic loads of BSs and
computing loads of fog nodes. As the latency of each data
flow consists of the communications latency and computing
latency, both the traffic loads of BSs and computing loads
of fog nodes should be taken into consideration in the
load balancing process, in order to minimize the latency of
data flows. Specifically, owing to the dynamic distribution
of IoT devices, when some BSs are overloaded, they will
become the bottleneck of the fog network, thus making
the communications latency the dominating factor of the
latency of data flows; in this case, some IoT devices of these
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BSs should be offloaded to other neighboring BSs to mitigate
their congested traffic loads. Meanwhile, when some fog
nodes are congested, the computing load balancing is more
critical, and thus some IoT devices of the BSs co-located with
these fog nodes can be assigned to neighboring BSs in order
to reduce the computing workloads of these fog nodes. In
this case, the computing load balancing may increase the
traffic loads of the neighboring BSs, which may in turn
degrade the communications latency of all data flows to a
certain extent.

To solve the above problem, we propose a LoAd Bal-
ancing (LAB) scheme for the fog network to minimize the
latency of IoT data flows, by taking into account of both the
communications latency and computing latency. Below are
major contributions of the paper.

• We formulate the problem of minimizing the la-
tency of all data flows by associating IoT devices
with different BSs/fog nodes. The models of both
the traffic loads at BSs and computing loads at fog
nodes are introduced while the latency ratios (i.e.,
the amount of time that an IoT flow has to wait
to obtain a unit service time) of BSs and fog nodes
are adopted to reflect the communications latency in
BSs and computing latency in fog nodes, respectively.
Moreover, we have also analyzed the impact of load
balancing on the average latency of IoT flows.

• To solve the load balancing problem in a fog net-
work, we design a distributed IoT device association
scheme (LAB) that assigns IoT devices to suitable
BSs/fog nodes to reduce the latency of all data flows.
In the scheme, each BS iteratively estimates its traffic
load and computing load, and then broadcasts this
information. Meanwhile, at the side of IoT devices,
they can choose the favorable BSs in each iteration
based on the estimated traffic loads and comput-
ing loads of BSs/fog nodes. Furthermore, we have
proved the convergence and the optimality of the
proposed algorithm.

The remainder of this paper is organized as follows. In
Section 2, we briefly review related works. In Section 3,
we illustrate the fog network architecture and describe the
system model. In Section 4, we formulate and analyze the
load balancing problem. In Section 5, the LAB algorithm
is proposed to obtain the optimal solution of the workload
balancing problem. Section 6 shows the simulation results,
and concluding remarks are presented in Section 7.

2 RELATED WORKS

Owing to the proximity of fog computing resources to
IoT devices and IoT users, some studies have focused on
integrating IoT with fog computing. Bonomi et al. [9] elicited
how fog computing may be applied in various IoT appli-
cations. Chiang et al. [10] summarized the opportunities
and challenges of fog computing in the networking con-
text of IoT and advocated that fog computing can fill the
technology gaps in IoT. Sun and Ansari [11] proposed the
IoT architecture (EdgeIoT) to handle the data streams from
IoT devices at the fog node. Moreover, Jutila [12] proposed

adaptive fog computing solutions for IoT networking in
order to optimize traffic flows and network resources.

Fog computing, which moves computing resources close
to IoT devices or mobile users, has been proposed to im-
prove the performance of IoT applications and mobile appli-
cations [13], [14], [15]. To optimize different objectives such
as latency and energy consumption of the network, many
studies have focused on allocating computing workloads
among edge computing resources (fog nodes or cloudlets)
without considering the traffic load balancing in mobile
networks [16]. Gu et al. [17] proposed to integrate fog
computing and medical cyber-physical system, and then
designed a cost efficient resource management scheme by
jointly considering BS association, task distribution and
virtual machine placement. Zeng et al. [18] proposed to
jointly consider the task scheduling and image placement in
fog computing based software-defined embedded system to
minimize the response time of task requests. Tong et al. [19]
proposed a workload placement algorithm in a hierarchical
edge cloud network in order to optimize the response time
of all tasks. The algorithm allocates tasks among different
tiers of fog nodes and allocates the computing resources
of each fog node for their assigned tasks. Fan et al. [20]
proposed to migrate mobile users’ virtual machines (VM)
among distributed cloudlets to reduce the brown energy
consumption of cloudlets by jointly considering the green
energy generation among cloudlets and energy consump-
tion of VM migrations. Fan and Ansari [21] proposed a
workload allocation scheme, referred to as WALL, in a
hierarchical cloudlet network to optimize the response time
of user tasks. This workload allocation scheme assigns user
tasks among different tiers of cloudlets and then allocates
computing resources of each cloudlet to their associated
users. Moreover, some works [22], [23] look into placing
a certain number of edge computing resources among a
given set of available sites and then assigning workloads
to the edge computing resources based on the real-time
requirement. Note that all the above works only consider the
wired communications latency, where the wireless delay is
neglected. In contrast, other works also consider the impact
of wireless delay on the latency of tasks while allocating
workloads among edge computing resources. Jia et al. [24]
proposed a model to place cloudlets in the network and
realize the load balancing among the cloudlets to minimize
the response time of users. In this paper, the wireless delay
for each user is assumed to be constant. Some works pro-
posed to control the transmission power of BSs to adjust the
data rate of users in the communications links as well as the
workloads among edge computing resources, thus reducing
the response time of users [25], [26].

Moreover, many existing works on mobile networks
have addressed traffic workload balancing among BSs. Kim
et al. [27] proposed an iterative distributed user association
algorithm to balance the traffic loads among BSs based
on different performance metrics. Han and Ansari [28]
proposed a traffic workload balancing scheme to make a
tradeoff between the traffic delivery time and brown energy
consumption in the cellular networks. Fan et al. [29] pro-
posed a user association algorithm to improve the flow level
throughput and green energy utilization in heterogeneous
cellular networks.
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As we know, the latency of a data flow sensed by a
IoT device consists of both the communications latency and
computing latency, which are impacted by the traffic loads
of BSs and computing loads of fog nodes. As a result, simply
balancing the traffic loads or computing loads is not enough
to optimize the response time. However, few works have
paid attention on balancing the traffic loads and comput-
ing loads simultaneously, and this issue remains an open
challenge. Therefore, considering the impact of IoT device-
BS association on the average communication latency and
computing latency, we propose to jointly balance the traffic
loads among BSs and computing loads among fog nodes by
associating IoT devices to the optimal BSs. When some BSs
are congested by heavy traffic loads, these BSs may become
the bottleneck of the fog network, i.e., the communications
latency is the dominating factor of the latency of IoT devices’
data flows. In this case, IoT devices should be released from
these overloaded BSs and re-assigned to lightly loaded BSs
in order to ease the traffic congestion. On the other hand,
if some fog nodes become the bottleneck of the network,
some IoT devices located in the coverage of the fog node/
BS should be allocated to the neighboring BSs in order to
mitigate the congestion of these fog nodes at the expense
of increasing the traffic loads of neighboring BSs that may
slightly degrade the communications latency of data flows.

3 SYSTEM MODEL

Fig. 1. Fog network architecture.

A fog network architecture is illustrated in Fig. 1, where
fog nodes are attached to BSs and neighboring BSs have
overlapped coverage areas. Note that all BSs adopt the NB-
IoT interface to offer communications services for all IoT
devices [11]. In the network, since the workload allocation
among fog nodes requires the data flows to go through
the mobile cellular core, which incurs additional delay for
the IoT flows, the IoT flows are generally preferred to be
processed at the local BSs fog node. On the other hand, in the
workload allocation among fog nodes, a central controller
is required to collect all workload information of both fog
nodes and IoT devices in order to execute a centralized
algorithm in real time, the complexity of which will be
unbearable for large scale networks, e.g., metropolitan area
network. Thus, we assume that data flows of an IoT device
are processed by the fog node attached to the IoT device’s
BS instead of other fog nodes. Based on the similar concerns,
other existing researches such as [26] also adopt the same
assumption. Note that in this case, the computing loads can

TABLE 1
The Important Notations

Symbol Definition
ηj(x) Binary indicator of location x being associated to BS j.
Cj Computing capacity of fog node j.

rj(x) Data rate of an IoT device at location x towards BS j.
P (x) Transmission power of IoT devices at location x.
λ(x) The flow arrival rate at location x.
l(x) The average traffic size of a flow at location x.
ν(x) The average computing size of a flow at location x.
J Set of BSs/fog nodes.
A The coverage area of all BSs.
ρj Traffic load of BS j.
ρ̂j Computing load of fog node j.
µj Communications latency ratio of BS j.
µ̂j Computing latency ratio of fog node j.

L(η) Latency ratio of the fog network.
ρmax Maximum traffic load threshold of BS j.
ρ̂max Maximum computing load threshold of fog node j.

still be balanced among fog nodes by adjusting IoT device
associations among BSs. As the IoT device association is
determined by a distributed algorithm run by both the BS
and IoT devices, the algorithm has low complexity and is
scalable to different networks. Therefore, in this paper, the
IoT device association among BSs not only determines the
traffic loads among BSs, but also determines the computing
loads among fog nodes. Meanwhile, adjacent macrocells
employ different frequency spectrum, and thus we do not
consider the inter-cell interference [30]. In the fog network,
data flows sensed by an IoT device are transmitted to its
associated BS, and then processed by the fog node co-
located with the BS. Thus, to calculate the latency of data
flows, we will focus on the uplink communications of IoT
devices and the data processing in fog nodes.

3.1 Traffic load model

As each BS is assigned with a specific fog node, J can be
used, in this paper, to represent either the set of BSs or the set
of fog nodes. Denote A as the coverage area of all BSs, and x
as a location within A. We assume that IoT data flows arrive
according to a Poisson Point Process with an average rate
per unit area, λ(x), at location x. The inhomogeneity results
in the spatial variability of traffic loads. Key notations used
in this paper are summarized in Table 1.

Denote P (x) as the transmission power of the IoT device
at location x, gj(x) as the uplink channel gain from location
x to BS j and σ2 as the noise power. Then, the signal to noise
ratio (SNR) of the IoT device at location x towards BS j can
be derived as

γj(x) =
P (x)gj(x)

σ2
. (1)

Since the uplink data rate of IoT devices depends on the
channel condition, IoT devices at different locations may
have different data rates. Therefore, if an IoT device at
location x is associated with BS j, the capacity of the IoT
device (data rate) rj(x) can be generally expressed as a
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logarithmic function of its γj(x), according to the Shannon
Hartley theorem,

rj(x) = Wj log(1 + γj(x)), (2)

where Wj is the total bandwidth of the jth BS [28].
As mentioned above, the traffic (data flows) arrival at lo-

cation x follows a Poisson distribution with average arrival
rate λ(x). Assume that the lengths of all data flows follow
an exponential distribution with the average value of l(x).
Then, the average traffic load density of the IoT device at
location x in BS j can be expressed as [31]

ϱj(x) =
λ(x)l(x)ηj(x)

rj(x)
, (3)

where ηj(x) is a binary variable indicating whether location
x is associated with the jth BS (1 if so; 0, otherwise).

The average traffic load ρj of BS j is obtainted by
aggregating traffic load densities of all locations covered by
BS j. In particular, the value of ρj refers to the fraction of
time during which BS j is busy (i.e., the utilization of BS j)
[27].

ρj =
∑
x∈A

ϱj(x). (4)

In mobile communications, based on different metrics
such as the network capacity and user fairness, various
scheduling algorithms have been proposed to help IoT
devices properly share the radio resources of a BS [32].
For analytical tractability, in this paper, we assume that
IoT devices at different locations associated with a BS can
schedule their uplink transmissions in a round-robin fash-
ion, in which multiple IoT devices can access the uplink
channel sequentially. In addition, the traffic arrival rate of
location x follows the Poisson Process. Meanwhile, since the
traffic sizes of data flows follow the exponential distribution
while the data rate at each location is given, the service
time of data flows at location x satisfies an exponential
distribution [28], where the average service time of data
flows at location x can be expressed as sj(x) = l(x)

rj(x)
.

As a result, the uplink communications of a BS realizes a
M/M/1-processor sharing (PS) queue [33]. In the model,
as different IoT devices have different data rates due to
their channel conditions and they will fairly share the ratio
resources of a BS, it is a feasible model to emulate the
practical data transmission. Moreover, to keep the queue
stable, we always need to guarantee that ρj is smaller than
1.

Given the M/M/1-processor sharing queue of a BS, the
average delivery time of data flows at location x can be
expressed as [33]:

tj(x) =
l(x)

rj(x)(1− ρj)
. (5)

Meanwhile, the average waiting time for each data flow at
location x is

wj(x) = tj(x)− sj(x) =
ρj l(x)

rj(x)(1− ρj)
. (6)

Denote µj(x) as the latency ratio of the waiting time to the
service time in BS j for data flows at location x. Then,

µj(x) =
wj(x)

sj(x)
=

ρj
1− ρj

. (7)

It is easy to observe that µj(x) is only dependent on the
traffic load of BS j. Therefore, all the IoT devices associated
with BS j have the same latency ratio. Hence, we define the
communications latency ratio of BS j as

µj =
ρj

1− ρj
. (8)

From Eq. (8), we can see that increasing traffic load ρj
of BS j will increases µj . When µj is high, IoT devices
associated with BS j have to wait for a longer time to access
the transmission channel. Hence, µj is used to reflect the
average delivery delay of BS j.

3.2 Computing load model

Aside from the communications latency, the latency of data
flows in the fog network is also related to the computing
latency in the fog nodes. As the flow arrival at location x
follows a Poisson process with the average arrival rate of
λ(x), the flow arrival rate of fog node j, which is the sum of
the flow arrivals at different locations covered by fog node
j, also constitutes a Poisson process. On the other hand, we
assume that the computing sizes of data flows follow an
exponential distribution, where the average computing size
(in CPU cycles) of a data flow at location x is expressed as
ν(x). Meanwhile, as we are focusing on the coarse grained
computing load balancing among fog nodes by IoT device
association, we consider a fog node as a computing unit
(like a server). Since the computing capacity of a fog node
(in CPU cycles per second) is fixed, the service time of a
data flow in a fog node, which equals to the computing size
of the data flow divided by the capacity of the fog node,
also follows an exponential distribution. By considering a
fog node as an entity, it is therefore appropriate to model
the processing of IoT flows from IoT devices by a fog node
as an M/M/1 queueing model.

Denote Cj as the computing capacity (in CPU cy-
cle/second) of fog node j. In fog node i, the average service
time of data flows at location x can be expressed as

ŝ(x) =
ν(x)

Cj
. (9)

In addition, the average computing load density of data
flows at location x in fog node j can be expressed as

ϱ̂j(x) =
λ(x)ν(x)ηj(x)

Cj
. (10)

Aggregating the computing load densities at different loca-
tions covered by BS j results in the computing load of fog
node j:

ρ̂j =
∑
x∈A

ϱ̂j(x). (11)

Based on queuing theory regarding the M/M/1 model, the
average waiting time of data flows at location x in fog node
j can be derived as

ŵj(x) =
ρ̂jν(x)

Cj(x)(1− ρ̂j)
. (12)

Denote µ̂j(x) as the computing latency ratio, which equals
the ratio between the average waiting time and the average
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service time. In other words, it shows the required waiting
time per unit service time in fog node j.

µ̂j(x) =
ŵj(x)

ŝj(x)
=

ρ̂j
1− ρ̂j

. (13)

Since µ̂j(x) is only dependent on the computing load of fog
node j, all IoT devices have the same latency ratio in fog
node j. Hence, we define the computing latency ratio of fog
node j as:

µ̂j =
ρ̂j

1− ρ̂j
. (14)

Here, a smaller µ̂ means that fog node j incurs less delay
to its associated IoT devices. Hence, µ̂j is adopted to reflect
the average computing latency in fog node j.

Considering the M/M/1 processor-sharing queue in a
BS and M/M/1 queue in the corresponding fog node, we
can model the flow processing in a pair of BS and fog node
as a queue system as shown in Fig. 2. In order to minimize
the latency of IoT devices’ data flows in the fog network, we
adopt µj+µ̂j (latency ratio) to represent the average latency
of processing data flows via the pair of BS j and fog node j.

Fig. 2. The queuing system of the fog network.

4 PROBLEM FORMULATION

In this paper, we aim to improve the latency of all data
flows by balancing workloads among BSs/fog nodes. Con-
sidering both the communications latency and computing
latency, we denote the latency ratio of the fog network as
L(η) =

∑
j∈J

µj + µ̂j . Our problem is to optimally associate

IoT devices to BSs (i.e., balancing loads among BSs/fog
nodes) in order to minimize the latency ratio of the fog net-
work. Therefore, the problem can be formulated as follows:

P1 :min
η

L(η) (15)

s.t.
∑
j∈J

ηj(x) = 1,∀x ∈ A; (16)

0 ≤ ρj ≤ ρmax,∀j ∈ J ; (17)
0 ≤ ρ̂j ≤ ρ̂max,∀j ∈ J ; (18)
ηj(x) ∈ {0, 1},∀x ∈ A,∀j ∈ J . (19)

Here, Constraint (16) indicates that each location can be as-
sociated with only one BS. Constraint (17) imposes the traffic
load in BS j not to exceed the maximum load threshold of
the BS. Constraint (18) imposes the computing load in fog
node i to be less than the maximum load threshold of the
fog node.

In the load balancing process, the traffic load allocation
and computing load allocation may affect each other. When

the heavy workloads of some BSs are the main constraints of
the fog network, the proposed scheme pays more attention
on balancing the traffic loads among BSs. As a result, the
potential traffic congestions in the overloaded BSs will be
mitigated, thus reducing the latency of data flows. However,
in the above process, IoT devices are allocated to balance
the traffic loads among BSs that may incur the uneven
computing loads among the fog nodes to a certain extent.
In contrast, when some fog nodes become the bottleneck
due to their heavy computing loads, the computing latency
becomes the dominating factor of data flows’ latency. Hence,
the proposed scheme will focus on balancing the computing
loads among fog nodes by adjusting the IoT device associa-
tions among BSs. In this case, although the communications
latency may increase owing to the uneven traffic load allo-
cations, the significant reduction of computing latency can
still improve the latency of all data flows in the fog network.

5 LAB: A DISTRIBUTED IOT DEVICE ASSOCIA-
TION SCHEME

In this section, we present the LAB scheme, where the
communications latency in BSs and the computing latency
in fog nodes are taken into account simultaneously. The
proposed scheme consists of a BS side algorithm and an IoT
device side algorithm. The former one iteratively estimates
the traffic loads of BSs and the computing loads of fog
nodes, and then broadcasts them to IoT devices. In the latter
algorithm, each IoT device selects the suitable BS based on
both the updated advertised load information and its uplink
data rates towards different BSs such that the latency ratio
of the fog network L(η) is minimized.

5.1 The IoT device side algorithm
At the beginning of the kth iteration, all BSs broadcast their
estimated traffic loads ρj and computing loads ρ̃j to IoT
devices. Based on the definition of L(η), we have

∂L(η)

∂ηj(x)
= λ(x)

Cj l(x)(1− ρ̂j(k))
2
+ rj(x)ν(x)(1− ρj(k))

2

Cjrj(x)(1− ρ̂j(k))
2
(1− ρj(k))

2 .

(20)
Based on the broadcast message, each IoT device can select
the suitable BS by

pk(x) = argmax
j∈J

Cjrj(x)ϕj(k), (21)

where

ϕj(k) =
(1− ρ̂j(k))

2
(1− ρj(k))

2

Cj l(x)(1− ρ̂j(k))2 + rj(x)ν(x)(1− ρj(k))2
.

(22)
Here, pk(x) is the index of the BS selected by the user at
location x, and thus

ηkj (x) =

{
1, if j = pk(x),∀x ∈ A
0, if j ̸= pk(x),∀x ∈ A.

5.2 The BS side algorithm
At the side of a BS, it needs to estimate its traffic load
and the computing load of its corresponding fog node in
each iteration. Thus, it has to estimate an intermediate IoT
association η̃kj (x) for each IoT device in the iteration. Then,
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based on the estimated load information among BSs, IoT
devices select their BSs/fog nodes by the IoT device side
algorithm, and then the current IoT device association in
the kth iteration becomes ηkj (x). Therefore, based on the
intermediate η̃kj (x) (estimated by a BS) and the current IoT
device association ηkj (x) (decided by IoT devices) in the kth
iteration, BS j can estimate the intermediate IoT association
η̃k+1
j (x) for the IoT device at location x in the next iteration

as follows:

η̃k+1
j (x) = (1− β)ηkj (x) + βη̃kj (x), (23)

where 0 ≤ β ≤ 1 is a system parameter. Consequently, with
the intermediate IoT device association in iteration k+1, the
advertised traffic load of BS j can be estimated as

ρj(k + 1) =

∫
x∈A

λ(x)l(x)η̃k+1
j (x)

rj(x)
dx. (24)

Similarly, the next advertised computing load of fog node j
can be estimated as

ρ̂j(k + 1) =

∫
x∈A

λ(x)ν(x)η̃k+1
j (x)

Cj(x)
dx. (25)

The detailed procedure of the BS side algorithm is illus-

Algorithm 1 The BS side algorithm

Input: IoT devices’ BS selection: pk(x),∀x ∈ A. The
intermediate IoT device association vector η̃k in the kth
iteration.

Output: The estimated traffic loads of BSs ρ(k + 1) and
the estimated computing loads of fog nodes ρ̂(k + 1) in the
(k + 1)th iteration.

1: Update the intermediate IoT device association for dif-
ferent locations based on: η̃k+1

j (x) = (1 − β)ηkj (x) +

βη̃kj (x), x ∈ A, j ∈ J ;
2: Calculate ρj(k + 1) and ρ̂j(k + 1) based on Eq. (24) and

(25);
3: return ρ(k) and ρ̂(k + 1).

trated in Algorithm 1.
As we know, the feasible set of Problem P1 can be

expressed as

F = {η|ρj =
∫
x∈A

λ(x)l(x)ηj(x)

rj(x)
dx, (26)

ηj(x) ∈ {0, 1}, 0 ≤ ρj ≤ ρmax,∑
j∈J

ηj(x) = 1,∀j ∈ J ,∀x ∈ A}.

As ηj(x) ∈ {0, 1}, F is not a convex set. In order to derive
suitable intermediate IoT associations to gradually reduce
the average latency ratio L(η) in each iteration, we first relax
the constraint to make 0 ≤ ηk ≤ 1, and then prove that the
traffic load and computing load vectors can finally converge

in the feasible set. Then, the relaxed feasible set of Problem
P1 can be expressed as:

F̂ = {η|ρj =
∫
x∈A

λ(x)l(x)ηj(x)

rj(x)
dx, (27)

0 ≤ ηj(x) ≤ 1, 0 ≤ ρj ≤ ρmax,∑
j∈J

ηj(x) = 1,∀j ∈ J ,∀x ∈ A}.

Lemma 1. The relaxed feasible set F̂ is a convex set.

Proof: Since the set F̂ includes any convex combina-
tion of η, it is a convex set.

Lemma 2. The objective function L(η) is a convex function of
η, when η is defined in F̂ .

Proof: This lemma can be easily proved by showing
that ∇2L(η) > 0 when η is defined in F̂ .

5.3 Analysis of the algorithm
In this section, we will analyze the convergence and opti-
mality of the LAB scheme in the feasible set of Problem P1.

Lemma 3. When η̃k+1 ̸= η̃k, η̃k+1 provides a descent direction
for L(η̃) at η̃k.

Proof: As 0 ≤ η̃kj (x) ≤ 1, L(η̃) is defined in F̂ . As
shown in Lemma 2, L(η̃) is a convex function of η̃, and
thus we need to prove

⟨
∇L(η̃k), η̃k+1 − η̃k

⟩
< 0. Thus, we

have ⟨
∇L(η̃k), η̃k+1 − η̃k

⟩
(28)

=

∫
x∈A

∑
j∈J

λ(x)v(x)
η̃k+1
j (x)− η̃kj (x)

Cjrj(x)ϕj(k)

=

∫
x∈A

λ(x)v(x)
∑
j∈J

η̃k+1
j (x)− η̃kj (x)

Cjrj(x)ϕj(k)
.

Based on Eq. (23), we have

η̃k+1
j (x)− η̃kj (x) = (1− β)(ηkj (x)− η̃kj (x)). (29)

As we know,

ηkj (x) =

{
1, if j = pk(x)
0, if j ̸= pk(x).

Owing to the BS selection rule at the user side in the kth
iteration, i.e., pk(x) = argmax

j∈J
Cjrj(x)ϕj(k), we can derive

∑
j∈J

(1− β)
ηkj (x)− η̃kj (x)

Cjrj(x)ϕj(k)
≤ 0. (30)

Since η̃k+1 ̸= η̃k,∑
j∈J

(1− β)
ηkj (x)− η̃kj (x)

Cjrj(x)ϕj(k)
< 0. (31)

Hence, we have proved
⟨
∇L(η̃k), η̃k+1 − η̃k

⟩
< 0.

Meanwhile, as the LAB scheme is executed iteratively,
we will also analyze if the BS selection rule at the IoT
device side in each iteration is the best option by proving
the following theorem.
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Theorem 1. Given the advertised traffic loads of BSs and com-
puting loads of fog nodes, the optimal IoT device association rule
at the IoT device side is:
pk(x) = argmax

j∈J
Cjrj(x)ϕj(k).

Proof: In the kth iteration, ηk is the IoT device asso-
ciation achieved by the proposed IoT device side algorithm:
pk(x) = argmax

j∈J
Cjrj(x)ϕj(k). Meanwhile, let η

′
denote

any other possible IoT device association vector in the
iteration. Thus, to prove this theorem, we just need to prove
that η

′
cannot reduce L(η) any more as compared to ηk,

i.e.,
⟨
∇L(ηk),η

′ − ηk
⟩
≥ 0.⟨

∇L(ηk),η
′
− ηk

⟩
(32)

=

∫
x∈A

∑
j∈J

λ(x)ν(x)(η
′

j(x)− ηkj (x))
1

Cjrj(x)ϕj(k)
dx

=

∫
x∈A

λ(x)ν(x)
∑
j∈J

(η
′

j(x)− ηkj (x))
1

Cjrj(x)ϕj(k)
dx.

Since
pk(x) = argmax

j∈J
Cjrj(x)ϕj(k), (33)

ηkj (x) =

{
1, if j = pk(x)
0, if j ̸= pk(x).

Then, we have∑
j∈J

η
′

j(x)
1

Cjrj(x)ϕj(k)
≥

∑
j∈J

ηkj (x)
1

Cjrj(x)ϕj(k)
. (34)

Hence,
⟨
∇L(η),η

′ − ηk
⟩
≥ 0. Therefore, ηk is an optimal

IoT device association in the kth iteration.
As we know, all BSs will estimate and broadcast the

traffic load vector ρ and the compuitng load vector ρ̂
iteratively, which can be employed by IoT devices to select
the suitable BSs. Thus, we need to prove the convergence of
ρ and ρ̂ for the proposed scheme.

Theorem 2. At the BS side, the estimated traffic load vector ρ
and computing load vector ρ̂ converge to the optimal load vectors
ρ∗ and ρ̂∗, respectively, such that L(η̃) is minimized.

Proof: As shown in Lemma 3, η̃k+1 − η̃k provides
a decent direction of L(η̃) at η̃k, and hence L(η̃) gradually
decreases in each iteration. Since L(η̃) > 0, η̃ will eventually
converge when L(η̃) is minimized.

According to Eq. (24) and (25), the traffic loads of BSs
ρ and the computing loads of fog nodes ρ̂ are determined
by η̃. Thus, when the intermediate IoT device association η̃
converges, the advertised traffic load vector ρ and comput-
ing load vector ρ̂ also converge at the same time.

Lemma 4. Based on the optimal advertised traffic load vector ρ
and computing load vector ρ̂, the IoT device side algorithm yields
the optimal IoT device association for the load balancing problem
in the feasible set F .

Proof: The proof of this lemma is similar to the proof
of Theorem 1.

As LAB is a gradient algorithm, which is a classic
algorithm for convex problems, the number of iterations
required to ensure convergence can be found in [28].

6 NUMERICAL RESULTS

In this section, we set up simulations of the proposed
scheme to evaluate its performance. We select two other
algorithms for comparison: α-distributed algorithm [27] and
the Best SNR algorithm. The basic idea of the α-distributed
algorithm is to optimally allocate traffic workloads among
BSs in order to minimize the communications latency ratio
(i.e.,

∑
j∈J µj) without considering the load distribution of

fog nodes. On the other hand, the Best SINR algorithm is to
associate IoT devices to the BSs that provide the best channel
conditions.

In the simulation, six BSs are randomly deployed in a

Fig. 3. Network topology.

3000×2000 m2 area as shown in Fig. 3. The area is divided
into 15,000 locations, where each location represents a 20
m×20 m area. The flow arrival at different locations follows
the Poisson point process where the average arrival rate
per unit area is set as 0.50 flows/second. As the traffic
sizes of data flows follow an exponential distribution, we
set the average traffic size as 0.05 Mbits. The computing
sizes of data flows also follow an exponential distribution;
we set the average computing size of each flow as 5000
CPU cycles. Then, the location-based traffic load density
and computing load density can be derived based on Eq.
(4) and (11), respectively. Meanwhile, we set the maximum
traffic load threshold of each BS as 0.99 and the maximum
computing load threshold of each fog node as 0.99. In the
simulation, the transmission power of each IoT device is set
as 100 mW while the uplink frequency bandwidth of each BS
is 10 MHz. We employ COST 231 Walfisch-Ikegami [34] as
the propagation model with 9 dB rayleigh fading and 5 dB
shadowing fading. The carrier frequency is 2110 MHz, the
antenna feeder loss is 3 dB, the transmitter gain is 1 dB, the
noise power level is -104 dBm, and the receiver sensitivity
is -97 dBm.

As shown in Fig. 4, the average latency ratios of both
LAB and α-distributed algorithms do converge. Meanwhile,
Fig. 5 shows that LAB achieves a much lower average
latency ratio than the other two schemes. As we know, the
α-distributed algorithm only focuses on the wireless com-
munications latency by allocating the traffic loads among
BSs. In this case, the computing loads of fog nodes may be
unbalanced (i.e., while some fog nodes are lightly loaded,
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Fig. 4. Average latency ratio L(η) with respect to the number of itera-
tions (λ = 0.5, Ci = 7.1 ∗ 106).

Fig. 5. Average latency ratio L(η) for different algorithms (λ = 0.5, Ci =
7.1 ∗ 106).

other fog nodes are overloaded). Similarly, the Best SINR
algorithm aims to assign IoT devices to BSs that provide
the best channel conditions, and thus both the traffic loads
among BSs and the computing loads among fog nodes may
be unbalanced. In contrast, as the latency of a data flow
consists of both the communications latency and computing
latency, LAB takes into account of both the traffic loads
and the computing loads in the load balancing process. As
a result, although the communications latency is slightly
sacrificed as compared to the α-distributed algorithm, LAB
optimizes the average latency ratio of the network by sig-
nificantly reducing the computing latency in fog nodes.

We also investigate the communications latency of dif-
ferent schemes. From Fig. 6, we can see that LAB in-
curs a higher average communications latency than the α-
distributed algorithm. It is attributed to the fact that the
α-distributed algorithm optimally balances the traffic loads
among BSs to reduce the communications latency without
considering the computing load allocation. In contrast, be-
sides the traffic load balancing, LAB also adjusts the IoT
device association to offload the computing loads from
overloaded fog nodes to lightly loaded fog nodes. Thus,
the adjusted IoT device association cannot guarantee the

Fig. 6. Average communications latency ratio with respect to the number
of iterations (λ = 0.5, Ci = 7.1 ∗ 106).

optimal traffic load balancing, which slightly degrades the
performance of communications latency.

Fig. 7. Computing loads of different fog nodes.

Fig. 8. Traffic loads of different BSs.

To further study the load balancing process in the fog
network, we also compare the computing loads among fog
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Fig. 9. Average latency ratio with respect to the capacity of each fog
node (λ = 0.5).

Fig. 10. Average latency ratio with respect to flow arrival rate λ(x) (Ci =
7.1 ∗ 106).

nodes and the traffic loads among BSs for different schemes.
Fig. 7 shows that the differences of computing loads among
fog nodes achieved by LAB are smaller than those by the
α-distributed algorithm and the Best SINR algorithm. While
balancing the traffic loads, LAB also balances the computing
loads among different fog nodes, thus reducing the comput-
ing latency in fog nodes. In contrast, both α-distributed and
Best SINR do not consider the computing latency, which is
an important factor of the final latency of data flows, and
thus incur unbalanced computing loads among fog nodes.
Meanwhile, Fig. 8 shows the traffic loads among BSs for
different schemes. The differences of traffic loads among BSs
for both LAB and α-distributed are smaller than that of the
Best SINR algorithm. In other words, the traffic loads of
the two schemes are balanced, and thus no BS is congested.
Furthermore, since the traffic loads among BSs in LAB and
α-distributed are similar, it indicates that LAB only slightly
sacrifices the communications latency in the load balancing
process, as compared to the α-distributed algorithm.

The capacities of fog nodes can critically impact the
computing latency. Specifically, based on Eq. (10), when
the capacities of fog nodes increase, the computing load
density ρ̂j will decrease correspondingly. Therefore, we

need to study the impact of the capacities of fog nodes
on the average latency of all data flows. As shown in
Fig. 9, the average latency ratios of both α-distributed and
LAB decrease with the increase of fog nodes’ capacities.
When the capacities of fog nodes are relatively low, LAB
achieves a much lower average latency as compared to
the α-distributed algorithm because the computing latency
becomes the dominating factor of the average latency when
fog nodes’ capacities are limited. In this case, since LAB
can balance the computing loads among fog nodes via the
suitable IoT device association, its average latency ratio is
remarkably lower than that of the α-distributed algorithm.
However, when fog nodes’ capacities keep increasing, all
fog nodes become lightly loaded and thus the computing
latency is no longer the dominating factor of the average
latency. In this case, the average latency of the α-distributed
algorithm decreases quickly and gets close to that of LAB.

We also investigate the impact of the average traffic
arrival rate λ(x) on the average latency ratio of the net-
work. As shown in Fig. 10, when the average traffic arrival
rate increases, the average latency ratios of both the α-
distributed algorithm and LAB increase, where the value
of LAB is lower than that of the α-distributed algorithm.
When the average arrival rate is relatively low, the average
latency ratios of the two schemes are similar because both
the BSs and fog nodes in the network are lightly loaded.
As a result, the computing load balancing of LAB cannot
significantly improve the average latency as compared to
the α-distributed algorithm. However, as the average traffic
arrival rate increases, the average latency ratio of LAB grows
slowly while the performance of the α-distributed algorithm
degrades quickly because both the traffic load and comput-
ing load in the network become heavy with the increase
of the average traffic arrival rate. In this case, the traffic
loads among BSs and computing loads among fog nodes
jointly impact the average latency ratio. As LAB takes into
account of both the traffic load balancing and computing
load balancing, it can still maintain low average latency.
However, the α-distributed algorithm only focuses on bal-
ancing the traffic loads among BSs, in which case some fog
nodes are congested especially when the computing loads
in the networks are very heavy.

7 CONCLUSION

In this paper, we have proposed the LoAd Balancing (LAB)
scheme for the fog network to minimize the average latency
of IoT devices’ data flows. Since the latency of a data flow
consists of both the communications latency and computing
latency, LAB takes into consideration of both the traffic load
allocation and computing load allocation by associating IoT
devices to suitable BSs/fog nodes. In particular, when the
traffic load of the network is heavier than the computing
load of the network, the IoT device association focuses on
balancing the traffic loads among BSs. Similarly, when the
computing load of the network is heavy, i.e., the fog nodes
become the bottleneck, the computing latency becomes the
dominating factor of the average latency ratio. Nevertheless,
LAB can still reduce the average latency by adjusting the
IoT device association to balance the traffic load and com-
puting load simultaneously. To solve the problem, we have
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designed a distributed algorithm to iteratively achieve the
optimal solution. Furthermore, we have proved the conver-
gence and optimality of the solution. We have demonstrated
the performance of LAB over the α-distributed algorithm
and Best SINR algorithm via extensive simulations.
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