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Switch
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SUMMARY The input queued (IQ) switching architecture

is becoming an attractive alternative for high-speed switches ow-

ing to its scalability. In this paper, three new algorithms, re-

ferred to as the maximum credit �rst (MCF), enhanced MCF

(EMCF), and iterative MCF (IMCF) algorithms, are introduced.

Simulations show that both MCF and IMCF have similar per-

formance as the Birkho�-von Neumann decomposition (BVND)

algorithm, which can provide cell delay bound and 100% through-

put, with lower o�-line computational and on-line memory com-

plexity. Simulations also show the fairness of MCF is much

better than that of BVND. Theoretic analysis shows that the

EMCF algorithm has a better performance than MCF in terms

of throughput and cell delay with the same complexity level as

MCF. Simulation results indicate the EMCF algorithm has much

lower average cell delay and delay variance as compared to the

BVND algorithm.
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1. Introduction

There are two basic types of switching architectures:

output queued (OQ) and input queued (IQ) switching

architecture. When a packet arrives at an OQ switch,

it is queued in its output queue. The packet will stay

in the output queue until it is transmitted from the

switch, and thus 100% throughput can be achieved in

OQ switches. OQ switches can also provide quality of

service (QoS) guarantees by using scheduling mecha-

nisms [1] such as weighted fair queueing (WFQ) [2] (or

packetized generalized processor sharing (PGPS) [3])

and worst-case fair weighted fair queueing (WF 2Q) [4].
The drawback of OQ switches is that in the worst case

the fabric of an N ×N OQ switch must run N times as

fast as its line rate, i.e., the speedup of an OQ switch

is N . On the other hand, when a packet arrives at an

IQ switch, it is placed in its input queue until it can be

scheduled across the fabric. The packet can be trans-

mitted out of the IQ switch immediately when it arrives

the output port. The fabric of an IQ switch needs only

run as fast as the line rate, i.e., the speedup of an IQ

switch is 1.
In high-speed networks, fabric and memories with

a bandwidth operated at N times the line rate may
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be infeasible. Thus, the IQ switching architecture has

been adopted for high-speed switch implementation ow-

ing to its scalability. One of the major problems with

the IQ switching architecture is the head-of-line (HOL)

blocking: the HOL cell, which cannot be forwarded be-

cause of the output contention, can block the output-

contention-free cells in the same queue when FIFO is

used. The HOL blocking limits the throughput of the

IQ switch using a single FIFO queue in each input to

approximately 2 −
√

2 ≈ 58.6% under i.i.d. Bernoulli
tra�c when N is large [5]. Under bursty tra�c, it

is even worse: the maximum throughput of such a

switch decreases monotonically with the burstiness of

tra�c and reaches 50% when the burstiness is large [6].

Stationary blocking is another problem for FIFO IQ

switches: the total throughput of the switch can be as

small as the throughput of a single link under certain

periodic tra�c even when N is very large [7].

Previous research [8][9][10] shows that the HOL

blocking can be completely eliminated in IQ switches

by adopting virtual output queueing (VOQ), in which

multiple VOQs directed to di�erent outputs are main-

tained at each input. Therefore, the throughput of an

IQ switch can be increased to 100% under all admissible

independent tra�c by using well-designed scheduling

algorithms such as the longest queue �rst (LQF) [9][11]

algorithm and the oldest cell �rst (OCF) [10][11] algo-

rithm. Though 100% throughput can be achieved using

IQ switches, other QoS features such as bandwidth and

cell delay still cannot be guaranteed using the above al-

gorithms.

Another approach to reduce the HOL blocking is

to increase the speed of the fabric. The ratio of band-

width between the fabric and input link is de�ned as

the speedup. When the speedup is larger than 1 and

smaller than N , bu�ers are required at the outputs as

well as inputs. This switching architecture with both

input and output bu�ering is called the combined in-

put output queueing (CIOQ) switch. Enormous e�orts

have been made on providing QoS guarantees with the

CIOQ switch. Recently, Chuang et al. [12] proved that

a CIOQ switch using the stable matching algorithm [13]

and critical cells �rst (CCF) insertion policy with a

speedup of two can exactly mimic an OQ switch that

uses the push-in �rst-out (PIFO) queueing policy.

Other e�orts have also been made to achieve QoS

guarantees by IQ switch without speedup. Chang et
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al. [14][15] proposed the Birkho�-von Neumann de-

composition (BVND) algorithm based on a decomposi-

tion result by Birkho� and von Neumann for a doubly

stochastic matrix. This algorithm can provide 100%
throughput for all non-uniform tra�c. Furthermore, if

the tra�c is (σ, r)-upper constrained, cell delay can be

deterministically guaranteed using this algorithm. The

problem of this algorithm is that the o�-line compu-

tational complexity is too high: O(N4.5). If the as-

signed rates of sessions change frequently, which more

likely occurs in a large switch, the algorithm will be

impractical. In this paper, we proposed three new al-

gorithms, maximum credit �rst (MCF), enhanced MCF

(EMCF), and iterative MCF (IMCF) algorithms, which

have lower o�-line complexity and similar performance

as the BVND algorithm, and are more realizable.

The rest of the paper is organized as follows. In

Sect. 2, we describe our switch model and algorithms.

In Sect. 3, we present the discussion and simulation re-

sults of proposed algorithms. Concluding remarks are

given in Sect. 4.

2. Our Switch Model and Algorithms

Taking into consideration of an N × N input queued

switch without speedup consisting of N inputs, N out-

puts, and a non-blocking switch fabric such as the cross-

bar. The packets, which may have variable length, are

broken into �xed-length cells when they arrive in the

inputs. After the cells cross the fabric, they are re-

assembled to the original variable length packets. A

cell slot is de�ned as the time required to transmit a

cell with the line rate.

The basic objective of scheduling an IQ switch is

to �nd a contention-free match which is equivalent to

solving a bipartite graph matching problem as shown

in Fig. 1(a). Each vertex on the left side represents an

input and that on the right side represents an output.

There is an edge between every input vertex i and ev-

ery output vertex j. Associated with each edge is a

weight, wi,j , which is de�ned di�erently by di�erent

algorithms. In Fig. 1(a), edges with a weight of 0 are

omitted. The scheduler selects a match between the

inputs and outputs with the constraints of unique pair-

ing, i.e., at most one input can be matched to each

output, and vice versa. Let S = (si,j) be the match-

ing matrix, which indicates the match between inputs

and outputs. If input i and output j are matched, then

si,j = 1; otherwise, si,j = 0. At the end of the cell slot,

a cell is transmitted from input i to output j if si,j = 1
and Qi,j is not empty. A maximum weighted matching

algorithm computes a match that can maximize the ag-

gregate weight. Figure 1(b) is the maximum weighted

matching solution of Fig. 1(a).

2.1 The Maximum Credit First Algorithm

Suppose the rate assigned to the tra�c from input i to
output j is ri,j , which is also the arrival rate of Qi,j .

The tra�c is admissible if and only if the following

inequalities are satis�ed:

N−1∑
j=0

ri,j ≤ 1, ∀i, (1)

N−1∑
i=0

ri,j ≤ 1, ∀j. (2)

R = (ri,j) that satis�es Eqs. (1) and (2) is a dou-

bly substochastic matrix. For any doubly substochas-

tic matrix R, there exists [14][16] a doubly stochastic

matrix R̃ = (r̃i,j) such that ri,j ≤ r̃i,j , ∀i, j. Matrix R̃
is a doubly stochastic matrix, if it satis�es

N−1∑
j=0

r̃i,j = 1, ∀i, (3)

and

N−1∑
i=0

r̃i,j = 1, ∀j. (4)

The doubly stochastic matrix can be constructed from

the doubly substochastic matrix by the weighted rate

�lling algorithm (WRFA) [17] with the complexity of

O(N2):
Weighted Rate Filling Algorithm (WRFA)

1. De�ne pi = 1 −
∑N−1

j=0 ri,j . Calculate pi for all i.

2. De�ne qj = 1 −
∑N−1

i=0 ri,j . Calculate qj for all j.

3. Calculate ∆ = N −
∑N−1

i=0

∑N−1
j=0 ri,j .

4. Let r̃i,j = ri,j + piqj

∆ .

Theorem 1: Matrix R̃ = (r̃i,j) constructed from the

doubly substochastic matrix R = (ri,j) is a doubly

stochastic matrix.

Proof: Since R = (ri,j) is a doubly substochastic ma-

trix, we have pi ≥ 0, ∀i, qj ≥ 0, ∀j, and ∆ ≥ 0. Thus,

r̃i,j = ri,j + piqj

∆ ≥ 0, ∀i, j. For any j, we have

N−1∑
i=0

r̃i,j =
N−1∑
i=0

ri,j +
N−1∑
i=0

(
piqj
∆

) = 1 − qj+

∑
i(1 −

∑
j ri,j)qj

∆
= 1 − qj +

(N −
∑

i,j ri,j)qj
∆

=
∆ − qi∆ +Nqi − qi(N − ∆)

∆
= 1.

For any i, we also have
∑N−1

j=0 r̃i,j = 1. Thus, matrix
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Fig. 1 An example of the bipartite graph matching problem: (a) the request graph and

(b) a maximum weighted match.

R̃ = (r̃i,j) is a doubly stochastic matrix. ✷

Assume every Qi,j has a credit ci,j which is a real

variable that has the initial value of 0. At the beginning
of every cell slot, ci,j increases by r̃i,j . Then the sched-

uler selects the match according to the current credits

of VOQs. In this paper, we only consider permutation

matrices as the service matrix S, implying that there

are always exactlyN pairs in every match. From all the

permutation matrices, the maximum credit �rst (MCF)

algorithm selects the one that can maximize the aggre-

gate credit, i.e.,

arg max
S

[
∑
i,j

si,j(n)ci,j(n)],

where
∑

j si,j(n) =
∑

i si,j(n) = 1, ∀i, j. The ser-

vice matrix S can be found by the maximum weighted

matching algorithm which has a computational com-

plexity of O(N3) [18]. The cells in VOQs are transmit-

ted across the fabric according to their corresponding

values in service matrix S: If si,j equals to 1 and Qi,j

is not empty, then the HOL cell of Qi,j will be trans-

mitted to output j. Meanwhile, ci,j decreases by si,j

for all i, j. Thus, ci,j(n), the credit of Qi,j at the end

of cell slot n, is

ci,j(n) = ci,j(n− 1) − si,j(n) + r̃i,j , (5)

where ci,j(n− 1) is the credit of Qi,j at the end of cell

slot n− 1.

2.2 The Enhanced Maximum Credit First Algorithm

The BVND and MCF algorithms are not e�cient

enough because they pay no attention to the current

occupancy of VOQs. For example, connection requests

at the current cell slot is shown in Fig 2(a), where the

non-empty VOQs are �lled with crosses. Suppose non-

zero elements of the permutation matrix selected by the

BVND or MCF at the current cell slot are represented

by circles in Fig. 2(a). Among all the VOQs selected

by P, only VOQ Q0,1 is non-empty which is shown by

thick border box in Fig. 2(a). Hence, the BVND or

MCF algorithm can schedule only one cell in the cur-

rent cell slot. However, two more VOQs, such as Q1,2

and Q2,3, can actually send cells across the fabric in

the current cell slot without removing cells scheduled

by the BVND or MCF algorithm.

Based on the above observation, the enhanced

MCF (EMCF) algorithm matches the inputs and out-

puts, which are not matched by the MCF algorithm,

and attempts to make a maximal match in every cell

slot using a method similar to the wrapped wave front

arbiter (WWFA) [19] and wave front BVND (WFB-

VND) algorithm [17]. EMCF divides a cell slot into N
phases. Assume P = (pi,j) is the permutation matrix

selected by the MCF algorithm in the current cell slot.

In the lth phase, where 0 ≤ l ≤ N−1, EMCF calculates

matrix Vl = (vl
i,j), where v

l
i,j = p(i+l)modN,j . During

the lth phase, EMCF checks VOQs corresponding to

the non-zero elements of Vl, and adds the non-empty

VOQs in the match if both its input and output are

unmatched. EMCF updates credits of VOQs using the

following equation:

ci,j(n) = ci,j(n− 1) − pi,j(n) + r̃i,j , (6)

where P = (pi,j) is the permutation matrix selected by

the MCF algorithm.

Figure 2(a)-(d) shows an example, where the

VOQs �lled with crosses indicate the non-empty VOQs,

the VOQs �lled with circles indicate that corresponding

elements of Vl are 1′s, and the VOQs with thick border

indicate they are scheduled to transmit cells. The com-

plexity of MCF and the �lling process are O(N3) and
O(N2), respectively. Thus, the complexity of EMCF is

O(N3), which is at the same level as MCF.

Theorem 2: If the exactly same tra�c is fed into

switchM, the IQ switch using the MCF algorithm, and

N , the IQ switch using the EMCF algorithm, concur-

rently and no cell is dropped, then LN
i,j(n), the queue
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Fig. 2 EMCF algorithm, (a) phase 0, (b) phase 1, (c) phase 2, and (d) phase 3.

length of Qi,j in switch N at cell slot n, is always less
than or equal to LM

i,j (n) for any i, j, and n.

Proof: Consider any i, j, and n, if LN
i,j(n) = 0, then

the theorem is proved, because LM
i,j (n) ≥ 0. If LN

i,j(n) >
0, let n0 < n be the largest number such that LN

i,j(n0) =
0. That is, from cell slot n0 + 1 to cell slot n, QN

i,j

is constantly backlogged. Denote TM
i,j (n0, n)backlog as

the number of cells dequeued from QM
i,j between cell

slot n0 + 1 and n inclusively when QM
i,j is constantly

backlogged during (n0, n].
Let TM

i,j (n) be the cumulative number of cells de-
queued from QM

i,j by the end of cell slot n, and TN
i,j(n)

be that of QN
i,j . De�ne Ti,j(n2, n1) = Ti,j(n2) −

Ti,j(n1). When both QM
i,j and QN

i,j are not empty

at certain cell slot, if a cell is dequeued from QM
i,j ,

then a cell must be dequeued from QN
i,j accord-

ing to the de�nition of EMCF. Thus, we know

that TN
i,j(n0, n) ≥ TM

i,j (n0, n)backlog. Thus, we have

TN
i,j(n0, n) ≥ TM

i,j (n0, n), because TM
i,j (n0, n)backlog ≥

TM
i,j (n0, n). Since LN

i,j(n0) = 0, LN
i,j(n0) ≤ LM

i,j (n0).
From cell slot n0 + 1 to n, the same number of cells

are enqueued into QM
i,j and QN

i,j , but more or the

same number of cells are dequeued from Qi,j . Thus

LN
i,j(n) ≤ LM

i,j (n) for any i, j, and n. ✷

Theorem 3: Assume all the VOQs in switch M and

N are FIFOs. If the exactly same tra�c is fed into

switch M and N concurrently and no cell is dropped,

then DN
c , the delay time of cell c in switch N , is always

less than or equal to DM
c for any cell c.

Proof: If a cell c which is directed to output j arrives
in input i at cell slot n, then both QM

i,j and QN
i,j will be

backlogged until c is scheduled. At cell slot n, LM
i,j (n) ≥

LN
i,j(n). Assume cell c departs switch E at cell slot n1,

then TN
i,j(n, n1) ≥ TM

i,j (n, n1). Since the arrival of B
and E are identical, cell c cannot leave switch B before

cell slot n1, if all the VOQs are FIFOs. So, D
N
c ≤ DM

c

for any cell c. ✷

Theorem 2 and 3 prove that the performance of

EMCF is better than that of MCF in terms of cell delay

and bu�er length.

2.3 The Iterative Maximum Credit First Algorithm

Owing to the O(N3) complexity, MCF and EMCF

algorithms are di�cult to implement in high speed

networks, so we propose an iterative approximation

of MCF algorithm: iterative maximum credit �rst

(IMCF) algorithm. IMCF performs the following three

steps in each iteration:

1. Request: Each unmatched input sends a request

to every output.

2. Grant: If an unmatched output receives any re-

quests, it chooses the one with the largest credit.

Ties are broken randomly.
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3. Accept: If an input receives any grants, it chooses

the one with the largest credit. Ties are broken

randomly.

IMCF stops when there is no unmatched input and out-

put. It converges in at most N iterations and the ser-

vice matrix S selected by IMCF is always a permutation

matrix.

Property 1: At the end of any cell slot, credits of

an IQ switch using MCF, EMCF, or IMCF satisfy the

following equations:



∑N
j=1 ci,j = 0, ∀i∑N
i=1 ci,j = 0, ∀j∑
i,j ci,j = 0

. (7)

Property 2: In any cell slot just before the service

matrix is calculated, credits of an IQ switch using MCF,

EMCF, or IMCF satisfy the following equations:



∑N
j=1 ci,j = 1, ∀i∑N
i=1 ci,j = 1, ∀j∑
i,j ci,j = N

. (8)

Property 3: If two cells arrive from the same input

and come to the same output of an IQ crossbar switch

that uses the MCF, EMCF, or IMCF algorithm, then

the cell that arrives early will depart the switch early.

Property 3 implies that if the MCF, EMCF, or

IMCF algorithm is used to handle variable-length pack-

ets, reordering is not necessary at the output side.

3. Discussion and Simulations

Let Ti,j(n) be the cumulative number of cell slots that
are assigned to Qi,j of an MCF switch by cell slot n.
Then the credit of Qi,j is

ci,j(n) = r̃i,j · n− Ti,j(n). (9)

For any n2 ≥ n1,

Ti,j(n2)−Ti,j(n1) = r̃i,j(n2−n1)−ci,j(n2)+ci,j(n1).(10)

If we assume the lower bound and upper bound of the

credit are c− and c+, respectively, and let ∆c = c+−c−,
then

r̃i,j(n2 − n1) − ∆c ≤ Ti,j(n2) − Ti,j(n1)
≤ r̃i,j(n2 − n1) + ∆c. (11)

Eq. (11) implies that if Ai,j , the tra�c from input

i to output j, conforms to (σi,j , ri,j), i.e.,

Ai,j(n2) −Ai,j(n1) ≤ ri,j(n2 − n1) + σi,j , (12)

then the cell delay from input i to output j is bounded
by �(σi,j + ∆c)/ri,j�.
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Fig. 3 H(n) of BVND and MCF under unbalanced tra�c

reservation.

Chang et al. [14] show if Eq. (1) and (2) are

satis�ed, then the BVND algorithm can guarantee

Ti,j(n2) − Ti,j(n1) ≥ ri,j(n2 − n1) − ui,j , (13)

for all i, j, n2 ≥ n1, where ui,j ≤ U = N2 − 2N + 2.
Comparing Eq. (11) with Eq. (13), we can say if

the ∆c of MCF is comparable with U = N2 − 2N + 2,
then MCF is as good as the BVND algorithm in terms

of QoS guarantees. Simulation results of c+, c−, and
∆c are listed in Table 1.Simulations are made under

various non-uniform rate reservations on input queued

switches with N = 16, N = 32, and N = 64. Table 1

shows that the ∆c of MCF is much smaller than U .
Both BVND and MCF try to keep the credits of

VOQs as close to 0 as possible to ensure the fairness,

where the �ows reserved with higher rates should be

assigned more cell slots to transmit cells. Thus H(n) =∑N−1,N−1
i=0,j=0 c2i,j(n) can be used as the measurement of

the fairness. For an ideal scheduling algorithm in the

�uid model, H(n) should be equal to 0 at any cell slot,

which is not possible in the packetized case. In practice,

an algorithm with better fairness should have a smaller

H(n). We have

H(n+ 1) −H(n) = N −
∑

r̃2i,j

+2
∑

ci,j(n)r̃i,j − 2
∑

c′i,j(n)si,j ,

where c′i,j(n) = ci,j(n) + r̃i,j . Since MCF se-

lects the matching matrix S which has the maximum∑
c′i,j(n)si,j , MCF can minimize H(n). The compar-

ison of BVND and MCF under an unbalanced tra�c

reservation, which is generated randomly, for a 16× 16
switch is shown in Fig. 3. In this example, the max-

imum H(n) of BVND and MCF are 1550 and 30 re-

spectively, which implies MCF has much better fairness

than BVND.

Figures 4 and 5 show the distribution of the per-

centage of cells which experience various delays over a
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Table 1 Maximum and minimum credit of MCF

N 16 32 64
U 226 962 3970

Algorithm c+ c− ∆c c+ c− ∆c c+ c− ∆c

MCF 1.08 −1.07 2.15 1.05 −0.96 2.01 0.95 −0.98 1.93

Table 2 Computational and memory complexity

Algorithm o�-line computational on-line computational on-line memory

BVND O(N4.5) O(logN) O(N3logN)
MCF O(N2) O(N3) O(N2)
EMCF O(N2) O(N3) O(N2)
IMCF O(N2) O(N2) O(N2)
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16 × 16 IQ switch using MCF, IMCF, and BVND al-

gorithms under non-uniform tra�c with a total tra�c

load of 90%. Tra�c Ai,j conforms to (σi,j , ri,j) for all
i, j, in which σi,j = 1000ri,j . Thus, the delay bound

should be 1000 + �ui,j/ri,j� and 1000 + �∆c/ri,j� cell

slots for BVND and MCF, respectively. The simulation

result shows that the cell delay bound is less than 1200
cell slots for all the algorithms as expected. Figures 4

and 5 demonstrate that the performance of the BVND

algorithm and IMCF are almost identical, and MCF

has a tighter bound than the other two algorithms.

When ri,j , the reserved rate between input i and
output j, changes, MCF and IMCF need to recalcu-

late R̃. On the other hand, the BVND algorithm not

only needs to recalculate R̃, but also needs to decom-

pose it again. Owing to the high o�-line computa-

tional complexity, the BVND algorithm will be hard

to implement in a dynamic environment. Table 2 com-

pares the computational and memory complexity of the

BVND, MCF, EMCF, and IMCF algorithms. It indi-

cates that MCF and IMCF have higher on-line compu-

tational complexity, but have lower o�-line computa-

tional complexity and on-line memory complexity. The

BVND algorithm's bottleneck is the o�-line computa-

tion with the complexity of O(N4.5), which needs to be

calculated whenever the tra�c matrix R is changed;

the MCF algorithm's bottleneck is the on-line compu-
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tation with the complexity of O(N3), which needs to

be calculated every cell slot. Assume tra�c matrix R
changes every τ cell slots on average. For a rough esti-

mation, we can say that when τ is less than N1.5, MCF

is easier to be calculated than BVND. When N is 512,
τ is about 2ms for ATM tra�c at a line rate of OC-

48. Matrix R changes much more frequently than its

elements. τ is 2ms when the duration of a single con-

nection is about 500s, if we assume there is only one

connection from one input to one output. The above

calculation implies MCF is easier to be implemented

than BVND when the duration of a single connection

is smaller than 500s, when N is 512.
Figure 6 shows the distribution of the percentage

of cells which experience various delays over the switch

using MCF and EMCF algorithms under unbalanced

(σ, r) tra�c with an average tra�c load of 79%, in

which ri,j is selected randomly, and σi,j is set to be

1000ri,j . In this example, the tra�c was generated with

the on − off model and constrained by leaky bucket.

This �gure demonstrates that EMCF has a smaller de-

lay bound than MCF. Under this tra�c condition, the

average cell delay of MCF is 850 cell slots. On the other
hand, the average cell delay of EMCF is only 51, which
is much smaller than MCF.

Figure 7 shows the average cell delay of BVND and

EMCF versus the tra�c load under i.i.d. (σ, r) arrival.
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using MCF and EMCF algorithms.
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Fig. 7 Average cell delay vs. tra�c load under i.i.d. (σ, r) traf-
�c using BVND and EMCF algorithms.

It indicates that EMCF reduces the average cell delay

signi�cantly. Figure 8 is the variance of cell delay versus

the tra�c load under the same tra�c model as Fig. 7.

Comparing with BVND, the variance of cell delay of

EMCF is also much less.

4. Conclusions

In this paper, we have proposed MCF, EMCF, and

IMCF algorithms, which have the similar delay bound

as the BVND algorithm. These new algorithms have

less o�-line computational and on-line memory com-

plexity, that makes them easier to be implemented un-

der dynamic environments. Furthermore, the MCF al-

gorithm has much better fairness than the BVND al-

gorithm. The EMCF algorithm provides much lower

average cell delay and delay variance than that of the

BVND algorithm.
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Fig. 8 Variance of cell delay vs. tra�c load under i.i.d. (σ, r)
tra�c using BVND and EMCF algorithms.
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