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ABSTRACT

This paper presents two novel discriminative dictionary
learning models for sparse representation, namely the Fisher
discriminative sparse model (FDSM) and the marginal Fisher
discriminative sparse model (MFDSM). To learn the FDSM
and the MFDSM efficiently and homogeneously, a general
Fisher regularized model is further derived so that both of
them can be learned without much modification. Experimen-
tal results on four popular databases, namely the extended
Yale face database B, the AR face database, the 15 scenes
dataset and the MIT-67 indoor scenes dataset show that the
proposed method can improve upon other popular methods.

1. INTRODUCTION

The sparse representation methods [1] based on dictionary
learning (sometimes called sparse coding, sparse modelling,
etc.) have been applied to many areas, for example, face
recognition. However, sparse representation method is not
directly related to classification, which means the discrim-
inative information of the data is not utilized. Meanwhile
Fisher linear discriminant analysis [2] and its variants [3] are
widely used for learning discriminative feature representa-
tions. Thus, the sparse representation is combined with the
Fisher linear discriminant analysis to achieve the discrimina-
tive ability [4]. This method, however, assumes a fixed dic-
tionary and uses the ratio of the within-class scatter matrix
and the between-class scatter matrix for regularization, which
introduces difficulty in derivation.

To avoid the disadvantages, this paper presents two novel
discriminative sparse models and provides a simple and an
efficient solution for the above models by learning a general
Fisher regularized model. In particular, two novel discrimina-
tive dictionary learning models, namely the Fisher discrimi-
native sparse model (FDSM) and the marginal Fisher discrim-
inative sparse model (MFDSM) are proposed. The FDSM
method constrains the sparse representation by using the tra-
ditional Fisher criterion [2] so that the within-class scatter
matrix of the sparse representations of the training samples
is minimized while the between-class scatter matrix is maxi-
mized. The MFDSM method regularizes the sparse represen-

tation by using the marginal Fisher criterion [3] which consid-
ers the marginal information so as to minimize the intra-class
compactness and maximize the inter-class separability.

Generally, it is intractable or troublesome to derive the
two proposed models directly due to the intricate structure
of two Fisher terms for derivation. Thus, a general Fisher
regularized sparse model is derived from the two proposed
models for learning the discriminative dictionary efficiently
and homogeneously by iteratively applying the Fisher regu-
larized FISTA [5] method and the Lagrange dual method [6].
To guarantee that the proposed methods converge to an opti-
mal solution quickly, the initialization, step size and the con-
vergence issues are also discussed.

The performance of the two proposed models are assessed
on four representative databases, namely the extended Yale
face database B [7], the AR face database [8], the 15 scenes
dataset [9] and the MIT-67 indoor scenes dataset [10]. The ex-
perimental results show the feasibility of the proposed meth-
ods.

The proposed FDSM and MFDSM have several advan-
tages over the previous methods (see section 2). First, the
two proposed methods can learn the discriminative dictionary
by using two discriminative Fisher criteria to constrain the
sparse representation. Thus, they can take advantage of the
non-linear classifiers since their discriminative ability are not
restricted to some specific linear classifiers. Second, the two
proposed methods are capable of learning a global shared
dictionary efficiently to avoid the high computational cost
of learning the sub-dictionaries and the inferior performance
caused by small training sample size in each class. Above
all, a general Fisher regularized model can be derived from
the two proposed models so that both of them can be de-
rived homogeneously by the same algorithm without much
modification.

2. RELATED WORK

Most of the previous methods of sparse representation focus
on either developing efficient learning algorithms [5], [6] or
exploring the data manifold structures for representation [11],
[12], [13]. These methods, however, disregard the discrimi-
native label information of the training data and thus are sub-
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optimal for classification. Note that our proposed methods re-
sult in a general model that has a similar form as the methods
proposed in [11], [13]. However, their methods are unsuper-
vised and only aim at exploring the data manifold structures
for representation.

Recently, two categories of discriminative dictionary
learning methods were proposed for sparse representation.
The first category co-trains the discriminative dictionary,
sparse representation and the linear classifier together. While,
the second category combines the sub-dictionaries by exploit-
ing their discriminative power. Zhang et al. [14] proposed a
method to co-train the discriminative dictionary, sparse rep-
resentation as well as the linear classifier using a combined
objective function that is optimized by the discriminative
KSVD (D-KSVD). Jiang et al. [15] improved upon the
method introduced in [14] by introducing a label consistent
regularization term. Their methods are closely tied to the
linear classifiers, which discourages the use of non-linear
classifiers that often obtain better results. Zhou et al. [16]
presented a Joint Dictionary Learning (JDL) method that
jointly learns both a commonly shared dictionary and class-
specific sub-dictionaries to enhance the discrimination of the
dictionaries. Yang et al. [17] proposed a Fisher Discrimi-
nation Dictionary Learning (FDDL) method, which learns a
structured dictionary that consists of a set of class-specific
sub-dictionaries. Their methods are time-consuming when
the number of classes is large and may harm the performance
when the number of the training images for each class is
small.

3. TWO DISCRIMINATIVE SPARSE MODELS

Given the sample data matrix X = [x1, x2, ..., xm] ∈ Rn×m

that consists of m samples each with dimension n, the
dictionary D = [d1,d2, ...,dk] ∈ Rn×k that represents
k basis vectors and the sparse representation matrix A =
[a1, a2, ..., am] ∈ Rk×m which denotes the sparse represen-
tations for the m samples, the Fisher discriminative sparse
model (FDSM) applies the traditional Fisher criterion [2]
on the sparse representations to guarantee the discriminative
ability. Mathematically, the FDSM method attempts to learn
the dictionary D and the sparse representations A of train-
ing samples so that the within-class scatter matrix Sw of all
the ai(i = 1, 2, ...,m) is minimized while the between-class
scatter matrix Sb is maximized. As a result, the following
optimization problem has to be solved.

min
D,A

m∑
i=1

||xi − Dai||2 + λ||ai||1 + αtr(βSw − (1− β)Sb)

s.t. ||dj || ≤ 1, (j = 1, 2, ..., k)
(1)

where the parameter λ controls the sparsity term, the parame-
ter α controls the discriminative Fisher term (tr(·) is the trace
of the matrix), and the parameter β balances the contributions

of the within-class scatter matrix Sw and the between-class
scatter matrix Sb.

The marginal Fisher discriminative sparse model (MFDSM)
is proposed to extend the traditional Fisher criterion by con-
sidering the marginal information. The marginal Fisher cri-
terion [3] seeks to minimize the intra-class compactness
Sc =

∑m
i=1

∑
(i,j)∈Nc

k(i,j) ||ai − aj ||2 and maximize the
inter-class separability Sp =

∑m
i=1

∑
(i,j)∈Np

k (i,j) ||ai−aj ||2,
where (i, j) ∈ N c

k(i, j) means all the (i, j) pairs where ei-
ther the sample xi is among the k nearest neighbours of
sample xj in the same class or the sample xj is among the
k nearest neighbours of sample xi in the same class. And
(i, j) ∈ Np

k (i, j) means that the k nearest (i, j) pairs among
all the (i, j) pairs between sample xi and sample xj are from
different classes. Then the MFDSM method becomes the
following optimization problem:

min
D,A

m∑
i=1

||xi − Dai||2 + λ||ai||1 + αtr(βSc − (1− β)Sp)

s.t. ||dj || ≤ 1, (j = 1, 2, ..., k)
(2)

where the parameters λ, α and β act the same as the ones
defined in equation 1. The difference between the FDSM
method and the MFDSM method is the Fisher criterion they
used. The marginal Fisher criterion is more general than the
traditional Fisher criterion [3] as the inter-class margin can
better characterize the separability. In practice, the MFDSM
method performs similar to the FDSM method for most of the
cases.

4. A GENERAL FISHER REGULARIZED SPARSE
MODEL

To learn the FDSM and the MFDSM efficiently and homo-
geneously, a general model of learning the discriminative
dictionary can be derived from the two proposed models
as shown in Theorem 4.1. Some notations are as follows:
A is the sparse representation matrix defined above; e =
[1, 1, ..., 1]t ∈ Rm×1 and ei = [0, 0, ..., 1, 1, ..., 1, 0, ...., 0]t ∈
Rm×1 where only the indices of the training samples from
the i-th (i = 1, 2, ..., c) class are 1, otherwise 0; Dc and
Dp are diagonal matrices whose diagonal values Dc(i, i) =∑

j 6=i Wc(i, j) and Dp(i, i) =
∑

j 6=i Wp(i, j), Wc(i, j) = 1
if sample xi is among the k nearest neighbours of sample
xj in the same class or sample xj is among the k nearest
neighbours of sample xi in the same class, otherwise 0, and
similarly Wp(i, j) = 1 if the pair (i, j) is among the k nearest
pairs from all the pairs between samples of different classes,
otherwise 0.

Theorem 4.1 Both the FDSM method and the MFDSM
method belong to a general model of learning the discrimi-
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native dictionary, which has the following form:

min
D,A

m∑
i=1

||xi − Dai||2 + λ||ai||1 + αtr(ALAt)

s.t. ||dj || ≤ 1, (j = 1, 2, ..., k)

(3)

where L = I −
∑c

i=1
1
mi

eieti − (1 − β)(I − 1
meet) for the

FDSM method and L = 2β(Dc −Wc)− 2(1− β)(Dp −Wp)
for the MFDSM method.

Theorem 4.1 states a favorable property that the two pro-
posed models can be derived by optimizing the equation 3
with the only difference of the matrix L.

The algorithm of optimizing the equation 3 iteratively
learns the sparse representations and the discriminative dic-
tionary. The Fisher regularized FISTA (FRFISTA) algorithm
[5], is proposed to learn the Fisher regularized sparse rep-
resentation. And the Lagrange dual method is used to learn
the dictionary. In practice, the dictionary and the sparse
representation are initialized by using the traditional sparse
representation method. Then the algorithm is able to converge
to the optimal solution very quickly.

When the dictionary D is given, the Fisher regularized
FISTA (FRFISTA) algorithm attempts to derive each ai(i =
1, 2, ...,m) separately by optimizing minai ||xi − Dai||2 +
αLiiatiai + αati(

∑
j 6=i Lijaj) + λ||ai||1, where Lij(i, j =

1, 2, ...,m) is the value in the i-th row and the j-th column of
the matrix L. Following the structure of the FISTA algorithm,
the objective function can be decomposed into f(ai) + g(ai),
where f(ai) = ||xi −Dai||2 + αLiiatiai + αat

i(
∑

j 6=i Lijaj)
and g(ai) = λ||ai||1. Then the FISTA algorithm [5] opti-
mizes the equation by using an adaptive step size. For each
function f(ai), the smallest Lipschitz constant of the gradient
∇f is L(f) = 2λmax(DtD + αLiiI), which means twice of
the largest eigenvalue of the matrix (DtD + αLiiI). Then the
largest step size that guarantees convergence of the FRFISTA
algorithm is 1

L(f) . Note that the step size is adaptive for each
iteration for different data.

When A is given, the dictionary D is updated using the La-
grange dual method [12]. The dual problem is formulated as
Λ∗ = minΛ tr(XAt(AAt+Λ)−1AXt+Λ−XtX), where Λ is
a diagonal matrix whose diagonal values are the dual param-
eters of the primal optimization problem. The dual problem
can be solved using the gradient descent method. Then the
dictionary D is updated using D = XAt(AAt + Λ∗)−1.

5. EXPERIMENTS

To evaluate the performance of the two proposed meth-
ods, empirical studies are conducted on four representative
databases, namely the extended Yale face database B [7],
the AR face database [8], the 15 scenes dataset [9] and the
MIT-67 indoor scenes dataset [10]. We use the principal com-
ponent analysis and the improved marginal Fisher analysis

Methods Accuracy %
D-KSVD [14] 75.30
SRC [1] 90.00
FDDL [19] 91.90
The FDSM method 95.19
The MFDSM method 95.44

Table 1. Comparisons between the two proposed methods
and the other popular methods on the extended Yale face
database B.

[18] to reduce the dimension of the data and extract features.
The dictionary size is 1024 for MIT-67 indoor scenes dataset
and 512 for the others.

5.1. Extended Yale face database B

The extended Yale face database B consists of 2414 frontal
view face images from 38 individuals each with around 64
images taken under various lightening conditions. A cropped
version [7] of the database is used. As per the experimen-
tal settings defined in [19], for 10 iterations, 20 images are
randomly selected for training, and the remaining images for
testing each subject. The image is first scaled to 42 × 48 and
represented as the concatenation of the column pixels. Then
the dimension is reduced to 300. For the FDSM method, the
parameters are selected as λ = 0.1, α = 0.5, and β = 0.5.
Then the RBF kernel based SVM, which is parameterized as
C = 4 and γ = 0.0003 , is employed for classification. Sim-
ilarly, as for the MFDSM method, the model parameters are
selected as λ = 0.1, α = 0.1, and β = 0.6. And the RBF ker-
nel based SVM is parameterized as C = 6 and γ = 0.0002.
The final results are shown in table 1. The average accuracy of
10 iterations of the FDSM method and the MFDSM method
are reported in table 1.

5.2. AR face database

The AR face database is composed of over 4000 frontal view
images for 126 individuals each with 26 pictures taken in
two separate sessions. A subset of the data [8] is chosen.
The images are cropped to dimension 165*120. According
to the experimental settings [1], [19] and [17], 14 images
with only illumination change and expressions are selected
for each person: the seven images from session 1 for training
and the other seven from session 2 for testing. Each image
is represented as the concatenation of the column pixels and
the dimension is reduced to 320 for FDSM. The parameters
λ = 0.1, α = 0.5, and β = 0.5 are selected for FDSM.
Then the parameters C = 4 and γ = 0.0007 are selected
for the RBF kernel based SVM. As for the MFDSM method,
the dimension is reduced to 300 and the parameters λ = 0.1,
α = 0.2, and β = 0.6 are selected. The RBF kernel based
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Experimental setting 2 Accuracy %
D-KSVD [14] 85.40
LC-KSVD [15] 89.7
JDL [16] 91.7
FDDL [17] 92.00
The FDSM method 94.71
The MFDSM method 95.00

Table 2. Comparisons between the proposed methods and the
other popular methods on AR face database.

Methods Accuracy %

KSPM [9] 81.40 ±0.50
LLC [12] 80.57

D-KSVD [14] 89.10
LC-KSVD [15] 90.40

LaplacianSC [11] 89.70
DHVFC [20] 86.40

The FDSM method 97.90±0.20
The MFDSM method 97.94±0.22

Table 3. Comparisons between the proposed methods and the
other popular methods on the 15 scenes dataset

SVM selects the parametersC = 4 and γ = 0.0004 for classi-
fication. The results that are presented in table 2 show that the
proposed methods are able to improve upon the other popular
methods.

5.3. The 15 Scenes Dataset

The 15 scenes dataset [9] contains 4485 images from 15 scene
categories, each with the number of images ranging from 200
to 400. Following the experimental protocol defined in [9],
100 images per class are randomly selected for training and
the remaining for testing for 10 iterations. First, the spatial
pyramid features provided by [15] are used to represent the
image as a vector with the dimension of 3000 for fair com-
parison. Then the image vector is reduced to dimension 500
for both FDSM and MFDSM. Parameters λ = 0.05, α = 0.1,
and β = 0.1 are selected for the FDSM method. With respect
to the MFDSM method, λ = 0.05, α = 0.2, and β = 0.4 are
selected. The parameters C = 4 and γ = 0.0005 are selected
for the RBF kernel based SVM for both FDSM and MFDSM.
The results are shown in table 3, it is seen that the two pro-
posed methods are able to achieve significantly better results.

5.4. The MIT-67 Indoor Scenes Dataset

The MIT-67 indoor scenes dataset [10] is a very challenging
indoor scene recognition dataset, which contains 67 indoor

Methods Mean Accuracy %

ROI + Gist [10] 26.1
DPM [22] 30.4
Object Bank [23] 37.6
miSVM [24] 46.4
D-Parts [25] 51.4
DP + IFV [26] 60.8
The FDSM method 58.13
The MFDSM method 57.24

Table 4. Comparisons between the proposed methods and the
other popular methods on the MIT-67 indoor scenes dataset.

categories with 15620 images. Commonly used experimen-
tal setting [10] are followed, wherein 80*67 images are used
for training and 20*67 images for testing. The performance
is measured as the average classification accuracy over all
the categories. Fisher vector features [21] are considered for
representing the image. The SIFT feature is first projected
to dimension 80 and a codebook with 256 visual words is
learned, then the dimension of the Fisher vector is 2*256*80
= 40960, which is further reduced to 2000 for both FDSM and
MFDSM. Parameters λ = 0.05, α = 0.1, and β = 0.1 are se-
lected for the FDSM method. With respect to the MFDSM
method, λ = 0.05, α = 0.2, and β = 0.4 are selected. The
parameters C = 4 and γ = 0.0001 are selected for the RBF
kernel based SVM for both FDSM and MFDSM. The results
are shown in table 4, it is seen that the two proposed methods
are able to achieve comparable results to the state-of-the-art
methods [26]. Note that the Fisher vector is directly learned
from the SIFT features for each image instead of learning the
part detectors used in [26], which is time-consuming. More-
over, we reduce the dimension of Fisher vector from 40960 to
2000, which saves much storage space.

6. CONCLUSION

This paper proposes two discriminative dictionary learning
methods by using two Fisher criteria: the traditional Fisher
criterion and the marginal Fisher criterion, to overcome the
disadvantages of the previous discriminative dictionary learn-
ing methods for sparse representation. It is further proved
that the two proposed methods belong to a general model of
learning the Fisher regularized sparse representation, which
can be efficiently learned. The final experimental results on
several popular databases show that the proposed methods are
effective.
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