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Nonlinear Filtering by Threshold Decomposition
Jean-Hsang Lin, Nirwan Ansari,Senior Member, IEEE,and Jinhui Li

Abstract—A new threshold decomposition architecture is in-
troduced to implement stack filters. The architecture is also
generalized to a new class of nonlinear filters known asthreshold
decomposition(TD) filters which are shown to be equivalent to the
class of Ll-filters under certain conditions. Another new class of
filters known as linear and order-statistic (LOS) filters result from
the intersection of the class of TD and Ll-filters. Performance
comparison among several filters are then presented. It was
found that TD is compatible with Ll, LOS, and linear filters
in suppressing Gaussian noise, and is superior in suppressing
salt-and-pepper noise. LOS filters, however, provide a better
compromise in performance and complexity.

Index Terms—L-filters, Ll-filters, linear and order-statistic
filters, nonlinear filters, stack filters, threshold decomposition.

I. INTRODUCTION

L INEAR filters are optimal in eliminating additive white
Gaussian noise (AWGN), but in practice, the noise in a

channel through which a signal is transmitted is not AWGN;
it is not stationary, and it may have unknown characteristics.
Therefore, a number of nonlinear filters have been proposed
to suppress non-AWGN noise [1]–[5].

Stack filters [1], [6], [7] are a class of sliding-window
nonlinear filters characterized by two properties: the threshold
decomposition property and the stacking property. They are
effective in suppressing impulsive noise, and allow an efficient
VLSI implementation. Replacing positive Boolean functions
in stack filter by linear operators results in a new class of
filters known asthreshold decomposition(TD) filters, which
are more analytically tractable.

Ll-filters [2] are another type of nonlinear filters that gen-
eralize the order statistic filters (L-filters) [8], [9] and the
nonrecursive linear filters (FIR). Ll-filters are also effective
in recovering signals from non-Gaussian noise, and capable of
preserving details.

Though the structure of TD filters and Ll-filters are quite
different, they still form a common subset—a new type of
filters: linear and order-statistic (LOS) filters.
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Fig. 1. Stack filter.

Fig. 2. The new architecture.

II. BACKGROUND

Stack filters is a class of sliding window nonlinear digital
filters. Any stack filter can be implemented by the threshold
decomposition architecture shown in Fig. 1.

Assume the input can take on discrete values of
, and denote the samples in the window

at time as

(1)

The stack filter’s output at time is

(2)

where denotes the thresholding operation. is a vector
with the same size as. , the th element of , is
one if , and zero, otherwise. is the positive Boolean
function on each level. The indexis omitted for convenience.
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Fig. 3. Experimental results. (a) Original Lena image. (b) Original woman1 image. (c) and (d) Images of (a) and (b) corrupted by Gaussian noise.

In the threshold decomposition architecture, the input signal
is decomposed via thresholding into a set of binary
signals, and Boolean operation is applied to each of the
threshold signals in parallel via Boolean table look-up. The
output is the sum of the filtered signals on each level.

It was observed [10] that there are at mostdifferent
threshold signals among the threshold signals ,

. These different binary signals can be
denoted as , , where denotes the
spatial index of theth rank sample in the window. In other
words, denotes the th rank sample. Here, a sample of
smaller value is given a smaller rank.

By combining repetitive threshold levels, a new architecture
for implementing stack filters is introduced as shown in Fig. 2.

(3)

Note that the number of threshold levels is reduced toin the
new architecture, but extra ranking operation is needed. One
distinctive feature of this new architecture is that the threshold
decomposition is data-dependent. It leads to the following
desirable properties.

Property 2.1: A discrete shift at the input results in a
discrete shift at the output. For example, for any integer,

(4)

If we impose , then the filtering operation is shift-
invariant, where is a vector of size with each element
equal to one.

Property 2.2: The filtering operation is invariant to discrete
scale change of the input, i.e., for any integer

(5)

Note that the above properties hold for general filtering oper-
ation on each level.

III. TD FILTERS

In the sequel, we assume different linear operators are used
on each level in the new architecture, and the resulting class
of filters will be referred to as TD filters. Let the coefficients
of the linear operators on theth level in the new architecture
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Fig. 3. (Continued.) Experimental results. (e) and (f) are (c) and (d) filtered by a 3� 3 linear filter that is configured from (a) and (c). (g) and (h) are
images of (c) and (d) filtered by a 3� 3 TD filter that is configured from (a) and (c).

be denoted as , then the output of the TD filter is

(6)

where denotes the inner product between vector
and vector , and . In general, a TD
filter has coefficients.

Property 3.1: An FIR is a TD filter.
Proof: Any FIR can be regarded as a TD filter which

employs the same operator on each level.
Let , and denote as the th entry of
. Equation (6) can be rewritten as

(7)

(8)

Since
if
else

(9)

we have

(10)

Furthermore

(11)
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Fig. 3. (Continued.) Experimental results. (i) and (j) are images of (c) and (d) filtered by a 3� 3 Ll-filter that is configured from (a) and (c). (k) and
(l) are images of (c) and (d) filtered by a 3� 3 LOS filter which is configured from (a) and (c).

The above equation indicates that TD filtering is a linear
operation where the weights to a sample depends on both its
rank and its spatial location. These operations turn out to be
similar to Ll filtering [2].

IV. RELATION TO Ll-FILTERS

The output of an Ll-filter can be expressed as

(12)

where is the weight to theth rank sample at spatial loca-
tion . The motivation behind the development of Ll filtering
is to enhance the impulsive noise suppression capability of
linear filters. The gain in performance is derived from utilizing
rank information of the samples in the window.

Even though TD filters and Ll-filters are similar, they
are equivalent only when the coefficients satisfy a set of
conditions. These conditions are established below.

Property 4.1: An Ll-filter is a TD filter iff its coefficients
satisfy the following conditions:

(13)

or equivalently

(14)

for and .
Proof: Equating (11) and (12), and by successive substi-

tutions, we have

(15)

(16)

(17)
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Fig. 3. (Continued.) Experimental results. (m) and (n) are images of (c) and (d) filtered by a 3� 3 median filter. (o) and (p) are images of (a) and
(b) corrupted by salt-and-pepper noise.

...

(18)

...

(19)

(20)

Note that in the above equations, the left hand side remains
the same for any permutation of . Hence,
there exists a solution for a given only if the right
hand side (RHS) remains constant for any permutation of

.
Given the condition in (18), a swap of any two indices

of does not change the value of the RHS.
Since any two permutations can be related via successive
swaps of two indices, the RHS of (18) is constant for any

permutation of . This establishes (13) as a
sufficient condition.

In (18), let the subset of indices be
fixed, then (13) is necessary to keep the RHS constant when

is swapped. This establishes (13) as a necessary
condition. Hence, we have shown that (13) is a necessary and
sufficient condition for an Ll-filter to be a TD filter.

Property 4.2: A TD filter is an Ll-filter iff its coefficients
satisfy the following conditions:

(21)

or

(22)

for , and .
Proof: The proof is similar to the above, and is thus

omitted.
From the above two properties, it can be concluded that only

a small subclass of Ll-filters and TD filters are equivalent. In
this subclass, each filter possesses independent coeffi-
cients. Following the previous notation, denote the coefficients
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Fig. 3. (Continued.) Experimental results. (q) and (r) are images of (o) and (p) filtered by a 3� 3 linear filter that is configured from (a) and (o). (s)
and (t) are images of (o) and (p) filtered by a 3� 3 TD filter that is configured from (a) and (o).

on the th level as , then

(23)

where contains independent coefficients. Since there are
only independent coefficients, one of can be set
to zero. For convenience, we do not impose this condition.
Substituting (23) into (6)

(24)

(25)

(26)

where denotes the sorted. Hence, any filter in the subclass
can be implemented as a linear filter and an order-statistic
filter interconnected in parallel. For convenience, they will be
referred to as LOS filters.

Equations (24)–(26) demonstrate the following two proper-
ties of LOS filters.

Property 4.3: An FIR is a LOS filter.
Property 4.4: An order statistic filter (L-filter) is a LOS

filter.
The following property results from Property 4.4 immedi-

ately.
Property 4.5: An order statistic filter (L-filter) is a TD filter.

V. PERFORMANCE COMPARISON

According to (7), the output of TD filter is a linear
combination of and .
Just like linear filters, the optimal TD filter in this case under
the least mean squares (LMS) criterion satisfies the following
equation:

(27)

where , , , , , , ,
is the weight vector having the same dimension as, and
is the desired output.
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Fig. 3. (Continued.) Experimental results. (u) and (v) are images of (o) and (p) filtered by a 3� 3 Ll-filter which is configured from (a) and (o). (w) and (x) are
images of (o) and (p) filtered by a 3� 3 LOS filter which is configured from (a) and (o). (y) and (z) are images of (o) and (p) filtered by a 3� 3 median filter.

In practice, the expectation is replaced by the averaging
operator, and (27) is simplified as

(28)

where and , and is the averaging
operator.

When matrix is nonsingular, . Otherwise,
the number of solutions will be infinite. Any solution can be
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TABLE I
MAE AND RMSE OF NOISY (GAUSSIAN NOISE)

IMAGES AND OUTPUT OF VARIOUS FILTERS

TABLE II
MAE AND RMSE OF NOISY (SALT-AND-PEPPER

NOISE) IMAGES AND OUTPUT OF VARIOUS FILTERS

expressed as

(29)

where satisfies (28), and belongs to the null space, i.e.,

(30)

Therefore, each solution yields the same mean square error
(MSE):

MSE (31)

In our experiment, two types of noise are used: Gaussian
noise and salt-and-pepper noise. To configure a filter, the
original lena image is referenced as the desired output, and
its noisy version is employed as the input. That is, given the
two images, the weights of the optimal TD filter is obtained
by solving (28). This filter is then used to filter the noisy Lena
image and the woman1 image corrupted by the same type of
noise.

By the same token, the optimal Ll-filters, LOS filters,
and linear filters under the LMS criterion also satisfy (28),
except that the definition of and the size of the vectors
are different. In order to configure Ll-filters, is defined as

, , , , ,
, , where is one if , and zero,

otherwise; , , , , , ,
for LOS filters, , , , for L filters, and

for linear filters.
Fig. 3 shows the original images, noisy images, and filtered

images of lena and woman1, respectively. Mean absolute error
(MAE) and root mean square error (RMSE) of the noisy
images and filtered images are tabulated in Tables I and II.
For comparison purposes, results of median filtering are also

Fig. 4. Relationship among different classes of filters.

included in the figures and tables. The resolution of all images
is 256 256, 8 b/pixel. Variances of the original Lena and
woman1 images are 2734 and 1811, respectively. The window
size used in our experiments is 3 3.

VI. CONCLUSIONS

The relationship among several types of filters is illustrated
in Fig. 4. The intersection between the TD filters and Ll-filters
forms the LOS filters, a simple addition of linear operation and
L-filtering. It is evident that LOS filters generalize FIR and L-
filters, and thus FIR and L-filters are subsets of TD filters and
Ll-filters.

According to Tables I and II, the performance in suppressing
Gaussian noise among TD filters, Ll-filters, LOS filters and
linear filters are similar. Median filtering performs poorly in
suppressing Gaussian noise as expected. Among the filters
tested on these images, Ll achieves the best performance
in suppressing Gaussian noise while TD suppresses salt-and-
pepper noise the best.

With a window size of , it requires coefficients to
configure a linear filter, coefficients to configure a TD or
Ll-filter, and only coefficients to configure a LOS
filter. Therefore, LOS filters provide a trade-off between
performance and complexity.
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