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ABSTRACT

This paper presents a novel general k nearest neighbour
classifier (GKNNc) and a novel general nearest mean classi-
fier (GNMc) for visual classification. Instead of treating the
data equally, both GKNNc and GNMc assign a weight coef-
ficient to each data. To achieve good performance, the con-
ditions and properties of the weight coefficients for GKNNc
and GNMc are further analysed. Then a sparse representation
based method is proposed to derive the weight coefficients
for both GKNNc and GNMc. Experimental results on several
representative data sets, such as the Caltech 101 dataset and
the MIT-67 indoor scenes dataset demonstrate the feasibility
of the proposed methods.

1. INTRODUCTION

The k nearest neighbour classifier (KNNc) and the nearest
mean classifier (NMc) are widely used for visual classifica-
tion [1]. The main problem of KNNc and NMc is that they
treat all the data samples equally, which is error-prone in prac-
tice. Some earlier generalization work [2], [3] on KNNc have
been done by using the theory of fuzzy sets. However, the
robustness is not fully considered and generalization on NMc
is not developed. Sparse representation [4], [5] methods have
shown its robustness in several visual classification cases, e.g.
face recognition, object recognition.

In this paper, a novel general k nearest neighbour clas-
sifier (GKNNc) and a novel general nearest mean classifier
(GNMc) are presented from a novel sparse representation
point of view rather than the fuzzy sets point of view [2], [3].

Both GKNNc and GNMc admit the importance of the
choice of the weight coefficients for the training samples in
order to achieve good performance. Specifically, two condi-
tions, namely the Bayes decision rule condition and the ro-
bustness condition, are proposed for the weight coefficients
for both GKNNc and GNMc . The Bayes decision rule con-
dition aims at establishing a connection between GKNNc and
the Bayes decision rule for minimum error. To achieve so, the
closer training samples are assigned larger weight coefficient
by the means of kernel density estimation. Such a condition
will also benefit GNMc since the new definition of “mean” for

each class concentrates more on the important training sam-
ples for GNMc. The robustness condition applies theL1 norm
and discards the distant noisy samples so that the weight coef-
ficient vector is sparse. As per these two conditions, a sparse
representation based method (SRBM) is further proposed to
derive the satisfying weight coefficients for both GKNNc and
GNMc.

The proposed GKNNc and GNMc are then evaluated on
four representative databases: the extended Yale face database
B [6], the 15 scenes dataset [7], the MIT-67 indoor scenes
dataset [8] and the Caltech 101 dataset [9]. Experimental re-
sults show the competence of the proposed classifiers com-
pared to the linear or non-linear support vector machine.

The key contributions of this paper are summarized as fol-
lows: (i) a novel GKNNc and a novel GNMc are proposed;
(ii) two conditions on the weight coefficients are proposed
for better performance. and (iii) a novel sparse representation
based method is proposed to derive the weight coefficients by
combining both GKNNc and GNMc into the objective func-
tion.

2. RELATED WORK

Some earlier generalization work [2], [3] on KNNc and NMc
have been done. Keller et al. proposed a fuzzy k-nearest
neighbour algorithm by incorporating the theory of fuzzy
sets to assign the fuzzy memberships to the training samples.
Bezdek et al. extended the idea of fuzzy KNN to a gen-
eral framework and conducted both theoretical and empirical
analysis.

Sparse representation method [4] was proposed for ro-
bust face recognition and further applied to other recognition
tasks such as object recognition, scene recognition, and ac-
tion recognition. To further improve performance, some dis-
criminative dictionary learning methods have been proposed
for sparse representation. Zhang et al. [10] proposed a sim-
ilar objective function and applied a discriminative singular
value decomposition (D-KSVD) method to learn the discrim-
inative dictionary and the classifier simultaneously. Jiang et
al. [11] improved upon the method introduced in [10] by
introducing a label consistent regularization term. Yang et
al. [12], [13] proposed a Fisher Discrimination Dictionary
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Learning (FDDL) method, which learns a structured dictio-
nary that consists of a set of class-specific sub-dictionaries.

3. GKNNC AND GNMC

This section presents a general k nearest neighbour classifier
(GKNNc) and a general nearest mean classifier (GNMc).

The GKNNc is defined as follows given the training sam-
ple matrix T = [t1, t2, ..., tm] ∈ Rn×m and the test sample
x ∈ Rn,

c∗ = argmax
c

∑
ti∈Tc

wi (1)

where c = 1, 2, ..., l is the class label, wi is the corresponding
weight coefficient of training sample ti, Tc is the set of train-
ing samples in the c-th class and

∑
ti∈Tc

wi is the sum of the
weight coefficients of the training samples in the c-th class.
It is obvious that the GKNNc becomes the traditional KNN
classifier if wi = 1 when ti is among the nearest neighbours
of x and wi = 0 otherwise.

Correspondingly, the GNMc is defined as follows given
the same notations,

c∗ = argmin
c
||x−

∑
ti∈Tc

witi||22 (2)

where
∑

ti∈Tc
witi is the “mean” of the c-th class. It can be

found that the GNMc becomes the traditional nearest mean
classifier if wi is the inverse of the size of Tc for all the train-
ing samples in Tc.

For example, as shown in Fig.1 there are four training
samples t1, t2, t3 and t4 with class labels 1, 1, 2, 2. The repre-
sentation w = [0.6, 0.6, 0.0, 0.8] is derived by means of some
methods for the test sample x. Then the GKNNc will classify
the test sample to class 1 since 0.6 + 0.6 > 0.0 + 0.8. While
the GNMc will compute r1 = ||x − (0.6t1 + 0.6t2)||2 and
r2 = ||x− (0.0t3 + 0.8t4)||2 and choose the smaller one.

It can be revealed that the weight coefficient for each
training sample plays an important role in the classification
performance. Therefore, some conditions for the weight
coefficients are proposed to guarantee the classification per-
formance. And based on such conditions, a sparse represen-
tation based method is further proposed to derive the weight
coefficients.

3.1. Conditions

Since the weight coefficient plays an important role in the
classification performance, it is necessary to impose the fol-
lowing conditions on the weight coefficients.

• The Bayes decision rule condition. If the test sam-
ple x is to the training sample ti, the larger wi is. Par-
ticularly, the following method is applied to compute

the distance between the test sample x and the training
sample ti

di = exp{− 1

2σ2
||x− ti||2} (3)

where the parameter σ is used to adjust the decay speed.
Then the distance vector d = [d1, d2, ..., dm]t ∈ Rm

can be constructed.

Ideally, the weight coefficient wi has a proportional re-
lation to di so that wi ≈ βdi + constant because the
following favourable property for GKNNc is obtained
in such case from the kernel density estimation point of
view,

c∗ = argmax
c

∑
ti∈Tc

wi

≈ argmax
c
p(x|c)

∝ argmax
c
p(c|x) if (p(c) is equal)

(4)

It is found that GKNNc has a connection to the Bayes
decision rule for minimum error under this condition.
Moreover, the “mean” defined in GNMc is more rea-
sonable under this condition.

• The robustness condition. The weight coefficient vec-
tor w = [w1, w2, ..., wm]t ∈ Rm should be sparse
by applying L1 norm and discarding distant neighbors.
The reason is that L1 norm is robust and not all training
samples ti are required for classification since most of
them are noisy, especially the distant samples. Under
this condition the robustness of the proposed GKNNc
and GNMc is improved.

3.2. Learning the Weight Coefficients

According to the conditions and properties, a sparse represen-
tation based method (SRBM) for deriving the weight coeffi-
cients is presented in this section. The following objective
function is proposed by combining both GKNNc and GNMc
together,

min
w
||x− Tw||2 + λ||w||1 + α||w− βd||2 (5)

where the parameter λ controls the sparseness, α trades off
between GKNNc and GNMc, β constrains the value of vec-
tor d, || · || is the L2 norm and || · ||1 is the L1 norm. The
SRBM is capable of deriving the weight coefficient vector w
that satisfies both of the two conditions.

The FISTA (Fast Iterative Shrinkage Thresholding Algo-
rithm) algorithm [14] is applied for optimizing the criterion
in equation 5. The equation 5 is decomposed into the fol-
lowing form: f(w) + g(w), where f(w) = ||x − Tw||2 +
α||w − βd||2 and g(w) = λ||w||1 to meet the condition of
FISTA algorithm. To guarantee convergence, the maximal
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Fig. 1. Illustration example of two proposed classifiers: the GKNNc and the GNMc

step size for the FISTA algorithm is selected as 1
L , where

L = 2λmax(TtT+αI), which means twice the largest eigen-
value of the matrix TtT + αI.

4. EXPERIMENTS

In this section, the performance of our proposed classifiers
GKNNc and GNMc is assessed on several visual classifica-
tion databases: the extended Yale face database B [6], the 15
scenes dataset [7], the MIT-67 indoor scenes dataset [8] and
the Caltech 101 dataset [9]. The image or video is first rep-
resented as a pattern vector. As for the extended Yale face
database B, the pattern vector is first formed as the concate-
nation of the column pixels. Then the random faces [4], which
is the row vectors of a randomly generated transformation
matrix from a zero-mean normal distribution, is applied to
project the face pattern vector into a dimension of 540 rep-
resentation vector. Each row of the transformation matrix is
normalized to unit length. For the 15 scenes dataset, the spa-
tial pyramid feature provided by [11] is used to represent the
image for fair comparison. The feature is obtained by using a
four-level spatial pyramid and a codebook with a size of 200.
For the MIT-67 indoor scenes dataset, the Fisher vector fea-
ture [15] is used to represent the image. For the Caltech 101
dataset, the proposed method is built upon the 4096 dimen-
sion image features that are extracted by using a pre-trained
convolutional neural network CNN-M [16]. Please see more
details about the features in the corresponding sub-sections.
Then the marginal Fisher analysis preceded with the principal
component analysis (PCA) [17] is applied to reduce the di-
mension and extract features. Afterwards, both GKNNc and
GNMc are applied for classification according to the experi-
mental settings defined for different datasets.

4.1. Extended Yale Face Database B

The extended Yale face database B consists of 2414 frontal
view face images from 38 individuals each with around 64
images taken under various lightening conditions. A cropped
version of the database is used wherein all the images are
manually aligned, cropped, and then re-sized to 168 × 192
[6]. Following the experimental setting [12], 20 images are

randomly selected for training for each subject, and the re-
maining images for testing for 10 iterations. Note that this
experimental setting is more difficult than that in [10]. The
image is first scaled to 42 × 48. The random faces [4] is used
to obtain the pattern vector to prove the robustness of the pro-
posed method. Then the dimension is reduced to 350. The
parameters are selected as σ = 1, λ = 0.02, α = 0.1, and
β = 0.5. The final results are shown in table 2. Our pro-
posed method significantly improves upon the other popular
methods by more than 4 percent.

4.2. The 15 Scenes Dataset

The 15 scenes dataset [7] contains totally 4485 images from
15 scene categories, each with the number of images ranging
from 200 to 400. Following the experimental protocol defined
in [7], 100 images per class are randomly selected for train-
ing and the remaining for testing for 10 iterations. First, the
spatial pyramid features provided by [11] is used to represent
the image as a vector with a dimension of 3000 for fair com-
parison. Then the dimension is further reduced to 500. The
parameters are selected as λ = 0.05, α = 0.1, and β = 1.0.
It can be concluded from the results in table 1 that our pro-
posed method is able to achieve much better results than the
non-linear or linear kernel based support vector machine that
is used by the compared methods.

4.3. The MIT-67 Indoor Scenes Dataset

The MIT-67 indoor scenes dataset [8] is a very challenging in-
door scene recognition dataset, which contains 67 indoor cat-
egories with 15620 images. According to the commonly used
experimental setting [8], 80*67 images are used for training
and 20*67 images for testing. The performance is measured
as the average classification accuracy over all the categories.
The Fisher vector feature [15] is considered for representing
the image. The SIFT feature is first projected to 80 dimension
and a codebook with 256 visual words is computed, then the
dimension of the Fisher vector is 2*256*80 = 40960, which
is further reduced to 2000. The parameters are selected as
λ = 0.01, α = 0.1, and β = 1.5 for the GNMc while
β = 0.5 for the GKNNc to achieve the best performance.
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Methods Accuracy %

LLC [19] 80.57
D-KSVD [10] 89.10
LC-KSVD [11] 90.40
LaplacianSC [20] 89.7
The proposed GNMc 97.45±0.27
The proposed GKNNc 93.54±0.45

Table 1. Comparisons between the proposed GKNNc, GNMc
and the other popular methods on the 15 scenes dataset

Methods Accuracy %
D-KSVD [12] 75.30
SRC [12] 90.00
FDDL [12] 91.90
The proposed GNMc 95.35
The proposed GKNNc 95.39

Table 2. Comparisons between the proposed GKNNc, GNMc
and the other popular methods on the extended Yale face
database B.

The results are shown in table 3. Please note that the Fisher
vector is learned directly from the SIFT features of images
instead of learning the part detectors in [18], which is time-
consuming. Moreover, the dimension of Fisher vector is re-
duced from 40960 to 2000, which saves much storage space
and no data augmentation technique is used. However, the
proposed methods can still achieve very competitive results
to the state-of-the-art methods [18] that use support vector
machine.

4.4. The Caltech 101 Dataset

The Caltech 101 dataset [26] holds 9144 images divided into
101 object classes and a clutter class. To be consistent with

Methods Mean Accuracy %

ROI + Gist [8] 26.1
DPM [21] 30.4
Object Bank [22] 37.6
miSVM [23] 46.4
D-Parts [24] 51.4
DP + IFV [18] 60.8
CNN-SVM no Aug [25] 58.4
The proposed GNMc 59.12
The proposed GKNNc 58.40

Table 3. Comparisons between the proposed GKNNc, GNMc
and the other popular methods on the MIT-67 indoor scenes
dataset.

training images 15 20 25 30
LLC [19] 65.43 67.74 70.16 73.44
SRC [4] 64.90 67.70 69.20 70.70
D-KSVD [10] 65.10 68.60 71.10 73.00
LC-KSVD [11] 67.70 70.50 72.30 73.60
Zeiler [27] 83.80 - - 86.5
CNN-M + Aug [16] - - - 87.15
The proposed GNMc 84.79 85.96 86.62 87.68
The proposed GKNNc 84.76 86.11 86.77 87.74

Table 4. Comparisons between the proposed method and the
other popular methods on the Caltech 101 dataset.

the previous work [19], we partition the whole dataset ran-
domly into 5, 10, 15, 20, 25, 30 training images per class and
no more than 50 test images per class, and measure the perfor-
mance using the average accuracy over 102 classes. In order
to achieve comparable results to the state-of-the-art methods,
the proposed method is built upon the 4096 dimension im-
age representation features that are extracted by using a pre-
trained convolutional neural network CNN-M [16]. Then we
reduce the dimension to 1000 except the case with 5 training
images, where the dimension is reduced to 500. The model
parameters are selected as σ = 1.5, λ = 0.05, α = 0.1, and
β = 1.5. For the shifted power transformation, λ1 = 0.0
and λ2 = 0.5. For the GKNNc, the value of k = 20 if the
training image size is larger than 20, otherwise k is the value
of the training image size. The same applies to the GNMc.
The results that are shown in table 4, demonstrate that the
proposed method is comparable to the state-of-the-art meth-
ods with support vector machine for classification in different
training image sizes.

4.5. Conclusion

This paper presents two novel classifiers: GKNNc and GNMc
for visual classification. Two conditions of the weight coeffi-
cients for GKNNc and GNMc are analysed to guarantee the
performance. Then a sparse representation based method is
proposed to derive the weight coefficients for both GKNNc
and GNMc. Experimental results on several representative
data sets demonstrate the feasibility of the proposed methods.
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