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Abstract ity of the image feature vector which can make the learning

This paper presents an enhanced sparse coding method
by exploiting both the generative and discriminative infor-
mation in sparse representation model. Specifically, the
proposed generative and discriminative sparse representa-
tion (GDSR) method integrates two new criteria, namely
a discriminative criterion and a generative criterion, into
the conventional sparse representation criterion. The gen-
erative criterion reveals the class conditional probability of
each dictionary item by using the dictionary distribution co-
efficients which are derived by representing each dictionary
item as a linear combination of the training samples. To
further enhance the discriminative ability of the proposed
method, a discriminative criterion is also applied using
new localized within-class and between-class scatter matri-
ces. Moreover, a novel GDSR based classification (GDSRc)
method is proposed by utilizing both the derived sparse rep-
resentation and the dictionary distribution coefficients. This
hybrid method provides new insights, and leads to an effec-
tive representation and classification schema for improving
the classification performance. The largest step size for
learning the sparse representation is theoretically derived
to address the convergence issues in the optimization pro-
cedure of the GDSR method. Extensive experimental results
and analysis on several public classification datasets show
the feasibility and effectiveness of the proposed method.

1. Introduction

In recent years, machine learning and computer vision
techniques have been broadly applied for several classifica-
tion tasks such as object classification [27, 33, 3, 31, 29],
scene classification [20, 21, 36, 4, 5], face recognition
[33, , 9, 39, 34, 22], and fine grained classification
[17, 18, 7]. However, in order to accurately classify im-
ages, a discriminative and robust representation is needed
to capture the important aspects of the image. A major is-
sue in computer vision applications is the high dimensional-

tasks more difficult and can have a dramatic impact on the
performance. To solve this issue, sparse coding algorithms
[19, 35, 34, 28] have been widely used for data modeling by
learning a dictionary that is adapted to the data to improve
the feature representation. Sparse coding allows efficient
retrieval of data as it generates sparse representations such
that every data point can be represented as a linear combi-
nation of a small set of basis vectors. Another advantage is
that the sparse representation can be overcomplete, allow-
ing more flexibility in matching data and yielding a better
approximation of the statistical distribution of the data.

Although the sparse representation method achieves im-
pressive results in various challenging tasks, a potential lim-
itation is the lack of generative information since the dictio-
nary is only derived from the representation criterion. The
generative perspective remains ignored due to the intrinsic
difficulty of estimating the class conditional probability ac-
curately. The generative criterion models the data distribu-
tion and infers joint representations which may significantly
affect the performance of the learning system. Another lim-
itation in the conventional sparse representation criterion
is the lack of discriminative criterion which helps to en-
hance the discrimination among data samples of different
categories. Previous works of research by [25, 8] show the
complementary nature of discriminative and generative ap-
proaches and demonstrate the effectiveness of combining
both the approaches.

To address these limitations, we present a novel gen-
erative and discriminative sparse representation (GDSR)
method by integrating the conventional sparse representa-
tion, a generative criterion and a discriminative criterion.
The proposed GDSR method intrinsically models a hybrid
paradigm of both the generative information and the dis-
criminative information. It also helps to avoid over-fitting
as the generative model acts as a regularizer for the discrim-
inative model from the regularization point of view. Figure
1 illustrates the framework of the proposed GDSR method.
Specifically, the generative criterion plays the role of gen-
erative modeling by representing each dictionary item as
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Figure 1. The framework of the proposed GDSR method.

a linear combination of the training samples and also em-
phasizes the coefficients of the nearest training samples.
Theoretical analysis shows that these coefficients known as
the “dictionary distribution coefficients”, are capable of ap-
proximately modeling the class conditional probability of
each dictionary item. To further improve the classifica-
tion capability and utilize the marginal information, a dis-
criminative criterion is integrated that applies newly defined
within-class and between-class scatter matrices by consid-
ering only the k nearest neighbors. We then propose a new
classification method, namely the generative and discrimi-
native sparse representation based classification (GDSRc)
method, that exploits both the new sparse representation
and the dictionary distribution coefficients. Finally, we
theoretically derive the largest step size for learning the
sparse representation to address the convergence issues of
our proposed optimization procedure. Our proposed GDSR
method is evaluated on several publicly available classifica-
tion datasets and the experimental results shows that GDSR
method achieves better results compared to other sparse
coding and learning methods.

2. Related Work

In image classification applications, several machine
learning methods such as sparse coding, deep learning and
manifold learning have been widely used to develop an ef-
fective and robust representation schema to improve the
classification performance. A locally linear KNN (LLKNN)

model was developed by Liu et al. [21] that derives a new
representation by using the criteria of locality and sparsity.
Jindal et al. [10] proposed a method to train a deep net-
work from training data having noisy labels by augmenting
the deep network with a softmax layer that models the label
noise.

Recently, three categories of dictionary learning methods
have been proposed for sparse representation. The first cat-
egory co-trains the discriminative dictionary, sparse repre-
sentation and the linear classifier together. Mairal et al. [24]
proposed to co-train the discriminative dictionary, sparse
representation as well as the linear classifier using a com-
bined objective function. The D-KSVD method was devel-
oped by Zhang et al. [41] to learn the discriminative dic-
tionary and the classifier simultaneously. Jiang et al. [9]
improved upon the method introduced in [41] by introduc-
ing a label consistent regularization term.

The second category combines the sub-dictionaries to
utilize their discriminative power. Zhou et al. [44] presented
aJoint Dictionary Learning (JDL) method that jointly learns
both the commonly shared dictionary and the class-specific
sub-dictionaries to exploit the correlation between similar
data samples. A dictionary learning approach was devel-
oped by Yang et al. [39] that learns a structured dictionary
containing a set of class-specific sub-dictionaries.

The third category learns the dictionary by modeling the
relation between the dictionary and each class label. Yang et
al. [37] proposed a latent dictionary learning (LDL) method
by jointly learning a latent vector which indicates the rela-
tion between the dictionary and the labels. A discriminative
Bayesian dictionary learning (DBDL) method was devel-
oped by Naveed et al. [1] that infers the distribution of the
dictionary using an approximation of the Beta process.

Our method differs from the above methods in the fol-
lowing aspects. First, our method exploits both the gener-
ative information and the discriminative information in the
sparse representation model in comparison with other meth-
ods. Second, our method does not depend on any assump-
tion about the probability distribution, such as Bernoulli
distributions in DBDL [1]. And finally, our method does
not depend on the sub-dictionary, which might lead to over-
fitting and deteriorate the performance when the training
data of each class is not sufficient.

3. Generative and Discriminative sparse repre-
sentation (GDSR)

In this section we derive a novel sparse representation
model by exploiting both the generative and the discrimina-
tive information to improve the classification performance.
Dictionary learning plays a crucial role in the conventional
sparse representation method. An important question that
arises during the dictionary learning process, which receives
much less explicit attention, is how a dictionary item is gen-



erated given a specific category, namely the generative in-
formation of the dictionary. One naive answer is to con-
struct a dictionary that consists of carefully selected training
samples [34], [21]. In this scenario, each dictionary item
corresponds to a training sample from a specific category.
Such a dictionary might achieve good results, however, the
performance of this method relies heavily on the selection
of the training samples and the size of the selected training
samples.

Our solution to the above question is the proposed GDSR
method, which explicitly models the class conditional prob-
ability of each dictionary item p(d;|c), where d; is j-th the
dictionary item and c is the class label, and introduces a
new discriminative criterion for enhancing the discrimina-
tive power of the dictionary. Given the training sample data
matrix X € R™*™ that contains m samples [X1, X2, ..., X ],
and each sample resides in the n dimensional space. The
dictionary D € R™** can be represented as [d;, ds, ..., dy],
where each dictionary item d;(j = 1,2, ..., k) also resides
in the n dimensional space. Then our GDSR method de-
rives the sparse representation w; € R**1(; = 1,2,....m)
for each training sample x;, and the dictionary distribution
coefficients v; € R™*1(j = 1,2, ..., k) for each dictionary
item d;.

Specifically, the GDSR method is defined as follows:
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The first term in equation 1 is the conventional sparse
representation criterion, where the parameter A controls the
L1 normalization.
The second term L(V,D) is the generative criterion,
which is defined as follows:

k
L(V,D) = > |ld; = Xv;|* + ollv; —np,|> ()
j=1
where V. = [vy,vg,..., Vx| is the matrix that consists

of the dictionary distribution coefficients vector v; =
[Uj1,Vj2, -, Ujm]". The vector p; = [pj1,Pj2; s Pjm]" €
R™ represents the distance measure between the dictionary
item d; and the training sample x; as follows:

1
Pji = exp{—ﬁde - Xz’HQ} 3)

where the parameter h controls the decay speed. Note that
pji < 1and ||p;||* can be normalized.

The traditional view of the dictionary learning is to rep-
resent the training sample as a linear combination of the
dictionary items. In comparison as shown in figure 1, our
generative criterion demonstrates a reciprocal viewpoint as

well, which represents each dictionary item as a linear com-
bination of the training samples. The dictionary items and
the training samples consist of a bipartite graph and they
influence each other mutually. In addition, the generative
criterion also adds a constraint on the dictionary distribu-
tion coefficients vector v; such that the coefficients are pro-
portional to the distance between the dictionary item and
the training sample, in order to estimate the class condi-
tional probability of each dictionary item p(d,|c) by using
v; (Proposition 3.1).

The third term is the discriminative criterion, which is
defined as follows:

H(W) = tr(8S,, — (1 - B)Sy) )

where the new within-class scatter matrix is defined as
Sw = 2it1 gwewyyery (Wi — Wi)(wi — w;)", and TpY
represents the set of (w;, w;) pairs where the sample x; and
sample x; are among their k nearest neighbors respectively
in the same class. The new between-class scatter matrix is
defined as S, = 3771 3y, wyery (Wi — W) (Wi — w;)",
where T} represents the set of the k nearest (w;, w;) pairs
among all the (w;, w;) pairs between sample x; and sample
x; from different classes.

This discriminative criterion utilizes the underlying
topology of the sparse representation of training samples
for defining new within-class and between-class scatter ma-
trices by considering only the k& nearest neighbors. The
new discriminative criterion can be further transformed to
H(W) = tr(WLW), where L = 23(D,, — W,,) —
2(1 — B)(Dp — Wy). In particular, let W, be a matrix,
whose elements W,,(i,7) = 1 if x; and x; are among the
k nearest neighbors of each other in the same class, and
Wy (i,5) = 0 otherwise. Let W, be a matrix, whose el-
ements W;(z,7) = 1 if the pair (w;, w;) is among the k
nearest pairs from all the pairs among the samples of differ-
ent classes, and W3 (i, j) = 0 otherwise. And, let D,, and
D;, be diagonal matrices, whose main diagonal elements are
Do(iyi) = Y, Wi, §), and Dy(i,6) = 32, Wi (i ),
respectively. An important property of the proposed GDSR
method is the modeling of class conditional probability of
each dictionary item p(d;|c) stated as the following gener-
ative property 3.1.

Proposition 3.1. Generative Property Given that V is the
derived dictionary distribution coefficients by the proposed
GDSR method, the class conditional probability of each dic-
tionary item p(d;|c) is modeled as follows.

p(djle) o Y vji 5)
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where X is the set of training samples in the c-th class.



The conventional way to estimate p(d;|c) assumes some
parametric distribution first, such as the Bernoulli distribu-
tion. But in comparison, the generative property of our pro-
posed method shows that p(d;|c) is estimated from the ker-
nel density estimation point of view. Our GDSR method
provides a coarse estimation of the class conditional proba-
bility of each dictionary item instead of an accurate estima-
tion, since our goal is to correctly classify the data instead
of accurately estimating the probability. Such a coarse mod-
eling carries sufficient information for improving the classi-
fication performance as shown in the Experiments section.

4. Optimization Procedure

In this section, we discuss the optimization procedure
of the proposed GDSR method. The objective function in
equation | is optimized using a coordinate descent method,
which alternatively updates the sparse representation, the
dictionary distribution coefficients, as well as the discrim-
inative dictionary. In order to obtain a better convergence
rate, the sparse representation and the dictionary are initial-
ized using the conventional sparse representation method
[13], while the dictionary distribution coefficients v; are ini-
tialized using the value of 7p;.

4.1. Updating the Sparse Representation

First, given the dictionary D and the dictionary distri-
bution coefficients V, the sparse representation W for each
training sample x; can be obtained by rewriting the objec-
tive function defined in equation 1 as follows.

min||xi — DWiH2 + OéLiZ'WEWi + OzWEhi + )\||WZ‘H1; (6)
Wi

where hi = Zj;éi Lijo = [hil,hig, vy hik]t and
L;;(i,7 = 1,2,...,m) is the value in the i-th row, j-th col-
umn of the matrix L. We then apply the FISTA algorithm
[2] to learn the sparse representation w; for each training
sample Xx;.

To guarantee the convergence of the FISTA algorithm, an
important quantity to be determined is the step size. Given
the objective function F'(z) = f(x) + g(z), where f(x) is
a smooth convex function and g(z) is a non-smooth convex
function, the theoretical analysis [2] shows that
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where z, is the solution generated by the FISTA algorithm
at the k-th iteration, x* is the optimal solution, and s is
the largest step size for convergence. This theoretical re-
sult means that the number of iterations of the FISTA al-
gorithm required to obtain an e-optimal solution (z;), such
that F'(z;) — F(2*) < ¢, is at most [C//\/e — 1], where

C = /2||zg — x*||?/s Therefore, the step size plays an

important role for the convergence of the algorithm and
the largest step size can lead to less required iterations for
the convergence of the FISTA algorithm. The largest step
size required for learning the sparse representation for each
training sample is stated in Proposition 4.1.

Proposition 4.1. The largest step size that guarantees con-
vergence of the FISTA algorithm is ﬁ(f)’ where Lip(f)
is the smallest Lipschitz constant of the gradient V f and
Lip(f) = 2Emax(D'D + aLy;I) which is twice the largest
eigenvalue of the matrix (D'D + oL I).

4.2. Updating the Dictionary Distribution Coeffi-
cients

Second, when the dictionary D and the sparse represen-
tation W are given, the dictionary distribution coefficients
V can be derived using the following analytical solution.

v; = (XX +ol)" (X"d; + o7p;) (®)

where Xtdj is the sample correlation between the dictio-
nary item d; and all the training samples, and p; is the re-
ciprocal of the exponential form of Euclidean distance be-
tween d; and all the training samples. Therefore, the dic-
tionary distribution coefficient v; represents a measurement
between the dictionary item and the training samples us-
ing a combination of both the correlation information and
the distance information. From another perspective, v; is a
similarity measure using both the angular distance (correla-
tion information) and the Euclidean distance (reciprocal of
the exponential form of Euclidean distance). This important
property of v; significantly helps to derive the dictionary as
shown in the following sub-section.

4.3. Updating the Dictionary

Third, after learning the sparse representation W and the
dictionary distribution coefficients V, the dictionary D can
be derived by optimizing the following objective function.

min |[X — DW||* + 5(||D — XV|[* + o[V — nP[*)
st |l <L, =1,2,...k)

where P = [py, p, ..., Pi). The optimization of equation 9
is not a trivial problem due to the exponential form of the
vector p; with respect to d;. We seek a more efficient ap-
proximation to derive the dictionary instead of using some
generic solvers. It is based on the observation from equa-
tion 8 that the coefficients of the nearest neighbors of the
dictionary items are sufficient for an efficient approxima-
tion since the dictionary distribution coefficient vector v;
represents a similarity measure between the training sam-
ples and the dictionary items. Specifically, the approxima-
tion method consists of the following steps. (i) The influ-
ence of distant training samples are diminished by setting



Dataset ‘ Task # Classes | # Images Methods Accuracy %
15 Scenes [12] scene classification 15 4485 ROI + Gist [30] 26.1
MIT-67 [30] scene classification 67 15620 DPM [26] 30.4
Caltech 256 [6] object classification 256 30607 Object Bank [15] 37.6
Extended Yale B [14] face recognition 38 2414 miSVM [16] 46.4
Table 1. Description of the different data sets used for evaluation D-Parts [52] >1.4
of the proposed GDSR method. LLNMC [20] 59.12
DP +IFV [11] 60.8
Hybrid-CNN [43] 70.80
the elements whose absolute value is less than a threshold VGG16-Place365 CNN [42] 76.53
in v; to zero. The resulting new vector is denoted as v;. (ii) DAG-CNN [40] 77.50
The dictionary is then derived by solving the following new GDSR ‘ 82.97

optimization problem.

min ||X — DW||? + ~||D — XV||?
D
(10)
st (|41 <1, =1,2,..., k)

where V is a matrix containing v;. This problem is a con-
strained optimization problem with inequality constraints,
which is solved using the Lagrange optimization and the
Karush-Kuhn-Tucker condition [13].

4.4. Generative and Discriminative Sparse Repre-
sentation based Classification (GDSRc)

After the dictionary D and the dictionary distribution
coefficients V are derived, we present a new generative
and discriminative sparse representation based classifica-
tion (GDSRc) method. In particular, for the test data y,
we derive sparse representation by optimizing the follow-
ing criterion:

miny {|ly — Dw|[* + X||w]|; } (11)

where the representation w = [wy, ws, ..., wg]! contains

both the generative and the discriminative information, as
the dictionary D is learned during the training optimization
process.

The GDSRc method is then applied based on the derived
generative and discriminative sparse representation w and
the dictionary distribution coefficients v. Specifically, the
GDSRc method is defined as follows.

k
wj E ’Uji
1
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¢* = arg max
C ]:
Note that we only select the top 7' largest values of v;; for
the GDSRc method.

5. Experiments

We evaluate the effectiveness of the proposed GDSR
method on several publicly available classification datasets
listed in table 1. In order to have a fair comparison, we fol-
low the same experimental protocol used by other methods

Table 2. Comparison with the other state-of-the-art methods on the
MIT-67 indoor scenes dataset.

for the respective datasets. Besides, we also preFacesent
additional comprehensive analysis to understand the prop-
erties and the effect of the proposed GDSR method in this
section. Note that the parameters for the dictionary distri-
bution criterion are selected as v = 0.05, ¢ = 0.05, and
1 = 0.1 for all the datasets. The parameters for the GDSR
method are selected based on a grid search with cross vali-
dation approach. The metric used for performance evalua-
tion is the classification accuracy.

5.1. The MIT-67 Indoor Scenes Dataset

The MIT-67 indoor scenes dataset [30] is a challenging
indoor scene classification dataset, which contains 67 in-
door categories. We follow the experimental settings de-
fined in [30] where 80 data samples per category are used
for training and 20 data samples per category are used for
testing. The initial input features used are extracted from a
pretrained VGG16 CNN model [42] and the feature dimen-
sion is reduced from 4096 to 3500. For the GDSR method,
the model parameters are selected as follows: A = 0.05,
h =0.01, « = 0.1, and 8 = 0.5. The dictionary size is set
as 2048 and k is set as 75 for the GDSRc method.

We compare our proposed GDSR method with different
sparse coding as well as deep learning methods. In par-
ticular, our proposed GDSR method helps to significantly
improve the initial CNN input features (VGG16-Place365
CNN) by encouraging better separation between the sam-
ples of different class and assist in the formation of com-
pact clusters for the samples of same class (see subsection
5.5). Experimental results in table 2 show that the proposed
method is able to achieve significantly better results com-
pared to popular sparse coding and deep learning methods
since it uses both the generative and discriminative infor-
mation.



Methods Accuracy %
LLC [33] 89.20
D-KSVD [41] 89.10
LC-KSVDI1 [9] 90.40
LC-KSVD2 [9] 92.90
LaplacianSC [4] 89.7
DHVEC [5] 86.4
Places-CNN [43] 90.19
Hybrid-CNN [43] 91.59
VGG16-Place365 CNN [42] 92.15
DAG-CNN [40] 92.90
GDSR \ 98.90

Table 3. Comparison with the other state-of-the-art methods on the
15 scenes dataset.

Methods | 30 [ 45 | 60

ScSPM [36] 34.02 | 37.46 [ 40.14
IFK [27] 40.80 | 45.00 | 47.90
LLC [33] 41.19 | 4531 | 47.68
M-HMP [3] 48.00 | 51.90 | 55.20
ZFNet CNN [31] | 70.60 | 72.70 | 74.20
GDSR [ 72.39 | 75.13 | 76.90

Table 4. Comparison between the proposed method and other pop-
ular methods on the Caltech 256 dataset.

5.2. The 15 Scenes Dataset

The 15 scenes dataset [ | 2] contains 4485 images from 15
scene categories, each with the number of images ranging
from 200 to 400. The experimental protocol used for com-
parison is defined in [12] where 100 images per class are
randomly selected for training and the remaining for test-
ing for 10 iterations. The input features used are spatial
pyramid features [9] obtained by using a four-level spatial
pyramid and a codebook of size 200 resulting in a feature
vector of dimension 3000 which is further reduced to 1000
using PCA dimensionality reduction method. We select the
model parameters as follows: A = 0.05, h = 0.1, « = 0.1,
and 8 = 0.5. The size of the dictionary is set as 1024, and
k=100 for the GDSRc method. The results shown in table
3 demonstrate that the proposed method is able to achieve
better results compared to other learning methods.

5.3. Caltech 256 Data Set

The Caltech 256 dataset [60] is an extended version of
the Caltech 101 dataset and a more challenging object clas-
sification dataset containing 30607 images from 256 cate-
gories. We follow the experimental protocol defined in [33]
where the entire dataset is partitioned randomly into 15, 30,
45 and 60 training data samples per category and at the most
25 test data samples per category for 3 iterations. The initial

Experimental setting 1 | Accuracy %
D-KSVD [41] 75.30
SRC [34] 90.00
FDDL [39] 91.90
GDSR 95.19
Experimental setting 2 | Accuracy %
LLC [33] 90.70
D-KSVD [41] 94.79 £ 0.49
LC-KSVDI1 [9] 93.59 £ 0.54
LC-KSVD2 [9] 95.22 £ 0.61
FDDL [39] 96.07 £ 0.64
SRC [34] 96.32 £ 0.85
DBDL + SVM [1] 96.10 £ 0.25
GDSR 97.45 £ 0.40

Table 5. Comparison with the state-of-the-art methods on the ex-
tended Yale face database B under two experimental settings.

input features used are extracted from a pre-trained ZFNet
[31] resulting in feature vector with dimension 4096. We
further reduce the dimension to 2000 using PCA. The met-
ric used for performance evaluation is the average classifica-
tion accuracy over all the categories. For the GDSR method,
we set the dictionary size to 1024, and the parameters as A
=0.05,h =0.1, «=0.1, 8 = 0.5, and k=60 for the GDSRc
method. The experimental results in table 4 show that our
proposed method is able to achieve better results compared
to other methods.

5.4. Extended Yale face database B

The extended Yale face database B consists of 2414
frontal view face images from 38 individuals each with
around 64 images taken under various lighting conditions.
We use a cropped version of the database [14], where all the
images are aligned and re-sized to 168 x 192. To show the
robustness of our proposed method, we present results of
our GDSR method under an extremely noisy condition us-
ing random faces [34] as the input features. Specifically, the
random faces [34] consists of the row vectors of a randomly
generated transformation matrix from a zero-mean normal
distribution, which is applied to project the face pattern vec-
tor into a dimension of 504 representation vector.

We follow two common experimental settings to have a
fair comparison with other methods. The first experimental
setting is defined in [38] where 20 data samples per subject
are randomly selected for training, and the remaining data
samples are used for testing for 10 iterations. The model
parameters for the GDSR method are selected as follows:
A=01h =01 a =05 =05k = 20 and the
dictionary size is set to 512.

The second experimental setting is defined in [I, 9]
where 32 data samples are randomly selected for training
for each subject, and the remaining data samples are se-



Method \ Accuracy (%)
GDSR with only discriminative criterion 77.24
GDSR with only generative criterion 78.51
Proposed GDSR (both criteria) \ 80.67

Table 6. Evaluation of the contribution of generative and discrimi-
native criterion in GDSR method using the MIT-67 scenes dataset.

lected for testing for 10 iterations. The dictionary size is
512, and the model parameters are set as A = 0.05, h = 0.1,
a = 0.1, 8 = 0.5, and k£ = 32 for GDSRc method. The
results shown in table 5 demonstrate the effectiveness of the
proposed method.

5.5. Evaluation of the Effect of the Proposed GDSR
Method

To evaluate the contribution of the individual criterion to
the overall classification accuracy, we conduct experiments
on the MIT-67 dataset using the initial input features as de-
scribed in the Experiments section 5.1. In order to have a
fair comparison, we use the RBF-SVM classifier for classi-
fication instead of the GDSRc method since it depends on
both the generative and discriminative criteria. It can be
seen from table 6 that the GDSR method (both discrimina-
tive and generative criteria) achieves the best performance
of 80.67% since it incorporates both the discriminative and
the generative information.

We further discuss the effects of our proposed method on
the initial features and how it encourages better clustering
and discrimination among different classes of a dataset. To
visualize the effect of our proposed method, we use the pop-
ular t-SNE visualization technique [23] that produces visu-
alization of high dimensional data in scatter plots. Figure 2
shows the t-SNE visualizations of the initial features used
as input and the features extracted after applying the GDSR
method for different datasets. It can be seen from figure
2 that the proposed GDSR method helps to reduce the dis-
tance between images of the same class leading to formation
of higher density clusters for images of the same class. An-
other advantage is that the GDSR method assists to increase
the distance between clusters of different classes resulting in
better discrimination among them. The GDSR method uses
both the generative and discriminative information, there-
fore, encourages better separation between data samples of
different classes.

5.6. Evaluation of the Feature Dimensionality and
the Dictionary Size

This section presents an analysis of the performance un-
der different sizes of dictionary and different values of fea-
ture dimensionality on the MIT-67 indoor scenes dataset
[30]. Specifically, the dictionary sizes 128, 256, 512, 1024,
and 2048 are evaluated for dimensionality 500, 1000, 1500,

Methods Accuracy %
KNN 76.70
Linear-SVM 79.60
RBF-SVM 80.67
GDSRe | 8297

Table 7. Comparison of the GDSRc method with other classifiers
on the MIT 67 Scenes dataset.

2000, 2500, 3000, 3500, and 4000, respectively. From Fig-
ure 3, we can conclude that (i) larger dictionary sizes usu-
ally result in better performance, (ii) the low dimension fea-
ture space is more sensitive to over-completeness (dictio-
nary size larger than the dimensionality) of the dictionary
compared to the higher dimension feature space. For exam-
ple, the dimensionality 500 requires at least a dictionary size
of 512 to achieve good performance (above 80%), whereas
a higher dimensionality feature of dimension 3500 only re-
quires a dictionary size of 256.

5.7. Evaluation of the GDSRc method

We present the evaluation of GDSRc when different val-
ues of the top 7" largest dictionary distribution coefficient
(vj;) (defined in Section 4.4) are applied for different sizes
of the dictionary. The experimental results in figure 4 show
that the classification performance improves as the value of
T increases regardless of the size of the dictionary. In order
to get the best performance, the value of 7" is usually set as
the size of the training data samples for each class.

We also present the comparison of the GDSRc method
with other classifiers when the same feature representation
is learned after applying the GDSR method. Specifically,
the k nearest neighbor (KNN) classifier with k set as 3, the
linear kernel based SVM and the RBF kernel based SVM
are applied for comparison. The experimental results in ta-
ble 7 show that our proposed GDSRc method achieves bet-
ter results compared to other classifiers.

6. Conclusion

This paper presents a new generative and discriminative
sparse representation (GDSR) method, which leads to a new
effective representation and classification schema. In par-
ticular, the generative criterion reveals the class conditional
probability of each dictionary item and the discriminative
criterion applies new within-class and between-class scat-
ter matrices. In addition, a GDSRc classification method is
proposed by utilizing both the discriminative and generative
information. Experimental results on several classification
datasets show the effectiveness of the proposed methods.
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Figure 2. The t-SNE visualization of the initial input features and the features extracted after applying the proposed GDSR method.
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