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Abstract

Coherent symbol by symbol detection using fractionally

spaced samples in a time-varying frequency 
at Rayleigh

fading channel is presented. The proposed detector incor-

porates a decision feedback (DF) maximum a posteriori

(MAP) channel estimator that can be applied to a time-

varying 
at Rayleigh fading channel with an arbitrary but

known spaced-time correlation function. The best achiev-

able bit error rate performance for this detector is obtained

by assuming correct bit decisions while performing channel

estimation. Di�erential encoding is used in order to pre-

vent the phase reversal phenomenon during the estimator's

operation in a decision directed mode. Numerical results

suggest that with only a few samples per symbol and with

a short memory estimator depth, most of the gain due to

oversampling can be achieved.

1. Introduction

Radio channels in mobile communication systems exhibit

time varying fading, the rapidity of which is quanti�ed by

the Doppler spread. Di�erentially coherent PSK schemes

employed in such channels will{whenever the assumption

of a nearly constant channel gain over two adjacent sym-

bol intervals does not hold{exhibit an error 
oor [1]. If

more power-e�cient coherent PSK signaling is employed

instead, channel estimation (i.e., carrier recovery) is needed.

A systematic approach to carrier recovery is given in [2],

while a minimum mean square error (MMSE) channel es-

timator with decision feedback (DF), in particular, is used

in a number of references on coherent detection (e.g., [3],

[4]). Perfect estimates, however, can be obtained only if

the channel is noiseless and time invariant, whereas chan-

nel estimation errors in coherent detection will cause an

error 
oor. For fading channels modeled by a discrete time

autoregressive (AR) process, the Kalman �lter is the opti-

mumMMSE DF channel estimator [2]. In [5] it was shown

that the error 
oor is the same for both coherent and dif-

ferentially coherent detection when the Kalman �lter is
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used for performing �rst-order AR fading channel model

estimation for the former.

Fractionally spaced sampling (multi-sampling) receivers

in time-varying fading channels have the potential to al-

leviate the error 
oor. Di�erentially coherent detection of

PSK signals in a time-varying 
at Rayleigh fading channel

is presented in [6], in which K samples were obtained in

each symbol interval. Maximum likelihood detection was

then applied on the 2K-sample snapshot over two con-

secutive symbol intervals, resulting in a signi�cant reduc-

tion of the error 
oor. In [7] and [8], the same multi-

sampling technique was applied for sequence estimation of

a PSK signal, and signi�cant performance improvement

over the symbol spaced sampling approach was observed.

Fractional sampling was also used in [9] for a time-varying

dispersive statistically known channel for improved error

performance.

This paper proposes a fractionally spaced coherent sym-

bol by symbol detector with MAP channel estimator that

can be implemented in a time-varying 
at Rayleigh fading

channel with an arbitrary but known spaced-time correla-

tion function. A lower bound on the error probability is

derived analytically and di�erential encoding is employed,

resulting in a more robust coherent detector. Numerical

examples for di�erent fading rates and the detector's pa-

rameters are presented.

2. Detection

The received baseband equivalent complex signal r(t) in a

single path Rayleigh fading channel is expressed as

y(t) =
X
i

p
Eb(i)s(t � iT )c(t) + nw(t); (1)

where E, b(i) 2 f�1; 1g, s(t), and nw(t) denote bit energy,

the information bit, unit energy pulse of duration T , and

an additive, zero-mean, complex white Gaussian noise with

the one-sided power spectral density N0, respectively. The

fading channel process c(t) is modeled as a normalized,

zero-mean complex-valued wide-sense stationary Gaussian

process.
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We obtain K samples at the matched �lter output at

time instants (i�1)T+�1; : : : ; (i�1)T+�K over the ith bit

interval1. Such a K-sample snapshot of y(t) is expressed

in a vector form as

y(i) = [y(1)(i); : : : ; y(K)(i)]T

=
p
EEC(i)b(i) + �(i); (2)

where

E = diag[
p
�(1); : : : ;

p
�(K)];

�(j) =

Z �j

�j�1

s2(t)dt; j = 1; : : : ;K;

C(i) = [c(1)(i); : : : ; c(K)(i)]T

= [c(t)jt=(i�1)T+�1 ; : : : ; c(t)jt=(i�1)T+�K ]T ;
�(i) = [�(1)(i); : : : ; �(K)(i)]T :

In (2) we adopted a discrete-time fading channel formu-

lation in deriving the detector structure. Speci�cally, the

channel is assumed to be constant during one sample in-

terval, but it changes from one sample to another. The

covariance matrix of � is

R�(i) = Ef�(i)�(i)Hg = N0I; (3)

where I is a K � K identity matrix. Given bC(i), the

estimate of the channel vector C(i), the decision variable

for b(i) can be obtained by combining the K elements in

(2) according to the maximal ratio combining (MRC) rule2

as

d(i) = Ref bC(i)Hy(i)g: (4)

Hence, to coherently detect the information bit b(i)

from the received vector in (2), we need to provide a pro-

cedure for channel estimation.

3. Channel Estimation

De�ne MK � 1 vector

Yi�1 = [ey(i�M )T ey(i �M + 1)T : : : ey(i� 1)T ]T ;

where ey(i � m) = y(i � m)bb(i � m); m = 1; : : : ;M , andbb(i � m) is the decision on the information bit b(i � m).

By de�ning the (M + 1)K � 1 vector

Y = [YT
i�1 C(i)T ]T ; (5)

the covariance matrix of Y can be written as

RY = EfYYHg =
�
RY11 RY12
RY21 RY22

�
; (6)

1It is not necessary for the time instants to be uniformly dis-
tributed over the ith bit interval, but it is required that 0 = �0 <

�1 < : : : < �K = T .
2Due to the assumption that the channel changes from one sample

to another, the elements in (2) will not be fully correlated, and the
MRC should provide performance improvement.

where

RY11 = EfYi�1 YH
i�1g; (MK �MK) (7)

RY12 = EfYi�1 w(i)Hg; (MK �K) (8)

RY21 = Efw(i) YH
i�1g; (K �MK) (9)

RY22 = Efw(i) w(i)Hg: (K �K) (10)

The covariance matrices (7) - (9) depend not only on the

channel spaced-time correlation function, but also on the

previous bit decisions. From the practical point of view,

for a reliable communication the decision error is usually

small enough, so these matrices can be calculated by using

channel correlation information only; that is, previous bit

decisions can be assumed as being correct for computing

RY11, RY12 and RY21, although the matrices depend on

Yi�1, which is data-decision dependent. Given this ap-

proximation, the matrices are assumed decision indepen-

dent and can be calculated a priori.

The MAP channel estimates of C(i) can be obtained

by maximizing pfC(i)jYi�1g; i.e.,
max pfC(i)jYi�1g
C(i)

: (11)

The estimation procedure is illustrated in Fig. 1.

According to (5), because both Yi�1 and C(i) are com-

plex Gaussian random vectors, so is Y. The conditional

probability density function in (11) can be written as

pfC(i)jYi�1g =
pfYi�1;C(i)g

pfYi�1g

=

1

�(M+1)K jRY je
�Y

HR
�1

Y Y

1

�MK jRY11je
�YH

i�1
R�1

Y11Yi�1

: (12)

By using the partitioned matrix inversion from [11], R�1Y
can be expressed as

R
�1
Y =

�
RY11 RY12
RY21 RY22

��1
=

�
RYi11 RYi12
RYi21 RYi22

�
; (13)

where

RYi11 = (RY11 �RY12R
�1
Y22RY21)

�1

RYi22 = (RY22 �RY21R
�1
Y11RY12)

�1

RYi12 = �RYi11RY12R�1Y22
RYi21 = �RYi22RY21R�1Y11:

Maximizing the conditional probability density function is

equivalent to minimizing the following quadratic function:

l = YHR�1Y Y � YH
i�1R

�1
Y11Yi�1: (14)

Forcing the derivative of l with respect to C(i) to a zero

column vector givesbC(i) = �R�1Yi22RYi21Yi�1
= RY21R

�1
Y11Yi�1; (15)
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where, as mentioned before, bC(i) denotes the estimate of

C(i).

4. Error Performance

As pointed out in the previous section, we will derive the

error probability lower bound for this detector by assum-

ing that the previous bit decisions are correct, and, without

loss of generality, that the transmitted bit is 1. The analy-

sis is similar to that of the error performance of quadratic

receivers in [13] and [14]. For simplicity, the time index i

will be omitted whenever possible.

Introducing

v =

� bC
y

�
;

the decision variable in (4) can be reformulated as

d(i) =

� bC
y

�H �
0 0:5I

0:5I 0

� � bC
y

�
= vHQv; (16)

where 0 is a K�K matrix with all elements equal to zero.

De�ning matrix

V = EfvvHg = E

�� bC
y

�
[ bCH

yH ]

�
;

from the results and de�nitions of the previous section, we

have the following expressions:

Ef bC bCHg = RY21R
�1
Y11RY12;

EfyyHg = a1RY22 + N0I;

Ef bCyHg =
p
a1RY21R

�1
Y11RY12;

Efy bCHg =
p
a1RY21R

�1
Y11RY12:

Therefore, matrix V , de�ned above, can be expressed as

V = E

( bC bCH bCyH
y bCH

yyH

)

=

�
RY21R

�1
Y11RY12

p
a1RY21R

�1
Y11RY12p

a1RY21R
�1
Y11RY12 a1RY22 + N0I

�
;

and matrix V Q can be expressed as

V Q = 0:5

� p
a1RY21R

�1
Y11RY12 RY21R

�1
Y11RY12

a1RY22 +N0I
p
a1RY21R

�1
Y11RY12

�
:

The probability of error of the quadratic decision vari-

able is the one given in [13]:

Pe = Pfd(i) < 0g =
X

l<0

2KY
m=1

m6=l


l


l � 
m
; (17)

in which 
1; : : : ; 
2K are the eigenvalues of the matrix

V Q.

5. Numerical Examples and Discussion

In the numerical examples, we consider the Jakes channel

model [10]. Fading dynamics measured by the normalized

Doppler frequency fdT is the most important factor that

a�ects the channel estimation error. The number of sam-

ples per bit K and the channel memory depth M are the

parameters that a�ect the channel estimation accuracy. In

the numerical examples, we will illustrate their e�ects on

the error performance of the detector. The lower bound

on the bit error rate can be evaluated by assuming cor-

rect previous decisions while performing channel estima-

tion. The phase reversal phenomenon observed with the

Kalman �lter estimator in [12] could also occur in the pro-

posed decision feedback MAP channel estimator. For the

purpose of analytical calculation of the error performance

lower bound, we assume that the previous decisions are

correct in (15). In the actual channel estimation, di�er-

ential encoding can be employed to mitigate the e�ects of

phase reversals. Fig. 2 shows the curves obtained both by

numerical evaluation of equation (17) and by simulation,

under the assumption of correct previous bit decisions dur-

ing channel estimation, and by simulation with di�erential

encoding employed. Two samples per bit interval (K = 2),

the memory depth M = 4, and normalized Doppler spread

fdT = 0:04 scenario was considered whereupon di�eren-

tial encoding demonstrated robust behavior. Results for a

faster fading channel with fdT = 0:08, the same number

of samples per bit, and the same memory depth are shown

in Fig. 3, with very small performance degradation. For

comparison, curves for conventional symbol spaced di�er-

entially coherent detection performance in the same chan-

nel are shown in Figs. 2 and 3. The error 
oor for the

conventional DPSK was observed while the proposed de-

tector (K = 2) provided much better performance. When

the number of samples per bit is increased, the error per-

formance improves somewhat, as shown in Figs. 4 and 5,

in which the fading rate is fdT = 0:04 and fdT = 0:08,

respectively.

The detector's error performance with di�erential en-

coding is very close to the lower bound, which assumes

that the previous decisions are correct during the chan-

nel estimation. Under the idealized assumption of perfect

channel estimates in the fully interleaved channel, coherent

detection with di�erential encoding is approximately 3 dB

worse than that without di�erential encoding. However, in

our more realistic examples, that di�erence is smaller due

to clustering of errors. Also, even with 2 samples (K = 2)

per bit the detector's performance is already very close to

that of K = 4, suggesting that a large number of samples

per bit is not necessary for reasonably good performance.

For both K = 2 and K = 4, the error performance of the

fractionally spaced sampling detector in the numerical ex-

amples considered was almost invariant to the fading rate,

and no error 
oor was found for both fading rates in the

SNR regions of interest.
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: : : TT

Optimal combining of Yi�1 :

T T
y(i � 1) y(i �M )

: : :

RY21R
�1
Y11Yi�1

y

cC(i)

bb(i �M )bb(i � 1)

Figure 1: The single-stage DF MAP channel estimator
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Figure 2: Error performance (K = 2;M = 4, fdT = 0:04)
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Figure 3: Error performance (K = 2;M = 4, fdT = 0:08)

simulation, differential encoding       

simulation, correct DF decisions assumed

analytical, correct DF decisions assumed

5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

P
e

Figure 4: Error performance (K = 4;M = 4, fdT = 0:04)
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Figure 5: Error performance (K = 4;M = 4, fdT = 0:08)
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