
Sparse Representation Based Complete Kernel
Marginal Fisher Analysis Framework for

Computational Art Painting Categorization

Ajit Puthenputhussery, Qingfeng Liu and Chengjun Liu

Department of Computer Science, New Jersey Institute of Technology, USA
{avp38, ql69, cliu}@njit.edu

Abstract. This paper presents a sparse representation based complete
kernel marginal Fisher analysis (SCMFA) framework for categorizing fine
art images. First, we introduce several Fisher vector based features for
feature extraction so as to extract and encode important discrimina-
tory information of the painting image. Second, we propose a complete
marginal Fisher analysis method so as to extract two kinds of discrim-
inant information, regular and irregular. In particular, the regular dis-
criminant features are extracted from the range space of the intraclass
compactness using the marginal Fisher discriminant criterion whereas
the irregular discriminant features are extracted from the null space of
the intraclass compactness using the marginal interclass separability cri-
terion. The motivation for extracting two kinds of discriminant informa-
tion is that the traditional MFA method uses a PCA projection in the
initial step that may discard the null space of the intraclass compact-
ness which may contain useful discriminatory information. Finally, we
learn a discriminative sparse representation model with the objective to
integrate the representation criterion with the discriminant criterion in
order to enhance the discriminative ability of the proposed method. The
effectiveness of the proposed SCMFA method is assessed on the challeng-
ing Painting-91 dataset. Experimental results show that our proposed
method is able to (i) achieve the state-of-the-art performance for paint-
ing artist and style classification, (ii) outperform other popular image
descriptors and deep learning methods, (iii) improve upon the tradi-
tional MFA method as well as (iv) discover the artist and style influence
to understand their connections in different art movement periods.

1 Introduction

Fine art painting categorization and analysis is an emerging research area in
computer vision, which is gaining increasing popularity in the recent years. Pio-
neer works in cognitive psychology [1], [2] believe that the analysis of visual art
is a complex cognitive task and requires involvement of multiple centers in the
human brain in order to process different elements of visual art such as color,
shapes, boundaries and brush strokes.

From the computer vision point of view, unlike conventional image classifica-
tion tasks, computational painting categorization exhibits two important issues
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for artist classification and style classification respectively. First, as for the artist
classification, there are large variations in appearance, topics and styles within
the paintings of the same artist. Second, as for the style classification, the in-
herent similarity gap between paintings within the same style is much larger
compared to other image classification tasks such as object recognition and face
recognition where the images of the same class have a lower variance in similarity.
Painting art images are different from photographic images due to the following
reasons: (i) Texture, shape and color patterns of different visual classes in art
images (say, a multicolored face or a disproportionate figure) are inconsistent
with regular photographic images. (ii) Some artists have a very distinctive style
of using specific colors (for ex: dark shades, light shades etc.) and brush strokes
resulting in art images with diverse background and visual elements. As a result,
conventional features, such as LBP [3], PHOG [4], GIST [5], SIFT [6], complete
LBP [7], CN-SIFT [8] etc., which are applied to conventional image classification,
independently cannot capture the key aspects of computational painting cate-
gorization. A comparative evaluation of different conventional features by Khan
et al. [8] for computational fine art painting categorization clearly suggests the
need of designing more powerful visual features and learning methods in order
to effectively capture complex discriminative information from fine art painting
images.

To address the issues raised above, we first present DAISY Fisher vector (D-
FV), WLD-SIFT Fisher vector (WS-FV) and color fused Fisher vector (CFFV)
features for feature extraction so as to encode the local, color, spatial, rela-
tive intensity and gradient orientation information. We then propose a com-
plete marginal Fisher analysis method so as to overcome the limitation of the
traditional marginal Fisher analysis (MFA) [9] method. The initial step of the
traditional MFA method is the principal component analysis (PCA) projection
which projects the data into the PCA subspace. A potential problem with the
PCA step is that it may discard the null space of the intraclass compacteness
which may contain useful discriminatory information since the PCA criterion is
not compatible with the MFA criterion. In our proposed method, we extract two
kinds of discriminatory information, regular and irregular so as to overcome the
drawback of the PCA projection step. Specifically, we extract the regular dis-
criminant features from the range space of intraclass compactness using marginal
Fisher discriminant criterion whereas the irregular discriminant features are ex-
tracted from its null space using the marginal interseparability criterion. Finally,
we apply a discriminative sparse model by adding a discriminant term to the
sparse representation criterion so as to have correspondence between the dictio-
nary atoms and class labels for improving the pattern recognition performance.
In particular, we utilize the intrinsic structure of sparse representation in order
to define new discriminative within-class and between-class matrices for learning
the discriminative dictionary efficiently using a discriminative sparse optimiza-
tion criterion. Our proposed method is evaluated on the challenging Painting-91
dataset [8] and experimental results show that our framework achieves the state-
of-the-art performance for fine art painting categorization, outperforms other
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popular image descriptors and deep learning methods and discover the artist
influence and style influence.

The rest of this paper is organized as follows. In Section 2, we briefly review
some related work on painting categorization, feature extraction and learning
methods. In Section 3, we present the feature extraction step using the proposed
Fisher vector features. Section 4 describes the motivation and theoretical for-
mulation of the sparse representation based kernel MFA framework. Section 5
conducts extensive experiments and analysis of results. Finally, we conclude the
paper in Section 6.

2 Related Work

Painting Categorization. Recently, several research efforts have been invested
on developing techniques for fine art categorization using computer vision meth-
ods. Sablatnig et al. [10] examined the structural characteristics of a painting and
introduced a classification scheme based on color, shape of region and structure
of brush strokes in painting images. Shamir [11] showed a method to automat-
ically categorize paintings using low level features and find common elements
between painters and artistic styles. A statistical model for combining multiple
visual features was proposed by Shen [12] for automatic categorization of classi-
cal western paintings. Shamir and Tarakhovsky [13] presented an image analysis
method inspired from cell biology for analysis of art painting based on painters,
different artistic movements, artistic styles, and provide similar elements and
influential links between painters. The work of Zujovic et al. [14] proposed an
approach to classify paintings by analyzing different features in order to cap-
ture salient aspects of a painting. Siddique et al. [15] developed a framework for
learning multiple kernels efficiently by greedily selecting data instances for each
kernel using AdaBoost followed by SVM learning.

Feature Extraction. Local, color, spatial and intensity information are the
cues based on which the visual cortex of the human brain can find discriminative
elements in different images, and hence these cues are necessary for precise fine
art painting categorization. Guo et al. [7] proposed a complete modeling of the
local binary pattern descriptor to extract the image local gray level and the
sign and magnitude features of local difference. The work of van de Sande [16]
showed the effectiveness of color invariant features for categorization tasks to
increase the illumination invariance and the discriminative power. Shechtman
et al. [17] presented an approach to measure similarity between images using
a self-similarity descriptor by capturing self-similarities of color, edges, repitive
patterns and complex textures.

Learning Methods. Several manifold learning methods such as marginal
Fisher analysis (MFA) [9], locality preserving projections [18], locality sensitive
discriminant analysis (LSDA) [19] etc. have been widely used to preserve data
locality in the embedding space. The MFA method [9] proposed by Yan et al.
overcomes the limitations of the traditional linear discriminant analysis method
and uses a graph embedding framework for supervised dimensionality reduction.
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Cai et al. [19] proposed the LSDA method that discovers the local manifold
structure by finding a projection which maximizes the margin between data
points from different classes at each local area.

In visual recognition applications, sparse representation methods focus on de-
veloping efficient learning algorithms [20,21] and exploring data manifold struc-
tures for representation [22,23]. Zhou et al. [24] proposed a novel joint dictionary
learning (JDL) algorithm to exploit the visual correlation within a group of visu-
ally similar object categories for dictionary learning. Mairal et al. [25] proposed
to co-train the discriminative dictionary, sparse representation as well as the
linear classifier using a combined objective function.

3 Feature Extraction using Fused Fisher Vector Features

In this section, we present a set of image features that encode the local, color,
spatial, relative intensity and gradient orientation information of fine art painting
images.

3.1 Fisher Vector

We briefly review the Fisher vector which is widely applied for different visual
recognition problems such as face detection and recognition [26], object classi-
fication [27, 28], etc. Theoretical analysis [27] shows that Fisher vector features
describes an image by what makes it different from other images. In particular,
let X = {ft, t = 1, 2, ..., T} be the set of T local descriptors extracted from the
image, then the Fisher kernel is defined as: K(X,Y) = (GX

λ )TF−1λ GY
λ where

µλ is the probability density function of X with parameter λ and Fλ is the
Fisher information matrix of µλ. The gradient vector of the log-likelihood that
indicates the contribution of the parameters to the generation process can be
represented as: GX

λ = 1
T 5λ logµλ(X). Since F−1λ is symmetric and positive

definite, it has a Cholesky decomposition as F−1λ = LTλLλ. Therefore, the ker-
nel K(X,Y) can be written as a dot product between normalized vectors Gλ,
obtained as GX

λ = LλG
X
λ where GX

λ is the Fisher vector of X.

3.2 DAISY Fisher Vector (D-FV)

In this section, we present a DAISY Fisher vector (D-FV) feature where Fisher
vectors are computed on densely sampled DAISY descriptors. DAISY descriptors
consists of values computed from the convolved orientation maps located on
concentric circles centered on each pixel location. The DAISY descriptor [29]
D(u0, v0) for location (u0, v0) is represented as:

D(u0, v0) = [h̃
T

Σ1
(u0, v0),

h̃
T

Σ1
(I1(u0, v0, R1)), ..., h̃

T

Σ1
(IT (u0, v0, R1)), ...,

h̃
T

ΣQ(I1(u0, v0, RQ)), ..., h̃
T

ΣQ(IT (u0, v0, RQ))]T

(1)
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Fig. 1. Framework of the feature extraction process.

where Ij(u, v,R) is the location with distance R from (u, v) in the direction given

by j, Q represents the number of circular layers and h̃Σ(u, v) is the unit norm of
vector containing Σ-convolved orientation maps in different directions. DAISY
descriptors are suitable for dense computation and offers precise localization
and rotational robustness, therefore provides improved performance and better
accuracy for classification relative to other local descriptors such as GLOH,
SURF and NCC [29]. We fit the sampled DAISY descriptors to a Gaussian
Mixture Model (GMM) with 256 parameters and the GMM is trained for each
component of the image separately in order to encode the color information.
The Fisher vectors are then encoded as derivatives of log-likelihood of the model
based on the parameters.

3.3 Weber-SIFT Fisher Vector (WS-FV)

We introduce a Weber-SIFT Fisher vector (WS-FV) feature that integrates the
Weber local descriptor along with SIFT features so as to encode the color, local,
relative intensity and gradient orientation information from an image. The Weber
local descriptor (WLD) [30] is based on the Weber’s law [31] which states that
the ratio of increment threshold to the background intensity is a constant. The
descriptor contains two components differential excitation [30] and orientation
[30] which are defined as:

ξ(xc) = arctan[
ν00s
ν01s

] and θ(xc) = arctan(
ν11s
ν10s

) (2)

where ξ(xc) is the differential excitation and θ(xc) is the orientation of the
current pixel xc, xi(i = 0, 1, ...p − 1) denotes the i-th neighbours of xc and p is
the number of neighbors, ν00s , ν01s , ν10s and ν11s are the output of filters f00, f01,
f10 and f11 respectively. The WLD descriptor is based on a biological model and
its feature extraction process simulates how humans perceive the environment.
WLD provides robustness to illumination changes and noise in the image [30],
therefore acts as a good descriptor for painting images.

In order to encode important discriminatory information of the painting im-
age, we compute the WLD for every component of the image to form the color
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WLD. SIFT features are then densely sampled and the process is repeated sep-
arately for the three components of the image resulting in color WLD-SIFT
feature. We train a parametric model [32, 33], in our case, Gaussian Mixture
Model (GMM) by fitting it to the sampled color WLD-SIFT features. The spa-
tial information is also encoded by augmenting the visual features derived by
SIFT with their spatial co-ordinates [34]. The Fisher vectors are then extracted
by capturing the average first order and second order differences between the
computed features and each of the GMM centers.

3.4 Color Fused Fisher Vector (CFFV)

In this section, we present a fused Fisher vector feature (FFV) that combines
the most expressive features of the D-FV, WS-FV and SIFT-FV features. In the
SIFT-FV feature, we compute Fisher vectors on densely sampled SIFT features
using a GMM [26, 33] for every component of the image. The most expressive
features are then extracted by means of principal component analysis (PCA) [35].

To derive the proposed FFV feature, we first compute the D-FV, WS-FV and
the color SIFT-FV for all the components of the image separately. The D-FV
features of R, G and B components of the image are concatenated and normalized
to zero mean and unit standard deviation. The dimensionality of the D-FV
feature is then reduced by using PCA, which derives the most expressive features
with respect to the minimum square error. The above process is then repeated
for the WS-FV and SIFT-FV features. Finally, the computed D-FV, WS-FV and
the SIFT FV features are further concatenated and normalized to create the FFV
feature. Figure 1 shows the component images, the process of computation of D-
FV, WS-FV and the SIFT-FV features, the PCA process and the CFFV feature
derived from the concatenation and subsequent normalization of the computed
features. The color cue provides powerful discriminating information in pattern
recognition in general [36, 37], therefore we also incorporate color information
to our proposed feature. We repeat the above steps and compute the FFV in
different color spaces namely YCbCr, YIQ, LAB, oRGB, XYZ, YUV and HSV.
The CFFV feature is derived by fusing the FFV features in the different color
spaces listed above.

4 Sparse Representation Based Complete Kernel
Marginal Fisher Analysis Framework

In this section, we build a theoretical framework for sparse representation based
complete kernel marginal Fisher analysis (SCMFA) based on two phase MFA
framework. In SCMFA, we capture two kinds of important discriminant infor-
mation namely the regular and irregular discriminant features from the range
space and null space of intraclass compactness of the MFA method. We then use
a discriminative sparse representation model with the objective of integrating
representation criterion such as sparse coding with discriminative criterion so as
to enhance the discriminative ability of the proposed method.
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4.1 Motivation

The linear discriminant analysis (LDA) method assumes that the data of each
class is of Gaussian distribution which is not always satisfied in real world prob-
lems. The separability of different classes cannot be well characterized by the
interclass scatter if the above property is not satisfied [9]. This limitation of LDA
is overcome by the marginal Fisher analysis (MFA) [9] which develops a new cri-
teria that characterizes the intraclass compactness and interclass separability
using an intrinsic and a penalty graph respectively.

Given the sample data matrix X = [x1,x2, ...,xm] ∈ Rn×m that consists of
m samples each with dimension n, the intraclass compactness is characterized
from the intrinsic graph by the term

S̃c =
∑
i

∑
i∈N+

k1
(j)orj∈N+

k1
(i)

||WTxi −WTxj ||2 = 2WTX(D−A)XTW
(3)

where Aij is 1 if i ∈ N+
k1

(j) or j ∈ N+
k1

(i) and 0 otherwise, N+
k1

(i) denotes the
set of k1 nearest neighbors of the sample xi of the same class. The interclass
separability is characterized by the following penalty graph:

S̃p =
∑
i

∑
(i,j)∈Pk2 (ci)or(i,j)∈Pk2 (cj)

||WTxi −WTxj ||2 = 2WTX(Dp −Ap)XTW

(4)
where Ap

ij is 1 if (i, j) ∈ Pk2(ci) or (i, j) ∈ Pk2(cj) and 0 otherwise, Pk2(c) denotes
the set that are k2 nearest neighbors among the set {(i, j), i ∈ πc, j 6∈ πc}. As a
result, the marginal Fisher criterion [9] is given as follows:

T = arg max
W

tr(WTX(Dp −Ap)XTW)

tr(WTX(D−A)XTW)
= arg max

tr(S̃p)

tr(S̃c)
(5)

The initial step of the MFA method is the PCA projection which projects the
data into the PCA subspace where the dimensionality is reduced. A potential
problem with the PCA step is that it may discard dimensions that contain
important discriminative information as the PCA criterion is not compatible
with the MFA criterion. Previous works of research by [38, 39] for the linear
discriminant analysis method prove that the null space of the within-class scatter
matrix contain important discriminative information whereas the null space of
the between-class scatter matrix contain no useful discriminatory information.
We apply the same motivation for the intraclass compactness and the interclass
separability of the MFA method.

In the complete kernel marginal Fisher analysis method, the strategy is to
split the intraclass compactness Skc into two subspaces namely the range space Cr

and null space Cn so as to extract two kinds of discriminant features: regular and
irregular discriminant features. The regular discriminant features are extracted
from the range space using the marginal Fisher discriminant criterion whereas
the irregular discriminant features are extracted from the null space using the
marginal interclass separability criterion.
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In our proposed method, the kernel trick is used so as to increase the sepa-
ration ability. Specifically, we use the Fisher kernel [32] with the kernel function
φ(x) : Rn → Rh and K is the kernel gram matrix where Kij = K(xi, xj). The
kernel marginal Fisher criterion is represented as:

T∗ = arg max
J

tr(JTK(Dp −Ap)KTJ)

tr(JTK(D−A)KTJ)
= arg max

tr(Skp)

tr(Skc )
(6)

4.2 Extraction of Regular and Irregular Discriminant Features

Suppose β1,β2, ....,βh be the eigenvectors of Skc then we define the range space
as Cr = [β1, ....,βp] corresponding to the nonzero eigenvalues and the null space
as Cn = [βp+1, ....,βh] where p < h. We extract the regular discriminant features

from the range space of Skc . As a result, the objective function is to maximize
the marginal Fisher discriminant criterion which can be expressed as:

Tr = arg max
tr(CT

r SkpCr)

tr(CT
r SkcCr)

(7)

The criterion in Eq. (7) can be maximized directly by calculating the eigenvectors
of the following eigen-equation:

SkpCr = λSkcCr (8)

Let ξ = [ξ1, ξ2, ..., ξp] be the solutions of Eq. 8 ordered according to their eigen-
values, then the regular discriminant features are given as follows:

Ur = ξTCT
r K (9)

In order to compute the irregular discriminant features, the strategy is to
remove the null space of interclass separability Skp and keep the null space of

intraclass compactness Skc . The null space of Skc is defined above as: Cn =
[βp+1, ....,βh]. We will diagonalize the Skp in the null space of Skc so as to project

the data to the null space of Skc .

Ŝkp = CT
nSkpCn (10)

As a result, the objective function is to maximize the marginal interclass sepa-
rability criterion which can be expressed as:

Tir = arg max tr(CT
nSkpCn) = arg max tr(Ŝkp) (11)

We then have to remove the null space of Ŝkp since it has no useful discriminatory
information. We maximize the criterion in Eq. 11 by eigenvalue analysis. Let
ζ = [ζ1, ..., ζh−p] be the eigen vectors ordered according to their eigenvalues,
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then we select ζir = [ζ1, ..., ζl] corresponding to the nonzero eigenvalues where
l < (h− p). Therefore, we define the irregular discriminant features as:

Uir = ζTirC
T
nK (12)

In order to obtain the final set of features, the regular and irregular dis-
criminant features are fused and normalized to zero mean and unit standard
deviation.

U =

[
Ur

Uir

]
(13)

4.3 Discriminative Sparse Representation Model

In this section, we use a discriminative sparse representation criterion with the
rationale to integrate the representation criterion such as sparse coding with the
discriminative criterion so as to improve the classification performance. Given the
feature matrix U = [u1,u2, ...,ul] ∈ Rl×m learned from the complete marginal
Fisher analysis method, which contains m samples in a l dimensional space,
let D = [d1,d2, ...,dr] ∈ Rl×m denote the dictionary that represents r basis
vectors and S = [s1, s2, ..., sm] ∈ Rr×m denote the sparse representation matrix
which represents the sparse representation for m samples. Each coefficient ai
correspond to the items in the dictionary D.

In our proposed discriminative sparse representation model, we optimize a
sparse representation criterion and a discriminative analysis criterion to de-
rive the dictionary D and sparse representation S from the training samples.
We use the representation criterion of the sparse representation to define new
discriminative within-class matrix Ĥw and discriminative between-class matrix
Ĥb by considering only the k nearest neighbors. Specifically, using the sparse
representation criterion the descriminative within class matrix is defined as
Ĥw =

∑m
i=1

∑
(i,j)∈Nwk (i,j)(si − sj)(si − sj)

T , where (i, j) ∈ Nw
k (i, j) represents

the (i, j) pairs where sample ui is among the k nearest neighbors of sample uj of
the same class or vice versa. The discriminative between class matrix is defined
as Ĥb =

∑m
i=1

∑
(i,j)∈Nbk(i,j)

(si− sj)(si− sj)
T , where (i, j) ∈ N b

k(i, j) represents

k nearest (i, j) pairs among all the (i, j) pairs between samples ui and uj of
different classes.

As a result, we define the new optimization criterion as:

min
D,S

m∑
i=1

{||ui −Dsi||2 + λ||si||1}+ αtr(βĤw − (1− β)Ĥb)

s.t.||dj || ≤ 1, (j = 1, 2, ..., r)

(14)

where the parameter λ controls the sparseness term, the parameter α controls the
discriminatory term, the parameter β balances the contributions of the discrim-
inative within class matrix Ĥw and between class matrix Ĥb and tr(.) denotes
the trace of a matrix.
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In order to derive the discriminative sparse representation for the test data,
as the dictionary D is already learned, we only need to optimize the following
criterion: minB

∑t
i=1{||yi − Dbi||2} + λ||bi||1 where y1,y2, ...,yt are the test

samples and t is the number of test samples. The discriminative sparse represen-
tation for the test data is defined as B = [b1, ...,bt] ∈ Rr×t. Since the dictionary
D is learned from the training optimization process, it contains both sparseness
and discriminative information, therefore the derived representation B is the
discriminative sparse representation for the test set.

5 Experiments

In this section, we evaluate the performance of our proposed method for fine art
painting categorization using the challenging Painting-91 dataset [8]. There are
4266 painting images by 91 artists in the dataset covering different eras ranging
from the early renaissance period to the modern art period. The images are
collected from the internet and every artist has atleast 31 images. The dataset
classifies 50 painters to 13 style categories with style labels as follows: abstract
expressionism (1), baroque (2), constructivism (3), cubbism (4), impressionism
(5), neoclassical (6), popart (7), post-impressionism (8), realism (9), renaissance
(10), romanticism (11), surrealism (12) and symbolism (13).

5.1 Artist Classification

In this section, we make a comparative assessment of our proposed method
with other popular image descriptors and deep learning methods on the task
of artist classification. Artist classification is the task wherein we determine the
artist for a painting. In order to follow the experimental protocol and have a
fair comparison with other methods, we use the fixed train/test split provided
in the dataset containing 2275 training and 1991 test images. MSCNN is the
abbreviation for multi-scale convolutional neural networks. Experimental results
in table 1 show that our proposed SCMFA method achieves the state-of-the-art
classification performance of 65.78% for artist classification and outperforms
other popular image descriptors and deep learning methods.

5.2 Style Classification

In this section, we evaluate our proposed method on style classification wherein
a painting is classified to its respective style out of the thirteen style categories
defined in the dataset. The fourth column in table 1 shows the results obtained
using different features and learning methods for style classification. The ex-
perimental results demonstrate that our proposed SCMFA method achieves the
state-of-the-art results compared to other popular image descriptors and deep
learning methods for style classification.
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No. Method Artist Classification Style Classification

1 LBP [3,8] 28.50 42.20
2 Color-LBP [8] 35.00 47.00
3 PHOG [4,8] 18.60 29.50
4 Color-PHOG [8] 22.80 33.20
5 GIST [5,8] 23.90 31.30
6 Color-GIST [8] 27.80 36.50
7 SIFT [6,8] 42.60 53.20
8 CLBP [7,8] 34.70 46.40
9 CN [8,40] 18.10 33.30
10 SSIM [8,17] 23.70 37.50
11 OPPSIFT [8,16] 39.50 52.20
12 RGBSIFT [8,16] 40.30 47.40
13 CSIFT [8,16] 36.40 48.60
14 CN-SIFT [8] 44.10 56.70
15 Combine(1 - 14) [8] 53.10 62.20
16 MSCNN-1 [41] 58.11 69.67
17 MSCNN-2 [41] 57.91 70.96
18 CNN F3 [42] 56.40 68.57
19 CNN F4 [42] 56.35 69.21

20 SCMFA 65.78 73.16

Table 1. Comparison of the proposed SCMFA method with other popular image de-
scriptors and deep learning methods on the Painting-91 dataset.

Figure 2 shows the confusion matrix for the style categorization where the
rows show the true style categories and the columns show the assigned cate-
gories. It can be seen from Fig. 2 that style categories 1 (abstract expression-
ism), 13(symbolism), 4(cubbism) and 8(post-impressionism) give the best accu-
racy with classification rates of 93%, 89%, 81% and 80% respectively. The style
category with the lowest accuracy is category 6 (neoclassical) as there are large
confusions between the style categories baroque : neoclassical and renaissance :
neoclassical. Similarly, the other style category pair that have large similarities
is style renaissance : baroque due to evolution of the baroque style from the
renaissance style.

5.3 Comprehensive Analysis of Results

We now evaluate the relation between the art painting styles and the art move-
ment periods. An art movement period is a movement wherein a group of artists
follow a common philosophy or goal in art during a specific period of time. Table
2 shows the different art styles that were practiced in different art movement pe-
riods. Important patterns can be deduced by correlating the confusion diagram
in figure 2 and the results of table 2. We can observe that the art styles prac-
ticed in the same art movement period show higher similarity compared to art
styles between different art movement periods. It can be seen from figure 2 that
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Art Movement Art Style

Renaissance renaissance

Post Renaissance baroque, neoclassical, realism, romanticism

Modern Art popart, impressionism, post impressionism, symbolism, con-
structivism, surrealism, cubbism, abstract expressionism

Table 2. Art movement associated with different art styles.

Fig. 2. The confusion matrix for 13 style categories of the Painting-91 dataset.

the style baroque has large confusions with styles neoclassical, romanticism and
realism. These style categories belong to the same art movement period - post
renaissance. Similarly, popart paintings have high similarities with styles surre-
alism and post impressionism within the same art movement period - modern
art. The only exception to the above observation is the style categories renais-
sance and baroque as even though they belong to different art movement period,
there are large confusions between them. The renaissance and baroque art paint-
ings have high similarity as the baroque style evolved from the renaissance style
resulting in few discriminating aspects between them [43].

5.4 Comparison with the MFA method

In this section, we compare our proposed SCMFA method with the traditional
marginal Fisher analysis (MFA) method. In order to have a fair comparison, the
same experimental settings and Fisher vectors features are used for comparison.
The MFA uses a PCA projection in the initial step due to which important
discriminatory information in the null space of intraclass compactness is lost.
Our proposed SCMFA method overcomes this limitation by extracting two kinds
of features, regular and irregular. Experimental results in table 3 demonstrate
that our proposed SCMFA method outperforms the MFA method.
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No. Method Artist Classification Style Classification

1 MFA [9] 59.57 66.79

2 SCMFA 65.78 73.16

Table 3. Comparison of the proposed method with marginal Fisher analysis method.

5.5 Artist Influence

In this section, we analyze the artist influence which may help us link different
artists that belong to an art movement period and also find relations between
different art movement periods. The artist influence is determined by computing
the correlation score of every artist in order to find similar elements between
the paintings of different artists. In order to calculate the correlation score, we
find the average of feature vector of all paintings by an artist. In particular, let
Fp denote the average feature vector of all painting images by artist p. We then
find the relation between the average feature vector of all artists by computing
the correlation matrix. Finally, different artists are grouped together to form
clusters based on the correlation score. Figure 3 (a) shows the artist influence
cluster graph with correlation threshold of 0.70.

Interesting observations can be deduced from figure 3 (a). A particular art
style and time period can be associated with every cluster. Cluster 1 shows
artists with major contributions to the styles realism and romanticism and they
belong to the post renaissance art movement period. Cluster 2 has the largest
number of artists associated with the styles renaissance and baroque. Cluster
3 represents artists for the style Italian renaissance that took place in the 16th

century. And cluster 4 shows artists associated with style abstract expressionism
in the modern art movement period.

5.6 Style Influence

In this section, we study the style influence so as to find common elements
between different art styles and understand the evolution of art styles in different
art movement periods. In order to calculate the style influence, we compute the
average feature vector of all paintings for a style similar to the artist influence.
The k-means clustering method is then applied with k set as 3 so as to form
clusters of similar art styles. We finally plot a style influence graph using the
first two principal components of the average feature vector.

Figure 3 (b) shows the style influence graph clusters with k set as 3. Cluster
1 contains the styles of the post renaissance art movement period with the only
exception of style renaissance. The reason for this may be due the high similarity
between styles baroque and renaissance as the style baroque evolved from the
style renaissance [43]. The styles impressionism, post impressionism and sym-
bolism in cluster 2 show that there are high similarities between these styles in
the modern art movement period as the three styles have a common french and
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Fig. 3. (a) shows the artist influence graph (b) shows the style influence graph.

belgian origin. Similarly, styles constructivism and popart in cluster 3 show high
similarity in the style influence cluster graph.

6 Conclusion

This paper presents a sparse representation based complete kernel marginal
Fisher analysis (SCMFA) framework for categorizing fine art painting images.
First, we perform hybrid feature extraction by introducing the D-FV, WS-FV
and CFFV features to extract and encode important discriminatory information
of the art painting images. We then propose a complete marginal Fisher analysis
method so as to extract regular and irregular disriminant features in order to
overcome the limitation of the traditional MFA method. The regular features
are extracted from the range space of the intraclass compactness whereas the ir-
regular features are extracted from the null space of the intraclass compactness.
Finally, we learn a sparse representation model so as to integrate the representa-
tion criterion with the discriminative criterion. Experimental results show that
our proposed method outperforms other popular methods in the artist and style
classification task of the challenging Painting-91 dataset.
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