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Abstract: An optimal decision rule has been
derived by Chair and Varshney (1986) for fusing
decisions based on the Bayesian criterion.
However, to mmplement such a rule, the miss
probability £, and the probability of false alarm
Py for each local detector must be known, and
these are not readily available in practice. To
circumvent this situation, an adaptive fusion
system for equiprobable sources has been
developed. The system is extended to
unequiprobable sources; thus its practicality is
enhanced. An adaptive fusion model using the
fusion result as a supervisor to estimate the P,
and Py is introduced. The fusion results are
classified as ‘reliable’ and ‘unreliable’. Reliable
results are used as a reference to update the
weights in the fusion centre. Unreliable results are
discarded. The convergence and error analysis of
the system are demonstrated theoretically and by
simulations. The paper concludes with simulation
results that conform to the analysis.

1  Introduction

There is a growing interest in developing efficient and
reliable distributed detection systems (multiple sensor
systems) for target recognition and communications.
Tenney and Sandell [1] were among the first to study
the problem of detection with distributed sensors. They
applied the classical single-sensor detection theory to a
two-sensor, two-hypothesis testing. An optimum local
decision rule was established to minimise a global cost.
Sadjadi [2] generalised the work of [1] to » detectors
and m hypotheses and reached similar conclusions.
Chair and Varshney [3] assumed that each local detec-
tor had a predetermined decision rule and that each
local decision was independent. With these assump-
tions, an optimum fusion model was generated. Opti-
mal techniques have also been developed for other
criteria. When a priori probabilities were unknown,
Thomopoulos [4] used the Neyman-Pearson (NP) test
both at the local detector level and at the decision
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fusion level. An optimal decision scheme was derived.
Demirbas [5] applied the maximum a posteriori (MAP)
concept for object recognition in a multi-sensor envi-
ronment and showed that the MAP estimation
approach minimised mean square error estimation.
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Fig.1 Distributed detection system with data fusion centre

In the distributed system with data fusion shown in
Fig. 1, some data processing is done at each sensor,
and partial results are transmitted to the data fusion
centre for further processing. The final results are then
available at the data fusion centre. When the detection
rule is fixed at each sensor, the optimal fusion rule
developed for independent local decisions [3] is a
weighted sum of local decisions. The weight is a func-
tion of the probability of detection Pp and the proba-
bility of false alarm Py of the detector. However, in
practice, neither P, nor Py is known. Furthermore, as
the sensors are usually exposed to a changing environ-
ment, the performance of each individual detector may
not always be the same, i.e. P, and Py may vary with
time. To circumvent this situation, some learning rules
for adaptive distributed detection have been proposed
[6-9]. A learning algorithm for the tandem neural net-
work structure was proposed for the binary hypothesis
testing [6] in which only one parameter needed to be
estimated. In [7], an on-line learning algorithm was
adopted to estimate the thresholds for each local sensor
and the fusion centre. Both approaches [6, 7] were
based on the NP performance criterion instead of on
estimation of the prior probabilities, which is our
method. In [8], a set of stochastic approximation rules
was proposed for the probability estimation in Baye-
sian hypothesis testing that was similar, in concept, to
our method [9]. However, our estimation is much sim-
pler and can be achieved by a simple counting process.
Our method is based on reinforcement learning, which
does not require a training sequence.

This paper is an extension of our previous work [9]
and uses the fusion results as a supervisor to estimate
Py, and Pp The model for equiprobable sources has
been reported [9]. This paper considers the performance
and analysis for unequiprobable sources. Various com-



ponents of the model will be covered: the fusion rule,
classification of fusion results, an updating algorithm
for the fusion centre, convergence, error analysis and
computer simulations.

2 Data fusion rule and its properties

Let us consider a binary hypothesis testing problem
with the following two hypotheses:

Hy @ signal is absent

Hy: signal is present
The a priori probabilities of the two hypotheses are
denoted by P(H,) = Py and P(H;) = P;. As shown in
Fig. 1, we assume that there are n detectors, and the
observations at each detector are denoted by x;, i = 1,
..., n. We further assume that the observations at the
individual detectors are statistically independent and
that the conditional probability is denoted by P(x|H)), i
=1, .., n j=0,1 Each detector employs a decision
rule g{x;) to make a decision u;, i = 1, ..., n, where

- —1 if Hy is declared
"] 41 if Hy is declared

The probabilities of false alarm and miss for each
detector are denoted by Pp; and Py, respectively.
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Fig.2  Fusion cemre structure

After processing the observations locally, the deci-
sions u; are transmitted to the data fusion centre. The
data fusion centre determines the overall decision « for
the system based on the individual decisions, i.e.

w=f(ur,...,up) (1)
Based on the above specification, Chair and Varshney
developed the optimum fusion rule as

B ( 41 ifwe + 2?21 Wit > 0 2
= flug,... un) { —1 otherwise .

where
P,
Wy = 10g Fl (3)
0
| log 1;124 if u; = +1 A
Wi = oo L2B5 if 4 — (4)
0g B - if u, =1

The optimum data fusion rule can be implemented as
shown in Fig. 2, where

n
Yy = wo + E Wiy
=1

Note that the above fusion rule has the following prop-
erty:

Lemma 1. When each weight in the fusion centre is
optimum, the conditional probability mass functions
P(y — wy = {H;) and P(y — wy = [|H,) satisfy the

following equation:

Py —wo = (|H)
P(y —wo = (|Ho)
where £ is a possible value of y — wy,.

Proof: see the Appendix (Section 7.1).

Eqn. 5 is a very interesting result. The ratio of the
conditional probabilities under H; and H, only
depends on the value v — wy, as illustrated in Fig. 3.
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Fig.3 Relationship between P(y —wy = LJH;) and P(y — wy = {Hy)
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Fig.4 Classification of fusion results

Recall the data fusion centre structure shown in
Fig. 2. If reference signals are given, they can be used
as a ‘reference’ to train the system, so that weights will
converge to the optimal values defined by eqns. 3 and
4. However, in practice, such a reference is not readily
available, and, at the same time, the P,, and Pr of a
detector may vary with time. As the fused decisions are
usually better than local decisions, they can be consid-
ered as the reference. When the ith local decision u; is
equal to the fused decision u, then u; is considered to be
correct; otherwise, u; is considered to be incorrect. As y
=w, + 3%, wu, the fused decision u has already taken
into account the decision of the ith detector u;. If u is
used as a reference for u; a bias is established for u,.
Thus, in the proposed system, the decision of the ith
local detector wu; is arbitrated by the fused decision of
all the other (n ~ 1) local detectors. Denote this fused
decision as &;, and define

n
Yi =Y — Wo — Wiy = Z Wit (6)
J=15%1
The decision #; in the fusion centre for updating W,
depends on the value y,. Here, W, is the estimated
weight. Using the same procedure, it can be shown that
y; has a similar property to y in Lemma 1. That is,

M = ¢ (7)
P(y: = (|Ho)
where £ is a possible value that y; takes on. The range
of y, is divided into reliable and unreliable ranges. We
denote the lower and upper limit of the unreliable
range as 1, and Ty, as shown in Fig. 4. Usually 7, = 0,
7, = 0. We call 7; and 7, the reliability thresholds. Only



the fused decisions #; that satisfy y; < 7; or yi> 1 are
chosen to adapt each weight, denoted by ;. These
decisions are considered reliable decisions, deﬁned by
H, when y, > 15, and Hy when y; < 7. The decision is
considered unreliable when 1) < y; < 7,, denoted by H .
Obviously,

P(Hy) + P(Ho) + P(H,) =1 (8)
This type of learning belongs to the class of reinforce-
ment Jearning [10].

Based on the proposed fusion rule described in
eqn. 6, we obtain the following two properties related
to the steady state error:

Lemma 2: If o = P(HI]HO)/P(HlyHl) B = P(H|H,)/
P(H\H,) and y = P(H|H,)/P(HyH,), then

(@) a is monotonically decreasing when T, increases, f
is monotonically decreasing when ; decreases, and

n Pp.
Xmin = H — (9)
=t 1T M
L
jetgps LI
(b) when 7, = (yl)max = 2y log (1 = Pyy)/Pp;) and 7

= (yl)mm - ] 1,j=i IOg ((1 PF])/PM])
_ PURIH) v (=rey
P(I/{B|HO) j—g;éi 1-— PF7 ( )

Proof: see the Appendix (Section 7.2).
Lemma 3: Let ¢, = |w;, — W/, i = 0, 1, ..., n, represent the
estimation error. The minimum ¢, that can be achieved

is
1+ Donayy
€ =log{ ————&—

1 +706m1n) +10g( )

Qman

14+Bomin T I+ Tor; : o
log -H’—"”TQ- + Iog 1+/8mm7‘0"‘7, 1f ul - +1
€ = “mm +ﬁ'mznr(] .
logm+logm 1fui:-—1
(12)
Proof: If w; = log r; and W, = log #,, we have
(o=t
0 PO
Plu=1H) 4 _ 13
. { P(ui:”H;) if u; = +1 (13)
C T Plug=—1Ho)  ye .
\ P(u;:—l{H(l)) if u; = —1
and
fﬁ _ P(Hy)
g — ~
P(Ho)
Plui=lFh) g, 4 (14)
Fo= ¢ Plw=llHo) v
v Plu;=— 1“?0) ooy —
Plaim 1) if u; 1

Using the total probability theorem P(BA) =
P(B|4)P(4),

Plu; = 1|IfI1)
_ P(ui = 1|Ho) P(Hi|u; = 1, Ho) P(Hy)
P()
P(u; = 1|H)P(Hy|u; = 1, Hy)P(H;)
P(H,)

+
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Similarly,
Pu; = 1]]%)
_ P(u; = 1|Ho) P(Hy|u; = 1, Hy) P(Hy)
P(Hy)
| Plus = 1)H1)P(1310Jui =1, H,)P(H))
P(Hy)
P(u; = —1|Hy)
P(u; = —1|Ho)P(Holu; = —1, Ho) P(Ho)
- P(Ho)
L Pl = —1|H1)P(I§folui = —1,H,)P(H,)
P(Hy)
P(u; = ~1|M)
_ P(u; = —1|Ho) P(H:|u; = —1, Ho) P(Hy)
P(Hy)
N P(u; = —1|H1)P([:[1A|ui = —1,H,)P(H,)
P(Hy)

Using eqn. 14 and the above formulas, if ; = +1,

. S 1 P(H:1|Ho) 1
N P(Hy|Hy) P(Hy) P(Hy) 7 P(i|H) "

=T ~ E = -
P(Ho|Hy) P(Ho) P(H)) | 4,20l

P(H,|Hp) °
(15)
Here,
P(Hy)  P(Ho|Hy)P(Hy) + P(fly|Ho)P(Hp)
P(H;) P(H1|H1)P(H1)+P(H1IH0)P(H0)
Thus,
. . P(Hy|Hy) = P(Hy)
P(Hy\|Hy) P(Hy) P(Ho)  P(A|Hy) (Ho) +1 (16)
P(Ho|Ho) P(Ho) P(H,) 14 PUL|Ho)  P(Hy)

P(Hy|Hy) P{H1)
Substituting o, § and ry into eqn. 13, after simplifica-
tion, we obtain

A~ 1“"67'0 1+’I"(O;"
=T : — 17
TR T Bror, 17

Similarly, if u; = -1,

1+ 1420
ﬁi =r,- L T (18)
14 OBrg 1+ri%
From eqn. 14,
~ P1+Poa 1+%
= 19
o= P1ﬂ+P07 1+T‘06ry ( )

According to the definitions of ¢, #; and r, the follow-

ing weight error is obtained:

1+ =
€0 = log | +log(v)
1+ Toﬁ

@

1
log 114_;_5&7“0 + log 1-:6?0772 ifu; = +1 (20)

14+ 1+270
log 1+5T0 + log 147, :%

€; —

1fu2 = —1

From eqgn. 20, we know that, when @ =0, §= 0 and y
=1, & (for i = 0, 1, ..., n) would achieve its minimum.
In Lemma 2, we have proved that o and 8 are monot-
onically decreasing with 7, and 1. Thus, when « and B
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achieve their minimum, ¢ (for i = 0, 1, ..., n) also
acquires its minimum, and thus
1 1+ _O‘vvv‘zom, | ( )
o =108\ — + log(y
1+ 9 /jmzn
14+BninTo 7',(7)%"5" ; o
log et +log g, 0 i wi =+
€, = i 8 0
1+ 'r” 7 1+ 777,,7,}’”, A
—a o o
]Og 14+BominTo + IOg 147 % if s L
(21)

where &,,,;,, B, and y are defined in Lemma 2, and 7,
and rq are defined in eqn. 13. Note that the minimum
error 1s uniquely determined by P, Py and the parame-
ters of sensors (Py and P,,).

Note that (¥, and ()., vary from sensor to sen-
sor. To enable every sensor to adjust its weight and
achieve the least error, the maximum value of 7, is cho-
sen to be the minimum of all (y)),,.,» and the minimum
value of 7, is chosen to be the maximum of all (y)),,,
That is

(7—2)ma.7; = Hlin{(yl)’mama (yQ)ma:m ey (yn,)mam} (22)

(Tl)m,in = max{ (Zgl)m,i’lm (yZ)m,i?m Sty (:yn)'min} (23)

Lemmas 2 and 3 illustrate how close the estimated
weights are to optimal weights.

3 Reinforcement updating rule

The distributed decision system is assumed to have no
knowledge of the probability mass functions of the
observations. Thus, the estimated probability of detec-
tion and false alarm for the ith detector P, and P
can be approximated by relative frequencies. Let m be
the number of £, n be the number of A, and

m1; be the number of u; = +1 and 4; = +1

mo; be the number of u; = —1 and 4; = —1
ny,; be the number of u;, = +1 and 4; = —1
ng; be the number of u; = —1 and w; = +1

Hence, m, n, my;, my;, ny; and ny; can simply be obtamned
by counting in the simulations. That is,

m _ P(H;)
n " P(Hy)

my;  Plu; = +1,H})
i Plus = +1, Ho)
mo; _ P(u; = ~1, Hy)
noi Pu; = -1, Hy)

We shall next develop the updating rule for the fusion
centre. From eqn. 14,

(24)

o = log PUL)
wgy = log S
P(Hy)
Plu;=+1{H) ¢ __
o — log Plomt1[dy) ifu; =41
e Pui=—1Hy) 5 w = 1

0g P(u,:—l\[:h)
Using the Bayes rule, P(x, v) = P(x|y)P(y),

P(u;=+1,H:) P(Ho) ‘
P(u;=+1,Ho)P(Hy)

P(ulz—l,[?o)P(f?l) (25)
P(u;=—1,H1)P(Hg)

log
w; =

log

Applying eqns. 24 and 14 to eqn. 25 yields

. m
o =~ log —
n

Wy {log o ifus =l (26)
log o+ wg ifu, =—1
and
m = e on
My & N oxp(, + W) if u; = +1
Mo & ng; exp(w; —wg)  if u; = —1 (27)

Taking the partial derivative of eqn. 26 with respect to
m, n, my, My, nj; and ny, respectively,

8'(2,’0 - 1
om ~ m
2L 1 1
_O N —— = *__ew() (28)
on n m
and
81@ 1 aﬁu 1 Wi .
&~ —, Ry ———e T f gy, = 41 (29
Omi; mas Ong; mi, (29)
Ow; 1 oWy 1 .
w; ~ ’ w ~——— eWim®o  if U = -1 (30)
8m0i M, 8TL01 mos

If the current local detector’s decision conforms to the
reliable fusion, its weight Ww; should be reinforced. In
this case,

Adi: 2 ml“Am“ = ~m]—17 if u; = +1 and Hy
’ L Amm =1 if u; = —1 and I:]o

mg;

(31)

On the other hand, if the current local decision contra-
dicts the reliable decision, its weight W, should be
reduced. That is,

Ll A L Gt ,
o Ang; = =€ Any; )
A = —e®tioif uy — 41 and Hy
AW; == 1 L s —ab
—_——— ey - L 0 .
o Ang; e Ang, )
= —Lg®—® ify; = —1and O,
mo;
(32)
and
LAm=41 when H, occurs
R ! 1
Ay = SAn = m "An A (33)
= —%ewO when Hy occurs
Thus, we obtain the following updating rule:
At S
w =w;] +Aw,;, 1=0,1,2,... (34)

where W/ and W represent the weight after and before
each update. As the steady state ;s are what we are
trying to compute, for actual implementation, we use
the current estimated weight #; to compute AW, That
Is, to update the weights according to eqn. 34, AW, is
computed according to Table 1.

Table 1: Computation of AW;

F Ho

uj=+1 uj=-1 uj=+1 uj=-1
AWy Ym —(1/m)e%d
A Ume ~1Umg)e T W (my el VT WS 1 my,;

Lemma 4: Using the updating rule according to eqn. 34
and Table 1, Ww; will converge to the desired steady
state estimated weight W,

Proof: At steady state,
Elbf —w;]=0 (35)

[T ~ ~ ar - Tr T raa oar a7 rnns



Using the definition E[X] = £ x; P(x,), the updating rule
according to eqn. 34 and Table 1, with u; = +1, eqn. 35
becomes

1 - 1 - A
—P(u=+41,H;) — —e t% P(u=+1,Hy) =0
mii miyy

Using eqn. 25 for further simplification yields

UAJZ_ + Zz/a = W; + Wy (36)
Similarly, if u; = -1, we have
W, — Wy =wW; — o (37)

For i = 0, the following condition can similarly be
obtained at steady state:

1 . 1 .- .
—P(HY— —eY P(H) =0
o (H1) e (Ho)
Thus,
Hence, W; — W, fori=0,1, .., n

Convergence is a crucial criterion in determining
whether an adaptive algorithm is workable. Lemma 4,
which proves the convergence of our proposed algo-
rithm, analytically justifies the validity of the algo-
rithm.
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Fig.5 Computer simulation diagram

4  Simulations

Fig. 5 shows the simulation set up to validate the pro-
posed adaptive fusion model. In the simulation pre-
sented here, the source produces a binary signal with
P(H) = 0.3 and P(H,) = 0.7, where H,: +1 and Hy: —1.
Eight sensors are used. The probabilities of false alarm
and miss Pp and Py, of each sensor are fixed, but not
known to the system. The channel is additive Gaussian
noise. The Gaussian random variables arc generated
according to the following transformation:

z = (=21lnry)Y? cos2mry
y = (—21Inr)Y 2 sin 277y

where r| and r, are uniformly distributed on (0, 1), and
(x, y) becomes a pair of orthogonally normalised Gaus-
sian random variables. The additive Gaussian variable
for each sensor is zero-mean with a standard deviation
o ranging from 0.5 to 1.27.
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4.1 Conditional probability mass function

of y

Fig. 6 shows the histograms of P(y = {H,) and P(y =
&lH,) for eight sensors and 250 000 samples. We can see
that the waveforms are not monotonic. Fig. 7, which
illustrates log (P(y = GH\)/P(y = {Hy)), is almost a
straight line, conforming to Lemma 1:

Py —wo = (|Hy)

e —
P(?l"wo =C|Ho>

4.2 Convergence of weights

Fig. 8 shows average errors of weights |w; — Ww,| for dif-
ferent 7, 7= 0, 0.1y,,,,, and 0.4y,,,.. Here, 7 = |7j] = |13
As shown in the Figure, the larger the T, the smaller the
error, which agrees with Lemma 2. As the number of
unreliable samples increases, the training time becomes
longer. Fig. 9 shows how a weight adapts when the sys-
tem is changed (Pp; and Pg are modified) in the middle
of a simulation; that is, the variance of the noise of the
system is modified at the 2500th iteration (steady
state). Note that the weight can still track the changes
but is not as responsive as when the system is reinitial-
ised. Thus, to enable prompt response, a ‘reset’ proce-
dure at which changes are made should be initiated.
Another alternative is to use a sliding window (of a
fixed size) to estimate the weight. The detection of
changes at which the ‘reset’ i1s initiated and the concept
of sliding window are, however, beyond the scope of
this paper, and will be addressed in future research.
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5 Conclusions

In the real-world environment, the probability mass
functions of the observations at local detectors may not
be known, and the performance of the local detectors
may not be consistent. Under such circumstances, a
system that can adapt itself during the decision-making
process is needed. The major advantage is that the sys-
tem can still have smaller error and does not need «
priori knowledge of the probability mass functions of
the observations. Simulation results conform to our
theoretical analysis.
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7 Appendix

7.1 ProofoflLemma 1
Consider the structure shown in Fig. 2. We have

y =wy+ Z Wiy (39)
=1
or
y:wo—l-z:wj—ij (40)

jEST JEST
where ST = {j: u; = 1}, and §~ = {j: ; = ~1}. From

eqns. 4 and 40,

[ uj - 1\H] uj = *1|H0)1
jES+ JE
(4)
I1 Plu; =1|Hy) [] Plu; = —1|H)
exp(y B wo) _ jeSTt JES—
[l Plu;=1Ho) [] Plu; = —1|Ho)
jest JEST
(42)

Let & be a possible value of y — wg, and let each local
decision u; be independent:

Py —wo = ([H)) = Y P(whw =(|H)
uclU
where u 1s a vector with elements u, 1 = 1, 2

a vector with elements w;, i = 1, 2, ...,

U={u:wlu=(}

s ey 11, WIS

n, and
By defining S as

{ST,8 1 : a combination of S* and S~

such that Zw — ijzg

jeSt JEST
Py —wo = (|H1)
=>" I Plw; =11H) [ Plu; =-1]H:)

S Jes+ JES—
and

P(y —wy = (|Ho)

_ZHP%_HHO 11 Py

S jes+t jES™

= —1|Hp)

Thus,
Py —wo = ¢(|Hy)
P(y —wo = ¢|Hp)

> I Plu; =1|Hy) [[ Plu; = —=1]Hy)
S jeSt JES—

TS I Pluy = 1Hy) 1 Plus

S jes+ JES—

(43)

i

~1|Ho)
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From eqn. 42 and the following equality:

E—E—k a+c bk+dk_k
b d b+d b+d
(b#0,d#0,b+d #0)
then
Py —wo = (|Hy)

Py —wy = (|Hp)
[T Plu;=11H1) [] P(u; = ~1|Hy)

_ jeSsSTt JES™
II P(u; =1|Ho) [I P(u; = —1|Ho)
jest jeS—
Ply—wo=(H) ¢
= eV = 44
Plu—w=) € @

7.2 Proofoflemma?2
> Py = (;|Ho)
=1

S Plys = G|H))
=1

Without loss of generality, assume that §; > &, > ... >
&n > m are all possible y;. Note that, as 7, becomes
larger, m becomes smaller.

From eqn. 7,

¢ P(?Ji = C\HO)

= Y= 5l0) 45
Py, = Q) (#5)
we have
Plyi = GilHo) _ Plyi = GlHo) < ... < Py = CulHo)
Plyi=G|H) = Py = G|H) Py 1—Cm!1(526)

Denote A, = 2£, P(y; = GlH,), B, = &, P(y; =
GlHy), and oy = AA/Bk The objective is to show that
o > oy for k = 1, 2, ..., n. First, we need to show

(2% > ag.
_ Plyi = G1|Ho)
oy = =L
Py; = ¢i|H1)
= P(y; = C1|Ho) + P(y; = (2|Ho)

Py = GilHy) + Plyi = G|H:)
Using the following inequality and eqn. 46,

X a X X+a a

— < = — — (Y.b>0 4

Y<b:>Y<Y+b<b (Y,b>0) (47)
we have

Qo > o (48)

Next, we shall show that, if o, > a_; then o, > .
As

ap_1 < Qg (49)
Ar_1 < wA_k Apo1 Ap_1 4+ Plys = (x|Ho) (50)
By By  Br1  Br_1+Ply; = Gi|Hr)
Using inequality eqn. 47 again,
Ap—1 A1+ Plys = CGlHo)  Plys = G| Ho) (51)
Br_1 Bk_1+P(y¢ :Ck]H]) P(y; :Ck|H1)
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Applying eqns. 46 and 50 to eqn. 51 yields
Ax—1 + Plyi = G| Ho) < Ply: = G| Ho)
Byr—1 + Ply: = Ge|H1) ~ P(ys = G| H1)
Ply; = Ge+1|Ho)
P(yi = Geta[Hr)

<

Using eqn. 47,

Ap1 + Ply; = (| Ho)
Bi_1 + P(y: = Ce|H1)
Ag—1+ Plyi = G|Ho) + P(y; = (ut1|Ho)
Bi_1 + P(y; = Ce|H1) + P(y: = Goy1|Ha)
A A
b < uanl = o < Qi1 (52)

~ By Brit
From eqns. 48, 51 and 52, a decreases monotonically
with 1.

However, v, cannot go to infinity; the maximum
value of 7, 1S (). When 7, attains its maximum, o
reaches its minimum value. According to the definition
of ¢, the minimum of « is

P(yi = (yi)mas/Ho)
min = By =y = SR~ Wi)mas)  (59)
When Pp, = 1 — Py, (the probability of detection) is
greater than Py for each sensor (which is the usual
case), every weight m y; (eqn. 6) is positive. Thus, the
maximum value for y; is

= 1— Py
Wi)mae = Z log Pij (54)
J=1,5%% ’
Likewise, the minimum Value of y, is
y'L min — Z log P (55)
J=1,j#1
Thus,
Qppin — eXp(“(yi)mam = exp Z 10
J=1,5#1 Pr,
= 1II ; ~P]g (56)
=1, M;

By the same reasoning, we can prove that B is decreas-
ing when 7, decreases, and

P(y: = (Yi)min|H1)

ﬁmin - = exp((yi>min>
P(ys = (y:)min| Ho)
= 11 ; _Aj; (57)
=1, Fi
When T = (y)max and T = (yl)mina
Ply; > m2|Hy) = H P(u; =1|H) = [ (1-Pu)
J=1,5#1 J=1,#1
(58)
Ply; <7 |Hp) = H P(u; = —1|Hy) (1—Pr,)
7=1,3#1 J=1,j#1i
(59)
Thus,
P(H,|H,) -
= 1| 1) -1 ( . > (60
P(Ho]Ho G=1,j%i — LF;
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