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Abstract

This paper presents a novel set of image features that en-
code the local, color, spatial, relative intensity information
and gradient orientation of the painting image for painting
artist classification, style classification as well as artist and
style influence analysis. In particular, a new color DAISY
Fisher vector (CD-FV) feature is first created by computing
Fisher vectors on densely sampled DAISY features. Sec-
ond, a color WLD-SIFT Fisher vector (CWS-FV) feature is
developed by fusing Weber local descriptors (WLD) with
Scale Invariant Feature Transform (SIFT) descriptors and
Fisher vectors are computed on the fused WLD-SIFT fea-
tures. Finally, an innovative color multi-fusion Fisher vec-
tor (CMFFV) feature is developed by integrating the Prin-
cipal Component Analysis (PCA) features of CD-FV, CWS-
FV and color SIFT-FV features. The effectiveness of the
proposed CMFFV feature is assessed on the challenging
Painting-91 dataset. Experimental results show that the
proposed CMFFV feature is able to (i) achieve the state-
of-the-art performance for painting artist classification, (ii)
outperform other popular image descriptors, as well as (iii)
discover the artist and style influence to understand their
connections and evolution in different art movement peri-
ods.

1. Introduction

Computational painting categorization and analysis is an
emerging research area in computer vision, which is gain-
ing increasing attention in the recent years. It contains four
sub-tasks: artist classification, style classification, artist in-
fluence and style influence, which have many potential ap-
plications such as museum industries, painting theft inves-
tigation, forgery detection, etc. Pioneer works in cogni-
tive psychology [28], [32] believe that the analysis of vi-
sual art is a complex cognitive task as different elements of
visual art such as color, brush strokes, shapes and bound-
aries require involvement of multiple centers in the human

brain. From the computer vision point of view, unlike con-
ventional image classification tasks, computational paint-
ing categorization exhibits two important issues for artist
classification and style classification respectively. First, as
for the artist classification, there are large variations in ap-
pearance, topics and styles within the paintings of the same
artist. Second, as for the style classification, the inherent
similarity gap between paintings within the same style is
much larger compared to the traditional image classifica-
tion tasks. Besides, the influence analysis of artist and style
relies heavily on the information of paintings, which may
also be affected by these two issues. As a result, conven-
tional features, such as LBP[12], PHOG [1], GIST [13],
SIFT [11], complete LBP [5], CN-SIFT [9] etc., which are
applied to conventional image classification, independently
cannot capture the key aspects of computational painting
categorization. A comparative evaluation of different con-
ventional features by Khan et al. [9] for computational fine
art painting categorization clearly suggests the need of de-
signing more powerful visual features specific to painting
categorization tasks.

Painting (art) images are different from photographic im-
ages as the texture and color patterns of visual classes (ex:
sky, mountains, grass etc.) are not consistent in painting im-
ages. For example, when we look at a painting, we can find
certain visual classes (say, a multicolored face or a dispro-
portionate figure) which are discordant with the real world
visual classes captured by photographic images. There-
fore, descriptors that achieve robustness to both photomet-
ric and geometric transformations are required. Also, some
painters have a very distinctive style of using specific col-
ors (for ex: dark shades, light shades etc.) or specific brush
strokes. In addition, other important descriptive attributes
that discriminate art paintings of different artists are the
texture form, color tone, sharpness of edges, brush stroke
movement, contrast and pattern [18]. In order to capture
these aspects, we have to consider both the relative inten-
sity information and gradient orientation of the painting im-
ages, which the conventional features do not incorporate
well. Motivated by the observations from both cognitive



psychology and computer vision, we present in this paper a
new set of features to analyze the paintings from different
complementary views corresponding to the multiple centers
in the human brain for fine art painting categorization. We
particularly look to encode a descriptor that incorporates the
local, color, spatial as well as the relative intensity informa-
tion and its gradient orientation.

To address the issues raised above, we first present a new
DAISY Fisher vector (D-FV) feature which enhances the
Fisher vector feature by fitting dense DAISY descriptors
[29] to a Gaussian Mixture Model (GMM). The D-FV fea-
ture is robust against photometric and geometric transfor-
mations within the paintings in order to deal with inconsis-
tencies of different visual classes in the painting images. We
then develop a novel WLD-SIFT Fisher vector (WS-FV)
feature by integrating the Weber local descriptors (WLD)
[2] with SIFT descriptors and calculating Fisher vector on
the sampled WLD features. The WS-FV feature captures
the relative intensity and orientation information for brush
strokes in the paintings. Third, we further extend the above
features to color images resulting in CD-FV and CWS-FV
by incorporating color information in the paintings. Finally,
we present an innovative color multi-fusion Fisher vector
(CMFFV) by fusing the principal components of CD-FV,
CWS-FV and color SIFT-FV (CS-FV) feature. The process
of derivation of the CMFFV feature is illustrated in figure
1.

Our proposed features are evaluated on the challenging
Painting-91 dataset [9] for all the four subtasks: artist clas-
sification, style classification, artist influence and style in-
fluence. Experimental results show that our new features
achieve the state-of-the-art performance for fine art painting
categorization, and discover the artist influence and style in-
fluence.

Our contributions are summarized as follows: (i) We
present a new D-FV feature and a novel WS-FV feature
which capture different aspects of the paintings. (ii) We
further extend our new features to color D-FV (CD-FV) and
color WS-FV (CWS-FV) features by incorporating color in-
formation in the paintings. (iii) We then develop an innova-
tive CMFFV feature by fusing the principal components of
CD-FV, CWS-FV and color SIFT-FV (CS-FV) feature. (iv)
We achieve the state-of-the-art performance for the artist
classification task of Painting-91 dataset and compute the
artist influence and style influence graphs.

2. Related Work
Recently, several research efforts have been invested for

painting classification using computer vision techniques.
Shamir et al. [20] described a method for automated recog-
nition of painters and schools of art based on their signature
styles. Sablating et al. [19] examined the structural sig-
nature of a painting based on the brush strokes in potrait

miniatures. The work of Zujovic et al. [33] described an
approach to automatically classify digital pictures of paint-
ings by using the salient aspects of a painting such as color,
texture and edges. Shamir and Tarakhovsky [21] showed
that automatic computer analysis can group artists by their
artistic movements, and provide a map of similarities and
influential links that is largely in agreement with the analy-
sis of art historians. Siddique et al. [24] presented an effi-
cient approach for learning a mixture of kernels by greed-
ily selecting exemplar data instances corresponding to each
kernel using AdaBoost for painting dataset classification. A
multiple visual feature based framework was proposed by
Shen [23] for automatic classification of western painting
image collection. The work of Culjak et al. [3] offered an
approach to automatically classify paintings into their gen-
res by extracting features based on color and texture of the
painting.

Local, color, spatial, intensity information, and gradient
orientation information are the cues based on which human
beings can distinguish between images, and hence they con-
tribute significantly to painting artist and style classifica-
tion. Van de Weijer et al. [31] showed the effectiveness
of color names learned from images for texture classifica-
tion and action recognition. The work of van de Sande
[30] showed that SIFT descriptor incorporated with color
information result in a robust local descriptor for classifica-
tion purposes. Guo et al. [5] proposed the complete LBP
descriptor wherein a region in an image is represented by
its center pixel and a local difference sign-magnitude trans-
form. Shechtman et al. [22] proposed the self-similarity de-
scriptor which measures similarity of visual entities based
on matching internal layout of the image.

3. Novel Fused Fisher Vector Features

3.1. Fisher Vector

Fisher vector is widely applied for visual recognition
problems such as face detection and recognition [25], ob-
ject recognition [8, 17], etc. Particularly, let X = {dt, t =
1, 2, ..., T} be the set of T local descriptors extracted from
the image. Let µλ be the probability density function of
X with parameter λ, then the Fisher kernel [8] is defined
as follows: K(X,Y) = (GX

λ )TF−1
λ GY

λ where GX
λ =

1
T 5λ logµλ(X), which is the gradient vector of the log-
likelihood that describes the contribution of the parameters
to the generation process. And Fλ is the Fisher information
matrix of µλ.

Since F−1
λ is symmetric and positive definite, it has a

Cholesky decomposition as F−1
λ = LTλLλ. Therefore, the

kernel K(X,Y) can be written as a dot product between
normalized vectors Gλ, obtained as GX

λ = LλGX
λ where

GX
λ is the Fisher vector of X.
Theoretical analysis [8] shows that Fisher vector de-



Figure 1. The component images, the process of computation of CD-FV, CWS-FV and the color SIFT-FV features, the PCA process and
the CMFFV feature derived from the concatenation and subsequent normalization of the computed features

scribes an image by what makes it different from other im-
ages. It focuses only on the image specific features and dis-
cards the image independent background features leading to
better accuracy in classification.

3.2. Color DAISY Fisher Vector (CD-FV)

In this section, we present a new innovative DAISY
Fisher vector (D-FV) feature where Fisher vectors are com-
puted on densely sampled DAISY descriptors. DAISY de-
scriptors consists of values computed from the convolved
orientation maps located on concentric circles centered on
each pixel location. The DAISY descriptor [29] D(u0, v0)
for location (u0, v0) is defined as follows:

D(u0, v0) = [h̃
T

Σ1
(u0, v0),

h̃
T

Σ1
(I1(u0, v0, R1)), ..., h̃

T

Σ1
(IT (u0, v0, R1)), ...,

h̃
T

ΣQ(I1(u0, v0, RQ)), ..., h̃
T

ΣQ(IT (u0, v0, RQ))]T

(1)

where Ij(u, v,R) is the location with distanceR from (u, v)
in the direction given by j, Q represents the number of cir-

cular layers and h̃Σ(u, v) is the unit norm of vector contain-
ing Σ-convolved orientation maps in different directions.
DAISY descriptors are suitable for dense computation and
offers precise localization and rotational robustness [29],
therefore provides improved performance and better accu-
racy for classification.

For every component of the image, dense DAISY de-
scriptors are computed with parameters radius of descriptor
set as 15, number of rings as 3, number of histograms per
ring as 8 and number of histogram bins as 8 resulting in
a 200 dimension DAISY descriptor. The sampled descrip-
tors are then fitted to a Gaussian Mixture Model (GMM)
with 256 parameters. The Fisher vectors are then encoded
as derivatives of log-likelihood of the model based on the
parameters. The GMM is trained for each component of the
image separately so as to encode the color information.

3.3. Color Weber-SIFT Fisher Vector (CWS-FV)

We introduce a new Weber-SIFT Fisher vector (WS-FV)
feature that integrates the Weber local descriptor along with



SIFT features so as to encode the color, local as well as rel-
ative intensity information and its gradient orientation from
an image. The Weber local descriptor (WLD) [2] is based
on the Weber’s law [7] which states that the ratio of incre-
ment threshold to the background intensity is a constant.
The descriptor contains two components differential excita-
tion [2] and orientation [2] which are defined as follows.

ξ(xc) = arctan[
ν00
s

ν01
s

] and θ(xc) = arctan(
ν11
s

ν10
s

) (2)

where ξ(xc) is the differential excitation and θ(xc) is the
orientation of the current pixel xc, xi(i = 0, 1, ...p − 1)
denotes the i-th neighbours of xc and p is the number of
neighbors, ν00

s , ν01
s , ν10

s and ν11
s are the output of filters

f00, f01, f10 and f11 respectively. Since the WLD is based
on physiological law, it extracts features from an image by
simulating a human sensing his/her surroundings. WLD is
robust to noise in the image and also reduces the effects of
illumination change [2], therefore acts as a good descriptor
for painting images.

To encode the color, relative intensity information and
its gradient orientation, Weber local descriptors (WLD) are
computed for each component of the image to form the
color WLD. We then derive densely sampled SIFT features
and the process is repeated separately for the three compo-
nents of the image resulting in color WLD-SIFT feature.
We train a parametric generative model [6, 16], in our case,
Gaussian Mixture Model (GMM) by fitting it to the sampled
color WLD-SIFT features. The spatial information is also
encoded by augmenting the visual features derived by SIFT
with their spatial co-ordinates [27]. The Fisher vectors are
then extracted by capturing the average first order and sec-
ond order differences between the computed features and
each of the GMM centers.

3.4. Color Multi-Fusion Fisher Vector (CMFFV)

In this section, we present an innovative color multi-
fusion Fisher vector feature (CMFFV) that fuses the most
expressive features of the CD-FV, CWS-FV and color SIFT-
FV. In the color SIFT-FV feature, Fisher vectors are com-
puted on densely sampled SIFT features using a parametric
estimation model [16, 25] for every component of the im-
age. The color cue provides powerful discriminating infor-
mation in pattern recognition in general [26, 10], therefore
we also incorporate color information to our proposed fea-
ture. The most expressive features are extracted by means
of Principal Component Analysis (PCA) [4]. Particularly,
let X ∈ RN be a feature vector with covariance matrix Σ
given as follows:Σ = E[(X−E(X))][(X− E(X))]

T where
T represents transpose operation and E(.) represents expec-
tation. The covariance matrix can be factorized as follows
[4]:Σ = φΛφT where Λ = diag[λ1, λ2, λ3, ....., λN ] is
the diagonal eigenvalue matrix and φ = [φ1φ2φ3....φN ]

is the orthogonal eigenvector matrix. The most expressive
features of X is given by a new vector Z ∈ RK : Z = PTX
where P = [φ1φ2φ3....φK ] and K < N .

To derive the proposed CMFFV feature, we first com-
pute the CD-FV, CWS-FV and the color SIFT-FV for all the
components of the image separately. The CD-FV features
of the R, G and B components of the image are concatenated
and normalized to zero mean and unit standard deviation.
The dimensionality of the CD-FV feature is then reduced by
using PCA, which derives the most expressive features with
respect to the minimum square error. The above process
is then repeated for the CWS-FV and color SIFT-FV fea-
tures. Finally, the computed CD-FV, CWS-FV and the color
SIFT FV features are further concatenated and normalized
to create the novel CMFFV feature. Figure 1 shows the
component image, the process of computation of CD-FV,
CWS-FV and the color SIFT-FV features, the PCA process
and the CMFFV feature derived from the concatenation and
subsequent normalization of the computed features.

4. Experiments
This section assesses the effectiveness of our proposed

features on the challenging Painting-91 dataset [9]. The
dataset contains 4266 fine art painting images by 91 artists.
The images are collected from the Internet and covers artists
from different eras. There are variable number of images
per artist ranging from 31 (Frida Kahlo) to 56 (Sandro Bo-
ticelli). The dataset classifies 50 painters to 13 style la-
bels namely: abstract expressionism, baroque, construc-
tivism, cubbism, impressionism, neoclassical, popart, post-
impressionism, realism, renaissance, romanticism, surreal-
ism and symbolism.

4.1. Artist Classification

This section demonstrates the performance of our pro-
posed features with other popular image descriptors on
the task of artist classification which involves classifying
a painting to its respective artist. The dataset contains 91
artists with 2275 training and 1991 test images. D-FV
stands for DAISY Fisher vector and CD-FV stands for color
DAISY Fisher vector. Similar notation is used for the other
features. The color variants of D-FV, WS-FV, S-FV and
MFFV provide much improved performance. The best sin-
gle feature is CS-FV which gives a classification perfor-
mance of 55.69%. Experimental results on table 1 show
that our proposed CMFFV feature achieves the state-of-the-
art classification performance of 59.04% for artist classifi-
cation and outperforms other popular image descriptors and
deep learning methods.

Figure 2 shows some artist categories with the best
and lowest classification performance on the Painting-91
dataset. The best performance is achieved on paintings by
artists Claude Lorrain, Frida Kahlo, Mark Rothko, etc. The



No. Feature Artist CLs Style CLs
1 LBP [12, 9] 28.50 42.20
2 Color-LBP [9] 35.00 47.00
3 PHOG [1, 9] 18.60 29.50
4 Color-PHOG [9] 22.80 33.20
5 GIST [13, 9] 23.90 31.30
6 Color-GIST [9] 27.80 36.50
7 SIFT [11, 9] 42.60 53.20
8 CLBP [5, 9] 34.70 46.40
9 CN [31, 9] 18.10 33.30
10 SSIM [22, 9] 23.70 37.50
11 OPPSIFT [30, 9] 39.50 52.20
12 RGBSIFT [30, 9] 40.30 47.40
13 CSIFT [30, 9] 36.40 48.60
14 CN-SIFT [9] 44.10 56.70
15 Combine(1 - 14) [9] 53.10 62.20
16 MSCNN-1 [15] 58.11 69.67
17 MSCNN-2 [15] 57.91 70.96
18 CNN F3 [14] 56.40 68.57
19 CNN F4 [14] 56.35 69.21
20 D-FV 46.93 56.46
21 WS-FV 41.87 54.28
22 S-FV 49.02 58.95
23 MFFV 57.51 65.54
24 CD-FV 50.18 58.54
25 CWS-FV 51.85 61.99
26 CS-FV 55.69 66.15
27 CMFFV 59.04 67.43

Table 1. Comparison of Classification Performance(%) of the pro-
posed features for Artist and Style Classification

method provides inferior performance on artist categories
Gustave Courbet, Diego Velazquez, Max Ernst, Titian etc.
As mentioned previously, one of the issues for artist clas-
sification are the large variations in appearance, topics and
styles within the same paintings.

The artist with the worst performance in Figure 2 have
very high variations in their paintings. For instance, the
paintings of artist Gustave Courbet range from unideal-
ized peasants and workers, landscapes, seascapes, hunting
scenes and still lifes. The paintings also incorporate char-
acteristics of multiple styles such as realism, impressionism
and cubbism therfore resulting in few discriminating fea-
tures for classification. Figure 3 shows the different themes
of paintings by artist Gustave Courbet. Due to the large
variations in the theme and styles of paintings, the number
of misclassification for these artisits are higher.

4.2. Style Classification

This section evaluates the performance of our proposed
features on the task of style classification. Style Classifica-

Figure 2. Classification performance of artist categories of the
Painting-91 dataset. (a) shows some artist categories with best per-
formance (b) shows some artist categories with worst performance

Figure 3. Different paintings by artist Gustave Courbet

tion deals with the problem of categorizing a painting to the
13 style classes defined in the dataset. The third column in
table 1 shows the results obtained using different features
for style classification. The D-FV, WS-FV and S-FV fea-
tures provide classification performance of 56.46%, 54.28%
and 58.95% respectively. The color variants of these fea-
tures significantly improve the performance re-emphasizing



Style CD-
FV

CWS-
FV

CS-
FV

CMFFV

(1)Abstract
expressionism

81.36 83.05 89.83 91.53

(2)Baroque 72.32 73.21 76.79 77.68
(3)Constructivism 61.33 64 73.33 68
(4)Cubbism 62.5 73.86 73.86 79.55
(5)Impressionism 52.44 50 53.66 59.76
(6)Neoclassical 40 40 46 42
(7)Popart 57.89 57.89 64.91 59.65
(8)Post
Impressionism

66.04 67.92 69.81 75.47

(9)Realism 44.44 42.22 47.78 50
(10)Renaissance 40.85 49.30 46.48 47.89
(11)Romanticism 63.12 67.38 71.63 70.92
(12)Surrealism 60.33 61.98 65.29 73.55
(13)Symbolism 58.33 75 80.56 80.56

Table 2. Comparative mean average classification performance of
proposed features on the 13 style categories

Art Movement Art Style
Renaissance renaissance
Post Renaissance baroque, neoclassical, ro-

manticism, realism
Modern Art popart, impressionism, post

impressionism, surrealism,
cubbism, symbolism, con-
structivism, abstract expres-
sionism

Table 3. Art movement associated with different art styles

the fact that adding color information is particularly suitable
for classifying painting images. Table 2 shows the mean
average classification performance of the CD-FV, CWS-FV,
CS-FV and CMFFV features on the 13 style categories. The
results demonstrate that the CMFFV feature achieves com-
parable result to the state-of-the-art deep learning methods
for style classification.

Figure 4 shows the confusion matrix for the 13 style cat-
egories of the Painting-91 dataset using the CMFFV fea-
ture. In the confusion matrix, the rows show the actual
classes while the columns show the assigned classes. It can
be seen from Fig. 4 that the best classified categories are
1 (abstract expressionism), 4(cubbism) and 13(symbolism)
with classification rates of 91%, 80% and 81% respectively.
Category 6 (neoclassical) is the most difficult category to
classify as there are large confusions between the style cat-
egories baroque and neoclassical. The other categories that
create confusion are styles neoclassical and renaissance.

Figure 4. The confusion matrix for 13 style categories using the
CMFFV feature with categories listed as in table 2.

4.3. Comprehensive Analysis of Results

Table 3 shows the art movements associated with dif-
ferent art styles. Interesting patterns can be observed from
the confusion diagram in figure 4. The art styles within
an art movement show higher confusions compared to the
art styles between the art movement periods. An art move-
ment is a specific period of time wherein an artist or group
of artists follow a specific common philosophy or goal. It
can be seen that there are large confusions for the styles
baroque and neoclassical. Similarly, the style categories ro-
manticism and realism have confusions with style baroque.
The style categories baroque, neoclassical, romanticism and
realism belong to the same art movement period - post re-
naissance. Similarly, popart paintings have confusions with
style category surrealism within the same art movement but
none of the popart paintings are misclassified as baroque or
neoclassical. The only exception to the above observation is
the style categories renaissance and baroque as even though
they belong to different art movement period, there are large
confusions between them. The renaissance and baroque art
paintings have high similarity as the baroque style evolved
from the renaissance style resulting in few discriminating
aspects between them [18].

4.4. Artist Influence

In this section, we analyze the influence an artist can
have over other artists. We find the influence among artists
by looking at similar characteristics between the artist paint-
ings. Artist influence may help us to find new connections
among artists during different art movement period and also
understand the influence among different art movement pe-
riods. In order to calculate the artist influence, we calcu-
late the correlation score between the paintings of different
artists. Let aik denote the feature vector representing the
painting by artist k where i = 1, .., nk and let nk be the to-



Figure 5. Artist influence cluster graph

tal number of paintings by artist k. We calculate Ak which
is the average of the feature vector of all paintings by artist
k. We then compute a correlation matrix by comparing the
average feature vector of each artist with all other artists.
Finally, clusters are defined for artists with high correlation
score. Figure 5 show the artist influence cluster graph with
correlation threshold of 0.70.

Interesting observations can be deduced from figure 5.
Every cluster can be associated with a particular style and
time period. Cluster 1 shows artists with major contribu-
tions to the styles realism and romanticism and they belong
to the post renaissance art movement period. Cluster 2 has
the largest number of artists associated with the styles re-
naissance and baroque. Cluster 3 represents artists for the
style Italian renaissance that took place in the 16th century.
And cluster 4 shows artists associated with style abstract ex-
pressionism in the modern art movement period (late 18th -
19th century).

We further show the k-means clustering graph with co-
sine distance to form clusters of similar artists. Figure 7
shows the artist influence graph clusters for paintings of all
artists with k set as 8. First the average of the feature vector
of all paintings of an artist is calculated as described above.
We then apply k-means clustering algorithm with k set as 8.
The artist influence graph is plotted using the first two prin-
cipal components of the average feature vector. The results
of figure 7 have high correlation with the results of the artist
influence cluster graph in figure 5.

4.5. Style Influence

In this section, we study the style influence so as to find
similarities between different art styles and understand the
evolution of art styles in different art movement periods.
The style influence is calculated in a similar manner as the
artist influence. First, we calculate the average of the feature
vector of all paintings for a style. We then apply k-means
clustering method with cosine distance to form clusters of
similar styles. We set the number of clusters as 3 based
on the different art movement periods. The style influence

Figure 6. Style influence cluster graph with k set as 3

graph is plotted using the first two principal components of
the average feature vector.

Figure 6 shows the style influence graph clusters with k
set as 3. Cluster 1 contains the styles of the post renais-
sance art movement period with the only exception of style
renaissance. The reason for this may be due the high sim-
ilarity between styles baroque and renaissance as the style
baroque evolved from the style renaissance [18]. The styles
impressionism, post impressionism and symbolism in clus-
ter 2 show that there are high similarities between these
styles in the modern art movement period as the three styles
have a common french and belgian origin. Similarly, styles
constructivism and popart in cluster 3 show high similarity
in the style influence cluster graph.

We further show the results based on the correlation ma-
trix computed by comparing the average feature vector of
all paintings of each style with all other styles. We set the
correlation threshold as 0.7.

Renaissance => Baroque,Neoclassical

Romanticism => Realism

Impressionism => Post impressionism

Constructivism => Popart

The results are in good agreement with the style influ-
ence cluster graph and support the observation that the art
styles within an art movement show higher similarity com-
pared to the art styles between the art movement periods.
The styles baroque and neoclassical belong to the same art
movement period and the style baroque has evolved from
the style renaissance. Similarly, other styles belong to the
modern art movement period. It can be observed from the
style influence cluster graph that the style pairs romanti-
cism:realism, impressionism:post impressionism and con-
structivism:popart are plotted close to each other in the
graph indicating high similarity between these styles.



Figure 7. Artist influence cluster graph with k set as 8

Figure 8. List of artists and their paintings in the Painting-91 dataset

5. Conclusion
This paper presents a novel set of image features that

encode the local, color, spatial as well as relative inten-
sity information and gradient orientation of the image. The
proposed color DAISY Fisher vector (CD-FV) feature is
created by computing Fisher vectors on densely sampled
DAISY features. A color WLD-SIFT Fisher vector (CWS-
FV) feature is developed by fusing Weber local descrip-
tors with SIFT descriptors and Fisher vectors are computed

on the fused WLD-SIFT features. Finally, an innovative
color multi-fusion Fisher vector (CMFFV) feature is devel-
oped by integrating the most expressive features of CD-FV,
CWS-FV and color SIFT-FV features. Further analysis on
artist and style influence show the evolution of art paintings
and their connection to different art movement periods. Ex-
perimental results show the effectiveness of our proposed
method in the artist and style classification task of the chal-
lenging Painting-91 dataset.
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