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Abstract

Anthropology studies discover that some genetic related
facial features, which are inherited by children from their
parents, can be used for kinship verification. This paper
investigates an important inheritable feature — color and
presents a novel inheritable color space (InCS) and a gen-
eralized InCS (GInCS) framework with application to kin-
ship verification. Specifically, a novel color similarity mea-
sure (CSM) is first defined. Second, based on this similarity
measure, a new inheritable color space (InCS) is derived
by balancing the criterion of minimizing the distance be-
tween kinship pairs and the criterion of maximizing the dis-
tance between non-kinship pairs. Unlike conventional color
spaces, e.g. the RGB color space, the proposed InCS, which
is learned automatically from the data, captures the inher-
itable information between parent and child. Third, theo-
retical and empirical analysis show that the proposed InCS
exhibits the decorrelation property, which is positively re-
lated to the performance of kinship verification. Robust-
ness to the illumination variation is also discussed. Fourth,
a generalized InCS framework is presented to extend the
InCS from the pixel level to the feature level for improving
the performance and the robustness to illumination varia-
tion. The proposed InCS is evaluated on several popular
datasets, namely the KinFaceW-I dataset, the KinFaceW-II
dataset, the UB KinFace dataset, and the Cornell KinFace
dataset. Experimental results show that the proposed InCS
is able to (i) improve the conventional color spaces such as
RGB, YUV, YIQ color spaces by a large margin, (ii) achieve
robustness to the illumination variation, and (iii) outper-
forms other popular methods.

1. Introduction
Kinship verification from facial images, which is an

emerging research area in computer vision, has gained in-
creasing attention in recent years [4], [29], [19], [3], [32].
Pioneer works in anthropology [1], [2] believe that there are
some genetic related features which are inherited by chil-
dren from their parents that can be used to determine the

kinship relations.
One important inheritable feature is color. Our observa-

tion shows that color information, which is complementary
to shape and texture, usually leads to better performance for
kinship verification (the cross-ethnicity parents and children
are not considered in this paper since such cases are minor-
ity). Conventional color spaces such as RGB, YUV, YIQ,
YCbCr have shown their superiority for face recognition
[24]. Recently many color methods [9, 10, 11, 34, 26] are
proposed for object recognition, object detection and action
recognition. These methods, which focus on illumination
invariant properties of color, are not specifically designed
for capturing the inheritable information between kinship
images for recognizing the kinship relations.

This paper thus presents a novel inheritable color space
and a generalized InCS framework for kinship verification.
Specifically, a new color similarity measure (CSM), which
represents the accumulation of the similarity measures of
corresponding color component between two images, is first
defined. A novel inheritable color space (InCS) is then au-
tomatically derived by trading off the criterion of minimiz-
ing the distance between the kinship pairs and the criterion
of maximizing the distance between the non-kinship pairs.
Some properties of InCS are further discussed. Theoretical
analysis shows that the proposed InCS possesses the decor-
relation property, which decorrelates the color components
of the color difference matrix between two images. Exper-
imental analysis also discovers that the decorrelation prop-
erty, which is measured in terms of average statistical corre-
lation (ASC), often leads to better performance. The robust-
ness to the illumination variation is also discussed. Finally,
a generalized InCS (GInCS) framework is proposed by ex-
tending the InCS from the pixel level to the feature level for
improving the performance and the illumination invariance.
An example is presented by applying the Fisher vector [8]
to the RGB component images prior to the computation of
the component images in the InCS.

Experimental results on four representative datasets: the
KinFaceW-I dataset, the KinFaceW-II dataset [19], the UB
KinFace dataset [29], and the Cornell KinFace dataset [4]
show the feasibility of the proposed method.



2. Related Work

Kinship verification. The pioneer works of kinship
analysis originate from anthropology and psychology com-
munity. Bressnan et al. [2] evaluated the phenotype match-
ing on facial features and claimed that parents have corre-
lated visual resemblance with their offspring. Studies [1] in
anthropology have confirmed that children resemble their
parent more than other people and they may resemble a par-
ticular parent more at different ages. Later work [4] by Fang
et al. shows the feasibility of applying computer vision
techniques for kinship verification. Xia et al. [29] proposed
a transfer subspace learning based algorithm by using the
young parents set as an intermediate set to reduce the sig-
nificant divergence in the appearance distributions between
children and old parents facial images. Lu et al. [19] pro-
posed neighborhood repulsed metric learning (NRML) in
which the intraclass samples within a kinship relation are
pulled as close as possible and interclass samples are pushed
as far as possible for kinship verification. Dehghan et al.
[3] proposed to apply the generative and the discriminative
gated autoencoders to learn the genetic features and metrics
together for kinship verification. Yan et al. [31] proposed a
multimetric learning method to combine different comple-
mentary feature descriptors for kinship verification and later
[32] proposed to learn the discriminative mid-level features
by constructing a reference dataset instead of using hand-
crafted descriptors.

Color space. Color information contributes significantly
to the discriminative power of image representation. Con-
ventional color spaces such as RGB, YUV, YIQ, YCbCr
have shown their ability for improving the performance of
face recognition [24, 16, 12, 13]. For a detail comparison
among different color spaces, please refer [24]. Van de
Sande et al. [26] show that color information along with
shape features yield excellent results in image classifica-
tion system. Khan et al. [10] proposed the use of color
attributes as an explicit color representation for object de-
tection. Zhang et al. [34] proposed a new biologically in-
spired color image descriptor that uses a hierarchical non-
linear spatio-chromatic operator yielding spatial and chro-
matic opponent channels. Khan et al. [22] show that better
results can be obtained for object recognition by explicitly
separating the color cue to guide attention by means of a
top-down category-specific attention map. Yang et al. [33]
proposed a new color model - the g1g2g3 model based on
the log chromacity color space, which preserves the rela-
tionship between R, G and B in the model. Rahat Khan et
al. [11] cluster color values together based on their discrim-
inative power such that the drop of mutual information of
the final representation is minimized.

3. A Novel Inheritable Color Space (InCS)

Conventional color spaces such as YUV, YIQ, YCbCr,
Opponent color space etc., have shown their ability for
recognition problems by considering the illumination in-
variant properties. However, they are not deliberately de-
signed to capture the inheritable information between kin-
ship images for recognizing the kinship relations. We there-
fore present a novel inheritable color space (InCS) for kin-
ship verification by deriving a transformation W ∈ R3×3

from the original RGB color space.
In detail, given a pair of images Ipi and Ici (i =

1, 2, ...,m) with a size of h × w, these two images can be
represented as two matrices mpi

and mci ∈ R3×n (n =
h × w) respectively, where each row vector is the concate-
nation of column pixels in each color component (red, green
and blue) of the image. Note that in Section 5, each row vec-
tor will be a feature vector (e.g. Fisher vector) for each color
component. Formally, mpi

and mci are defined as mpi
=

[pi1,pi2, ...,pin] and mci = [ci1, ci2, ..., cin] respectively,
where pij and cij ∈ R3×1(j = 1, 2, ..., n) are vectors that
consists of the color values of three color components at
each pixel for two compared images respectively. Then the
new representation xi and yi ∈ R3×n(i = 1, 2, ...,m) in
InCS is computed from mpi

and mci by applying the trans-
formation W as follows:

xi = WT mpi
= [xi1, xi2, ..., xin]

yi = WT mci = [yi1, yi2, ..., yin]
(1)

where xij , yij ∈ R3×1(j = 1, 2, ..., n).
To incorporate the information of all the three color com-

ponents, we first define a new color similarity measure
(CSM). Let xi(c) ∈ Rn×1(c = 1, 2, 3) be the c-th color
component vector of the InCS in image Ipi

, whose values
are identical to the c-th row of xi. And yi(c) is defined sim-
ilarly. Then the CSM has the following mathematical form:

d(Ipi
, Ici) = Tr{(xi − yi)(xi − yi)

T }

=
n∑

j=1

(pij − cij)T A(pij − cij)
(2)

where Tr{·} denotes the trace of a matrix and A = WWT ∈
R3×3. Note that since W is a transformation applied to the
RGB color space, it is reasonable to assume it is full rank.
As a result, A is a positive semidefinite matrix, which guar-
antees CSM is a metric — satisfying the non-negativity and
the triangle inequality [30].

From equation 2, the CSM may be interpreted in two
ways. On the one hand, the CSM may be interpreted as the
accumulation of the distance metrics between correspond-
ing pixel color values of two images. On the other hand,
the CSM may also be interpreted as a summation of the



Euclidean similarity measures between each correspond-
ing color component, which is denoted as

∑3
c=1(xi(c) −

yi(c))T (xi(c)− yi(c)).
Then based on such a similarity measure, our inherita-

ble color space (InCS) is derived with the goal of pushing
away the non-kinship samples as far as possible while keep-
ing the kinship ones as close as possible by optimizing the
following objective function:

min
W

∑
(Ipi ,Ici )∈T

d(Ipi , Ici)−
∑

(Ipi ,Ici )∈F

d(Ipi , Ici) (3)

where T and F are the sets of kinship pairs and non-kinship
pairs respectively. Note that the ratio of two terms can also
be applied as an objective function.

To optimize equation 3, we further define two ma-
trices, namely the true verification matrix Vt =∑

(Ipi ,Ici )∈T
∑n

j=1(pij − cij)(pij − cij)T ∈ R3×3

that characterizes the color variations among the kin-
ship image pairs, and the false verification matrix Vf =∑

(Ipi ,Ici )∈F
∑n

j=1(pij−cij)(pij−cij)T ∈ R3×3 that cap-
tures the color variations among all the non-kinship image
pairs. Note that the definitions of Vt and Vf are similar
to the within-scatter matrix and the between-scatter matrix
defined in discriminant analysis [6].

As a result, the objective function in equation 3 can
be rewritten as equation 4 by introducing a constraint
WT VtW = I on W to exclude the trivial solution. The
solution W of optimizing the objective function in equa-
tion 4 consists of the eigenvectors of matrix V−1t (Vt−Vf ).
Finally, the InCS is derived from the original RGB color
space by applying the learned transformation matrix W.

min
W

Tr(WT (Vt − Vf )W)

s.t.WT VtW = I
(4)

It can be discovered from equation 4 that the proposed
InCS seeks to balance the criterion of minimizing the color
variations among the kinship image pairs and the criterion
of maximizing the color variations among the non-kinship
image pairs. Therefore, InCS is capable of capturing the
color variations between the kinship images, which is a fa-
vorable property for kinship verification.

4. Properties of the InCS
This section presents the properties of the proposed

InCS. Specifically, we first show that our proposed InCS
exhibits the decorrelation property and establish its connec-
tion to the performance. Second, we analyze the robustness
of our InCS to illumination variations at both pixel level
and feature level based on the diagonal illumination model
[5, 26].

4.1. The Decorrelation Property

Given the derived transformation matrix W =
[w1,w2,w3] where wi ∈ R3×1(i = 1, 2, 3), the pixel
color values in vector xij = [xij1, xij2, xij3]T and yij =

[yij1, yij2, yij3]T can be represented as xiju = wT
u pij ,

yiju = wT
u cij , xijv = wT

v pij and yijv = wT
v cij where

u, v = 1, 2, 3 and u 6= v. Note that xiju and xijv are the
pixel values of the u-th component and the v-th component
of xij in the InCS respectively. yiju and yijv are defined in
a similar fashion.

For kinship verification, an important variable is the dif-
ference matrix di for the corresponding pixels between two
images, which is computed as di = xi−yi, because the sim-
ilarity between two images can be represented in terms of
di if some similarity measures, such as the CSM or the Eu-
clidean distance, are applied. As a result, the decorrelation
of the components of di can reduce the information redun-
dancy for measuring the similarity and enhance the kinship
verification performance.

We therefore present the decorrelation property of the
proposed InCS as follows. It states that the u-th component
(row) di(u) and the v-th component di(v) (u, v = 1, 2, 3
and u 6= v) of the difference matrix di are decorrelated.

Property 4.1. The Decorrelation Property. If each compo-
nent of the color difference matrix di is centered, we have
the following statistical correlation S(u, v) between the u-
th component (row) di(u) and the v-th component di(v)
(u, v = 1, 2, 3 and u 6= v) of the difference matrix di.

S(u, v) = E
{

(di(u)− E {di(u)})(di(v)− E {di(v)})T
}

= 0
(5)

Proof. First, E {di(u)} and E {di(v)} are zero since each
component of the color difference matrix di is centered.
Second, the solution of optimizing equation 4 shows that
W consists of the eigenvectors of matrix V−1t (Vt − Vf ),
which can be further proved to be the same as the eigenvec-
tors of matrix (Vt + Vf )−1Vf . In other words, we have the
following results

(Vt + Vf )−1VfW = WΛ

⇒WT (Vt + Vf )WΛ = WT VtW

⇒WT (Vt + Vf )W = Λ−1

(6)

where Λ is a diagonal matrix that is composed of the eigen-
values of (Vt + Vf )−1Vf .

Then we have the following statistical correlation
S(u, v) between the u-th and v-th color components (u, v =



1, 2, 3 and u 6= v) for xi and yi as equation 7:

S(u, v) = E(di(u)di(v)T )

=
1

m

m∑
i=1

di(u)di(v)T

=
1

m

m∑
i=1

(xi(u)− yi(u))(xi(v)− yi(v))T

=
1

m

m∑
i=1

n∑
j=1

(xiju − yiju)(xijv − yijv)T

=
1

m
wT

u (Vt + Vf )wv

= 0

(7)

To further reveal the advantage of the decorrelation prop-
erty, we conduct experiments by using the average statisti-
cal correlation (ASC) defined below as an indicator of the
degree of decorrelation for different color spaces.

ASC =
1

3

∑
u6=v

|S(u, v)| (8)

where | · | is the absolute value. Experimental results in
Section 7.2 show that in general, the smaller the ASC is,
the better the performance the corresponding color space
achieves.

4.2. Robustness to Illumination Variations

Another important property of the proposed InCS is the
robustness to illumination variations. The illumination vari-
ations of an image can be modeled by the diagonal model
[5, 26], which corresponds to the Lambertian reflectance
model under the assumption of narrow band filters. Specifi-
cally, The diagonal model is defined as a diagonal transfor-
mation L ∈ R3×3 on the RGB values of each pixel and a
shift s ∈ R3×1 as follows: a 0 0

0 b 0
0 0 c

  R
G
B

 +

 s1
s2
s3

 (9)

where a, b and c are the diagonal elements of matrix L, and
s1, s2 and s3 are the elements of vector s.

Based on this diagonal model, five types of common il-
lumination variations, namely light intensity change, light
intensity shift, light intensity change and shift, light color
change as well as light color change and shift, can be
identified [26]. First, the light intensity change assumes
a = b = c > 0 and s1 = s2 = s3 = 0, which means the
pixel values change by a constant factor in all color com-
ponents. The light intensity change is often caused by the

differences of the intensity of light, shadows and shading.
Second, the light intensity shift assumes a = b = c = 1
and s1 = s2 = s3 > 0. The light intensity shift is
mainly due to the diffuse lighting. Third, the light inten-
sity change and shift combines the above two changes and
assumes a = b = c > 0 and s1 = s2 = s3 > 0.
Fourth, the light color change assumes a 6= b 6= c > 0
and s1 = s2 = s3 = 0, which means each color compo-
nent scales independently. Finally, the light color change
and shift assumes a 6= b 6= c > 0 and s1 6= s2 6= s3 > 0.

Now we present theoretical analysis to show the follow-
ing conclusion under the illumination condition that the di-
agonal transformation L applied is the same within each im-
age pair (parent and child image in this image pair have the
same L) but different across image pairs and the shift s is
applied similarly.

• Our InCS is robust to light intensity change and light
color change.

• Our InCS becomes robust to light intensity shift, light
intensity change and shift as well as light color change
and shift with the help of the proposed CSM or the
Euclidean distance to cancel out the shift.

To prove that, let Vu
t and Vu

f be the new true verification
matrix and the new false verification matrix, respectively,
after the illumination variations are applied to each origi-
nal image pair (Ipi

, Ici) by the diagonal transformation Li

and the shift si (i = 1, 2, ...,m). Note that Li may be dif-
ferent across image pairs but are the same within each im-
age pair, and so is si. Then we have Vu

t = Lt
iVtLi and

Vu
f = Lt

iVfLi. Then the new transformation Wu has the
relation to the original transformation W as W = LiWu.
As a result, the derived image pixel vectors for InCS with
the illumination variations are as follows:

(Wu)T (Lt
ipij + si) = WT pij + (Wu)T si

(Wu)T (Lt
icij + si) = WT cij + (Wu)T si

(10)

First, if the shift si is not considered (s1 = s2 = s3 = 0),
then the image pixel vectors for InCS with the illumination
variations are the same as those without illumination vari-
ations, which means our InCS is robust to light intensity
change and light color change regardless of the value of Li.

Second, if the shift si is considered (s1 6= s2 6= s3 >
0), when our CSM or the Euclidean distance is applied, it
is easy to see that the effect of the offset term (Wu)T si is
canceled out when comparing the parent and child image.
Then our InCS is also robust to light intensity shift, light
intensity change and shift as well as light color change and
shift with the help of the proposed CSM.

However, the pixel level inheritable color space cannot
guarantee the robustness to illumination variations under



Figure 1. Example images from the KinFaceW-I, the KinFaceW-II
dataset, the Cornell KinFace dataset and the UB KinFace dataset.

a more general illumination condition: both the diagonal
transformation Li and shift si are different for parent and
child image within the kinship image pair respectively. In
this case, we will appeal to the feature level inheritable color
space, namely the generalized InCS (GInCS) described in
Section 5. We will show our GInCS is also robust to illumi-
nation variations in Section 5 under a more general illumi-
nation condition.

For empirical evaluation of the robustness of the InCS,
please refer to Section 7.3, where we evaluate the kinship
verification performance under different illumination con-
ditions based on the five types of illumination variations de-
scribed above.

5. The Generalized InCS (GInCS) Framework
Our novel InCS can be further generalized from the pixel

level to the feature level to enhance the generalization per-
formance and improve the robustness to image variabilities,
such as illumination variations. One example is to apply the
Fisher vector method [8] to the red, green, and blue com-
ponent images prior to the computation of the component
images in the InCS. Note that other feature extraction meth-
ods, such as Gabor wavelets [14], LBP [28], Feature LBP
[7] may be applied as well to define new generalized InCS
for kinship verification.

We first briefly review the Fisher vector method [8],
which has been widely applied for visual recognition prob-
lems such as face recognition [25], object recognition [8].
Specifically, let X = {dt, t = 1, 2, ..., T} be the set of T
local descriptors (e.g. SIFT descriptors) extracted from the
image. Let µλ be the probability density function of X with
a set of parameters λ, then the Fisher kernel [8] is defined as
K(X,Y) = (GX

λ)T F−1λ GY
λ, where GX

λ = 1
T 5λ log[µλ(X)],

which is the gradient vector of the log-likelihood that de-
scribes the contribution of the parameters to the generation
process. And Fλ is the Fisher information matrix of µλ.
Essentially, the Fisher vector is derived from the explicit de-
composition of the Fisher kernel according to the fact that
the symmetric and positive definite Fisher information ma-

trix Fλ has a Cholesky decomposition as F−1λ = LT
λLλ.

Therefore, the Fisher kernel K(X,Y) can be written as a
dot product between two vectors LλGX

λ and LλGY
λ which

are defined as the Fisher vectors of X and Y respectively.
A diagonal closed-form approximation of Fλ [8] is often
used where Lλ is just a whitening transformation for each
dimension of GX

λ and GY
λ. The dimensionality of Fisher

vector depends only on the number of parameters in the pa-
rameter set λ.

We now present the generalized InCS framework by us-
ing the Fisher vector as an example. First, the Fisher vector
is computed for each color components in the RGB color
space. Second, these Fisher vectors maybe taken as the in-
put of the learning process by optimizing the objective func-
tion in equation 4 to derive the Fisher vector based gen-
eralized InCS. Finally, all the derived GInCS component
vectors are normalized and concatenated as one augmented
component vector for kinship verification.

It is easy to see that our GInCS preserves the decorrela-
tion property since the learning process remains the same.
Besides, our GInCS is also robust to illumination variations
under a more general illumination condition: the diagonal
transformation L and the shift s are different within and be-
tween the image pairs, respectively. First, our implemen-
tation is based on the Fisher vector, which depends on the
SIFT descriptors extracted from each color component im-
age. The SIFT descriptor is intensity shift-invariant [26]
since it is based on the gradient of image which takes the
derivative to cancel out the intensity shift. Therefore, our
GInCS is robust to intensity shift operations of the diagonal
model. Second, the SIFT descriptor is often normalized so
that it is robust to light intensity change under any diago-
nal transformation. Third, the SIFT descriptor is computed
and normalized for each color component image indepen-
dently so that it is also robust to light color change [26]. As
a result, our Fisher vector based generalized InCS is robust
to light intensity change, light color change, light intensity
shift, light intensity change and shift as well as light color
change and shift under a more general illumination condi-
tion. The generalized InCS framework with Fisher vector
can significantly improve the results and outperform other
popular methods (see Section 6.1).

6. Experiments
Our proposed method is assessed on four representative

kinship verification databases: the KinFaceW-I dataset, the
KinFaceW-II dataset [19], the UB KinFace dataset [29], and
the Cornell KinFace dataset [4]. Example images are shown
in figure 1.

The pattern vector we implement for InCS is the con-
catenation of column pixels of the RGB color space. The
pattern vector for the generalized InCS is the Fisher vector.
First, in each color component, the dense SIFT feature is



Methods F-S F-D M-S M-D Mean
CSML [21] 61.10 58.10 60.90 70.00 62.50
LMNN [27] 63.10 58.10 62.90 70.00 63.30
NRML [19] 64.10 59.10 63.90 71.00 64.30
MNRML [19] 72.50 66.50 66.20 72.00 69.90
GGA [3] 70.50 70.00 67.20 74.30 70.50
ANTH [3] 72.50 71.50 70.80 75.60 72.60
DGA [3] 76.40 72.50 71.90 77.30 74.50
DMML [31] 74.50 69.50 69.50 75.50 72.25
MPDFL [32] 73.50 67.50 66.10 73.10 70.10
GInCS 77.25 76.90 75.82 81.44 77.85

Table 1. Comparison between the GInCS and other popular meth-
ods on the KinFaceW-I dataset.

derived with a step size of 1 and five scale patch sizes as 2,
4, 6, 8, 10. The dimensionality 128 of the SIFT feature is
further reduced to 64 by PCA. And the spatial information
[25] is added to the SIFT feature with 2 more dimensions
which means the final dimensionality of the SIFT feature is
66. Then, a Gaussian mixture model with 256 components
is derived. As a result, Fisher vector is derived as 33792
(2*256*66) dimension vector. Power transformation [8] is
applied to the extracted Fisher vector. Euclidean distance or
our color similarity measure can be further applied to com-
pute the similarity between two images. Finally, a two class
linear support vector machine is used to determine the kin-
ship relations between images.

6.1. KinFaceW-I and KinFaceW-II dataset

The KinFaceW-I and the KinfaceW-II dataset contain
four kinship relations: father-son (F-S), father-daughter (F-
D), mother-son (M-S), and mother-daughter (M-D). In the
KinFaceW-I dataset, there are 156, 134, 116, and 127 image
pairs for each relation. In the KinFaceW-II dataset, there
are 250 pairs of the images for each relation. In our ex-
periments, we conduct 5-fold cross validation where both
the KinFaceW-I dataset and the KinFaceW-II dataset are di-
vided into five folds having the same number of image pairs.
The SIFT flow [15] is extracted to pre-process the images
so that the corresponding parts between two images are en-
hanced. Our novel color similarity measure is applied to
compute the distance between two images. Experimental
results on table 1, table 2, show that our method is able to
outperform other popular methods on both datasets. Note
that although better performances are reported in [17], they
use multiple features while our method uses only one single
feature to achieve good results.

6.2. UB KinFace dataset

The UB KinFace dataset consists of 600 images of 400
persons from 200 families. For each family, there are three
images, which correspond to child, young parent and old

Methods F-S F-D M-S M-D Mean
CSML [21] 71.80 68.10 73.80 74.00 71.90
LMNN [27] 74.80 71.10 75.80 76.00 74.50
NRML [19] 76.80 73.10 76.80 77.00 75.70
MNRML [19] 76.90 74.30 77.40 77.60 76.50
DMML [31] 78.50 76.50 78.50 79.50 78.25
MPDFL [32] 77.30 74.70 77.80 78.00 77.00
GInCS 85.40 77.00 81.60 81.60 81.40

Table 2. Comparison between the GInCS and other popular meth-
ods on the KinFaceW-II dataset.

Methods Set 1 Set 2
MCCA [23] 65.50 64.00
MMFA [23] 65.00 64.00
LDDM [20] 66.50 66.00
DMMA [18] 65.50 63.50
MNRML [19] 66.50 65.50
DMML [31] 74.50 70.00
GInCS 75.80 72.20

Table 3. Comparison between the GInCS and other popular meth-
ods on the UB KinFace dataset.

parent. In our experiments, images are aligned according to
the eye position and cropped to 64× 64 such that the back-
ground information is removed and only the facial region
is used for kinship verification. Two subsets of images are
constructed, where set 1 consists of 200 child and young
parent pairs and set 2 consists of 200 child and old parent
pairs. The 5-fold cross validation is also conducted. Exper-
imental results on table 3 show that our method is able to
outperform other popular methods.

6.3. Cornell KinFace dataset

The Cornell KinFace dataset contains 143 pairs of kin-
ship images where 40%, 22%, 13% and 26% are the father-
son (F-S), father-daughter (F-D), mother-son (M-S), and
mother-daughter (M-D) relations. In our experiments, the
images are preprocessed in the same fashion as the UB Kin-
Face dataset and 5-fold cross validation is conducted for
each relation respectively. Experimental results on table 4
show that our method is able to outperform other popular
methods.

7. Comprehensive Analysis
This section presents a comprehensive analysis of our

proposed InCS method including (i) the comparison with
other color spaces, (ii) analysis of decorrelation property
and (iii) robustness to the illumination variations. All the
experiments are conducted on the the KinFaceW-I dataset
and the KinFaceW-II dataset. Without other specification,



Methods F-S F-D M-S M-D Mean
MCCA [23] 71.50 65.80 73.50 63.50 68.57
MMFA [23] 71.50 66.40 73.50 64.50 68.97
LDDM [20] 73.00 66.90 74.50 67.50 70.47
DMMA [18] 71.00 65.50 73.00 65.50 68.75
MNRML [19] 74.50 68.80 77.20 65.80 71.57
DMML [31] 76.00 70.50 77.50 71.00 73.75
GInCS 78.20 73.00 78.80 73.50 75.87

Table 4. Comparison between the GInCS and other popular meth-
ods on the Cornell KinFace dataset.

Color Spaces F-S F-D M-S M-D Mean
Grey 58.01 51.88 49.93 52.83 53.16
RGB 66.60 56.74 55.16 60.25 59.69
rgb 59.96 57.81 62.90 65.70 61.59
CIE-XYZ 65.32 55.60 54.73 61.05 59.18
YUV 66.65 61.52 58.64 63.85 62.67
YIQ 65.70 60.03 59.93 61.76 61.86
YCbCr 66.03 60.77 57.77 64.56 62.28
Opponent 66.98 61.58 58.24 65.42 63.06
InCS 66.35 60.06 60.76 69.67 64.21

Table 5. Comparison between the InCS and other color spaces on
the KinFaceW-I dataset.

the process of the experiments is as follows. The concate-
nation of column pixels is applied first in the InCS to derive
the pattern vector for each color component. Then the pat-
tern vectors in each component are normalized and concate-
nated as an augmented pattern vector. The euclidean dis-
tance is further applied to calculate the similarity between
different images.

7.1. Performance of Different Color Spaces

This section presents the performance of different color
spaces including the RGB, rgb (normalized RGB), YUV,
YIQ, YCbCr, CIE-XYZ and Opponent color space. In or-
der to conduct a fair comparison, the pattern vector is ex-
tracted by concatenating the column pixels in each color
components of each image for different color spaces. Ex-
perimental results demonstrated in table 5 and table 6 shows
that the proposed InCS is able to achieve better performance
than the original RGB color space by a large margin espe-
cially on the KinFaceW-II dataset which has a larger size of
training images.

7.2. The Decorrelation Property

This section investigates the decorrelation property of
our proposed InCS in terms of the average statistical corre-
lation (ASC) for all the image pairs (including the training
and testing pairs). It can be concluded from the empirical
results in table 7 and table 8: (i) our proposed InCS is able

Color Spaces F-S F-D M-S M-D Mean
Grey 56.60 54.60 55.20 54.80 55.30
RGB 68.20 60.80 59.60 57.80 61.60
rgb 69.20 57.20 61.40 61.60 62.35
CIE-XYZ 67.00 60.00 60.20 58.20 61.35
YUV 71.40 62.40 65.60 64.00 65.85
YIQ 73.60 62.00 66.20 64.80 66.65
YCbCr 71.60 59.80 66.80 64.60 65.70
Opponent 71.80 59.80 69.00 64.40 66.25
InCS 73.60 62.40 71.40 71.80 69.80

Table 6. Comparison between the InCS and other color spaces on
the KinFaceW-II dataset.

Color Spaces ASC Performance
RGB 0.93 59.69
rgb 0.57 61.59
CIE-XYZ 0.97 59.18
YUV 0.63 62.67
YIQ 0.58 61.86
YCbCr 0.59 62.28
Opponent 0.55 63.06
InCS 0.26 64.21

Table 7. The values of average statistical correlation of different
color spaces on the KinFaceW-I dataset.

Color Spaces ASC Performance
RGB 0.91 61.60
rgb 0.60 62.35
CIE-XYZ 0.96 61.35
YUV 0.63 65.85
YIQ 0.56 66.65
YCbCr 0.60 65.70
Opponent 0.59 66.25
InCS 0.30 69.80

Table 8. The values of average statistical correlation of different
color spaces on the KinFaceW-II dataset.

to achieve the lowest value of ASC since it can capture the
color variations between two images and decorrelates the
color components of the difference matrices between two
images; (ii) the final performances of different color spaces
are quite related to the value of ASC and lower value of
ASC usually will result in better performance.

7.3. The Robustness to Illumination Variations

To show the robustness to illumination variation for our
proposed method, two groups of experiments are conducted
for InCS and GInCS respectively.

In particular, the first group of experiments evaluates the
robustness of InCS to illumination variations under a re-



KinFaceW-I F-S F-D M-S M-D Mean
InCS 66.35 60.06 60.76 69.67 64.21
InCS + LI 66.35 60.06 60.76 69.67 64.21
InCS + LC 66.35 60.06 60.76 69.67 64.21
KinFaceW-II F-S F-D M-S M-D Mean
InCS 73.60 62.40 71.40 71.80 69.80
InCS + LI 73.60 62.40 71.40 71.80 69.80
InCS + LC 73.60 62.40 71.40 71.80 69.80

Table 9. Performance on the KinFaceW-I and the KinFaceW-II
datasets when illumination changes. “LI” means light intensity
change and “LC” means light color change.

stricted illumination condition: for each pair of images, the
same diagonal transformation L and the same shift s are ap-
plied, while for different pairs, the diagonal transformation
L and the shift s may be different. We conduct the following
experiments for this group: (i) First, the diagonal transfor-
mation L, whose elements fall into (0, 1], is randomly gen-
erated and the elements of s are set to zero for evaluating
the robustness to light intensity change (LI) and light color
change (LC). As shown in table 9, our InCS is indeed invari-
ance to light intensity change and light color change under
the restricted illumination condition. (ii) Second, the diag-
onal transformation L is randomly generated and so is the
shift s for evaluating the robustness to light intensity shift
(LS), light intensity change and shift (LIs) as well as light
color change and shift (LCs). The Euclidean distance is ap-
plied. Transformed image pixel values outside the range [0,
255] are still kept but normalized later. As shown in ta-
ble 10, our InCS is indeed invariant to light intensity shift,
light intensity change and shift as well as light color change
and shift under the restricted illumination condition with the
help of our CSM or the Euclidean distance. Note that all the
experiments are conducted for five times and the average re-
sults are reported. The results are exactly the same for all
five iterations with our CSM or the Euclidean distance. But
cosine similarity produces slightly different results for each
iteration.

The second group of experiments assesses the robustness
of GInCS to illumination variations under a more general
illumination condition: the diagonal transformation L and
the shift s are different for all the images (no matter within
or between the image pairs). Similarly, transformed image
pixel values outside the range [0, 255] are still kept but nor-
malized later. The results in table 11 show that our GInCS
method achieves illumination robustness to light intensity
change, light color change, light intensity shift, light inten-
sity change and shift as well as light color change and shift.
Note that all the experiments are also conducted for five
times and the average results are reported. Due to the ran-
domness of computing the Fisher vector (random sampling

KinFaceW-I F-S F-D M-S M-D Mean
InCS 66.35 60.06 60.76 69.67 64.21
InCS + LS 66.35 60.06 60.76 69.67 64.21
InCS + LIs 66.35 60.06 60.76 69.67 64.21
InCS + LCs 66.35 60.06 60.76 69.67 64.21
KinFaceW-II F-S F-D M-S M-D Mean
InCS 73.60 62.40 71.40 71.80 69.80
InCS + LS 73.60 62.40 71.40 71.80 69.80
InCS + LIs 73.60 62.40 71.40 71.80 69.80
InCS + LCs 73.60 62.40 71.40 71.80 69.80

Table 10. Performance on the KinFaceW-I and the KinFaceW-II
datasets when illumination changes. “LS” means light intensity
shift, “LIs” means light intensity change and shift, and “LCs”
means light color change and shift.

KinFaceW-I F-S F-D M-S M-D Mean
GInCS 77.25 76.90 75.82 81.44 77.85
GInCS + LI 77.25 76.54 77.99 80.98 78.19
GInCS + LC 76.60 76.90 76.70 80.20 77.60
GInCS + LS 77.25 76.51 77.99 81.07 78.20
GInCS + LIs 77.25 75.41 77.55 80.61 77.71
GInCS + LCs 77.25 76.15 77.12 79.81 77.58
KinFaceW-II F-S F-D M-S M-D Mean
GInCS 85.40 77.00 81.60 81.60 81.40
GInCS + LI 85.29 77.60 81.80 81.60 81.57
GInCS + LC 85.93 77.00 82.00 81.40 81.58
GInCS + LS 84.97 77.00 82.20 80.40 81.14
GInCS + LIs 84.97 76.80 82.40 81.20 81.34
GInCS + LCs 84.97 77.00 82.80 80.80 81.39

Table 11. Performance of GInCS on the KinFaceW-I and the
KinFaceW-II dataset for different illumination variations

of SIFT descriptors to estimate the GMM model), some-
times slightly better results are produced.

8. Conclusion

This paper presents a novel inheritable color space for
kinship verification. A novel color similarity measure is first
defined. The InCS is then learned by pulling close kinship
pairs and pushing away non-kinship pairs. Further analysis
show that the InCS possesses the decorrelation property and
the robustness to the illumination variation. Then a general-
ized InCS framework is presented to extend the InCS from
the pixel level to the feature level. The evaluations show the
feasibility of the proposed method.
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