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Abstract

This paper presents a novel multiple anthropological
Fisher kernel (MAFK) framework for kinship verification.
The proposed MAFK framework, which goes beyond the
Mahalanobis distance metric learning, integrates multiple
anthropology inspired features and derives semantically
meaningful similarities between images. The major nov-
elty of this paper comes from the following three aspects.
First, three new anthropology inspired features (AIF) are
derived by extracting the AIF-SIFT, AIF-WLD and AIF-
DAISY features on images that are enhanced by an anthro-
pology inspired similarity enhancement method extended
from the SIFT flow method. Second, a novel multiple an-
thropological Fisher kernel framework (MAFK) is proposed
which combines multiple features and their metrics between
images in a unified paradigm. The MAFK is optimized
as a constrained, non-negative, and weighted variant of
the sparse representation problem regularized by the cri-
terion of pushing away the nearby non-kinship samples and
pulling close the kinship samples. Third, a novel normal-
ized kernel similarity measure (NKSM) is proposed by nor-
malizing the MAFK with the fractional power transforma-
tion and L2 normalization. The feasibility of the proposed
MAFK framework is assessed on two representative kinship
data sets, namely the KinFaceW-I and the KinFaceW-II data
sets. The experimental results show the effectiveness of the
proposed method.

1. Introduction

Kinship verification has been an important topic in an-
thropology for many years. Pioneer work in anthropology
[25], [1], [3] believe that there are some genetic related fea-
tures which are inherited by children from their parents that
can be used to determine the kinship relations. Recently,
kinship verification from facial images is gaining increas-
ing attention as an emerging research area in artificial intel-
ligence [9], [34], [24], [7], [21], [37], [20], [27].

Many feature methods have been proposed for describ-
ing facial images[16], [18], [33], [4], [5], [28]. These fea-
tures, which are designed specifically for distinguishing one
image from others (the discriminative ability), cannot guar-
antee that a child image is more similar to its parent image
than to other images (the inheritable ability). The major
reason is that these features are designed for recognition of
face image and thus cannot characterize the genetic rela-
tions between kinship images. Another reason is that the in-
herent similarity gap between kinship images is much larger
than that in the face recognition problem, e.g. LFW [12],
which means similarity between discriminative features is
not sufficient for kinship verification. Lu et al. [24] pro-
posed to apply a metric learning method on several features
and proposed the MNRML method by combining differ-
ent metrics on different features and subsequent work [36],
[37], [22] followed their pipeline by combining features
and metric learning methods sequentially. In their methods,
the features and the metric learning methods are developed
in different paradigms independently, which may attenuate
the effect when they are combined. Besides, most metric
learning methods are based on Mahalanobis distance met-
ric, which may not achieve the best performance in some
scenarios.

To address these issues, this paper proposes a novel mul-
tiple anthropological Fisher kernel (MAFK) framework for
kinship verification. The proposed method derives a seman-
tically meaningful similarity between images by combining
multiple anthropology inspired features and their metrics in
a unified paradigm. Specifically, three novel anthropology
inspired features (AIF) are first extracted, namely the AIF-
SIFT, AIF-WLD and AIF-DAISY features. The process of
deriving the anthropology inspired features consists of an
anthropology inspired similarity enhancement method and
the extraction of opponent color SIFT [15], color WLD-
SIFT and DAISY [29] descriptors based on the enhanced
image. In particular, the similarity enhancement method is
applied to kinship image pairs by extending the SIFT flow
method [19] and generating the enhanced images by rein-
forcing similar facial parts. The opponent SIFT descriptor,



Figure 1. The framework of the proposed MAFK method.

the color WLD-SIFT descriptor and the DAISY descriptor
are then extracted from the enhanced images. Second, a
novel MAFK framework is derived by learning a new metric
and weights for multiple features in a unified paradigm. In
particular, the new metric is learned while fixing the weights
by balancing the behavior of pushing away the k-nearest
non-kinship samples while pulling close the kinship ones
for each training pair. The weights are updated while fix-
ing the transformation. Finally, a normalized multiple sim-
ilarity measure is proposed based on the observation that
the fractional power transformation is able to transform the
data into a near Gaussian shape with a stable variance. This
is well suited for dot product based similarity measure like
the cosine similarity measure from the point of view of the
Bayes decision rule for minimum error [17]. The proposed
MAFK method is then evaluated on two challenging kinship
databases, KinFaceW-I and KinFaceW-II data set [24] and
the experimental results show the feasibility of the proposed
method.

2. Related Work
Facial images convey important characteristics such as

identity information, kinship information, facial expres-
sions, gender of a person, ethnicity, emotional information,
mental state of a person and so on. Among these many char-
acteristics, kinship is believed to be one of the most dom-
inant one since children naturally inherit genetic features
from their parents [34]. The work [9] by Fang et al. shows
the feasibility of applying computer vision techniques for
kinship verification. Xia et al. [34] proposed a transfer
subspace learning based algorithm by using the young par-

ents set as an intermediate set to reduce the significant di-
vergence in the appearance distributions between the facial
images of parents and their children. Lu et al. [24] pro-
posed the neighborhood repulsed metric learning (NRML)
method in which the intraclass samples within a kinship re-
lation are pulled as close as possible and interclass samples
are pushed as far as possible for kinship verification.

Dehghan et al. [7] proposed to apply the generative and
the discriminative gated autoencoders to learn the genetic
features and metrics together for kinship verification. Yan et
al. [36] proposed a multimetric learning method to combine
different complementary feature descriptors for kinship ver-
ification and later [37] proposed to learn the discriminative
mid-level features by constructing a reference data set in-
stead of using hand-crafted descriptors. Lu et al. [22] pre-
sented the results of various teams on the FG 2015 Kinship
Verification in the Wild challenge.

Metric learning methods have gained a lot of attention
for computer vision and machine learning applications. Ear-
lier work by Xing et al. [35] applied the semi-definite pro-
gramming to learn a Mahalanobis metric. Goldberger et al.
[10] proposed the neighborhood component analysis (NCA)
by minimizing the cross validation error of the kNN clas-
sifier. Weinberger et al. proposed the large margin near-
est neighbor (LMNN) [32] method which uses hinge loss
to encourage the related neighbors to be atleast one dis-
tance unit closer than points from other classes. Davis et al.
proposed the information-theoretic metric learning (ITML)
[6] method to learn a class of distance functions. Hieu
and Li [26] proposed the cosine similarity metric learning
(CSML) method which utilizes the favorable properties of



Figure 2. Visualization of SIFT images of different kinship relations using the top three principal components of SIFT descriptors extracted
from the image. The purple and orange regions in the visualization highlight the inheritable genetic feature regions in the kinship images.

cosine similarity. Lu et al. [24] proposed the neighbor-
hood repulsed metric learning (NRML) method for kinship
verification which pays more attention to the neighborhood
samples. Lu et al. [23] proposed the discriminative deep
metric learning (DDML) method that trains a deep neur-
nal network for learning a discriminative set of hierarchi-
cal transformations to project the face pairs in a discrimina-
tive subspace. A large-margin multi-metric learning method
was proposed by Hu et al. [11] which jointly learns global
distance metrics to maximize the correlations of different
feature representations of each sample. A marginalized de-
noising metric learning method was proposed by Wang et
al. [31] to explicitly preserve the intrinsic structure of data
and increase discrimination of the learned features.

3. Anthropology Inspired Feature Extraction
Naini et al. [25] analyzed the contributions of heredity

and environment on external facial features. Their anthro-
pological results [25] show that eyes, chin and parts of the
forehead show higher visual resemblance between parents
and their offspring and provide large feedback. From the
computer vision point of view, these high resemblance in
facial regions between kinship image pairs exhibit three im-
portant properties described as follows:

Given the notations that p = (x, y) is the grid coordinate
of the image, d(p) = (u(p), v(p)) is the displacement vec-
tor at p, u(p) and v(p) are two integers that represent the
displacements along the x and y axes from the coordinates
p, respectively. Let s1 and s2 be the two dense SIFT de-
scriptors to be measured, and ε represent the set of all the
spatial neighborhoods.

• First, these facial regions between kinship image pairs
have high visual resemblance (e.g. their eyes resem-
ble each other), which means their local descriptors are
similar, namely ‖s1(p)− s2(p + d(p))‖ is small.

• Second, these facial regions should be at similar rel-
ative locations on two faces (e.g. their eyes appear

at similar locations on two faces), which means there
may be a small displacement between the centers of
two local descriptors, namely ‖d(p)‖ is small.

• Third, the neighborhood regions of high resemblance
facial regions tend to be similar (e.g. the neighbor-
hood small regions around the center of eyes tend to
be smoothly changed), which means ‖d(p)− d(q)‖ is
small where (p,q) ∈ ε.

Inspired by these anthropological observations, we pro-
pose three novel anthropology inspired features to capture
these high resemblance facial regions between parents and
their children. First, we present a new anthropology in-
spired similarity enhancement (AISE) method by extending
the SIFT flow [19] method from the scene alignment to kin-
ship image pairs. The SIFT flow algorithm matches densely
sampled SIFT features and finds correspondence estimated
by SIFT flow. The objective function for SIFT flow [19] is
defined as follows:

E(d) =
∑

p

(‖s1(p)− s2(p + d(p))‖1)+∑
p

η(‖d(p)‖1) +
∑

p,q∈ε
θ(‖d(p)− d(q)‖1)

(1)

where η is the set of neighbors and θ is the weight of the
third term. The SIFT flow method satisfies the three proper-
ties of high visual resemblance facial regions between kin-
ship pairs. It is therefore suitable to be extended to kin-
ship image pairs for capturing the inheritable information
between parents and children. The estimated SIFT flow is
applied to reinforce the high visual resemblance facial re-
gions and generate similarity enhanced images.

To visualize the effectiveness of our method, the top
three principal components of the SIFT descriptors of the
image are mapped to the principal components of the RGB
space, as shown in figure 2. The purple and the orange re-
gions in the visualization highlight the high visual resem-
blance regions in the kinship images. It can be discovered



that these regions focus on eyes, mouth, chin and parts of
the forehead. Therefore our proposed AISE method derives
interesting phenomena that are consistent to the anthropol-
ogy results in [25]. Other interesting patterns can also be
deduced for different relations from figure 2. It can be
observed that the father-son and mother-daughter relation
show large visual correspondence in different parts of fa-
cial regions leading to the deduction that individuals of the
same gender in kinship relations share higher visual resem-
blance. It can also be seen that mother-daughter relation has
higher genetic responses compared to father-daughter rela-
tion confirming the observation that mothers resemble their
daughters more as in [1].

The SIFT, WLD and DAISY descriptors are then ex-
tracted from the similarity enhanced images derived by
our anthropology inspired similarity enhancement method.
Therefore we name these three anthropology inspired fea-
tures as AIF-SIFT, AIF-WLD and AIF-DAISY. In particu-
lar, the AIF-SIFT feature is computed in the opponent color
space [15] of the enhanced image. We then derive densely
sampled SIFT features from the image encoded by the We-
ber local descriptors (WLD) and the process is repeated sep-
arately for the three components of the image resulting in
color AIF-WLD feature. To improve the robustness against
photometric and geometric transformations of the enhanced
image, dense AIF-DAISY descriptors are also computed.

4. Multiple Anthropological Fisher Kernel
Framework

The complementary nature of the discriminative and
generative approaches leads to the generative score space.
One example is the Fisher score [13], which has been
widely applied for visual classification problems such as
face recognition [28], object recognition [14]. In this sec-
tion, we extend the Fisher score from the classification
problem to the metric learning problem. Particularly, let
Xi = {lt, t = 1, 2, ..., T} be the set of T local descriptors
extracted from an image of the i−th pair. Similarly, we de-
fine Yi for the other image of the i−th pair. Let p(X|λ) be
the probability density function of generating Xi or Yi with
a set of parameters λ, then the Fisher score is defined as
follows:

F(Xi) =
1

T
5λ log[p(Xi|λ)] (2)

As a matter of fact, the Fisher score is the gradient vector
of the log-likelihood that describes the contribution of the
parameters to the generation process. It therefore provides
information about the generative perspective of the features.
Based on the Fisher score, a score space based similarity
measure, namely the Fisher kernel [13], is derived as

KF (Xi,Yi) = (F(Xi))T I−1F(Yi) (3)

where I is the Fisher information matrix. The conventional
Fisher kernel provides a natural similarity measure between
images by considering the underlying probability distribu-
tion. However, three major issues inherent to the conven-
tional Fisher kernel are still waiting for solutions. First, the
conventional Fisher kernel fails to take into account the la-
bel information. Second, the Fisher information matrix I
is difficult to obtain and approximation techniques are not
sufficient to guarantee performance. Third, it only measures
the similarity of a single aspect between images, which de-
pends on the type of the local image descriptors.

Therefore, this paper presents a novel multiple anthropo-
logical Fisher kernel framework (MAFK) to address these
three issues. The MAFK learns a new distance metric that
captures the pairwise information, and the weights of mul-
tiple distance metrics that exploits information from dif-
ferent features. Specifically, the score space based multi-
ple distance metric is defined as follows with the weights
wc(c = 1, 2, ..., k):

D(Xi,Yi) =
k∑
c=1

wcDc(Xci ,Y
c
i )

=

k∑
c=1

wc(pci )
TM(cci )

=

k∑
c=1

wc(pci )
TWWT (cci )

=

k∑
c=1

wc(xci )
T (yci )

(4)

where pci = F(Xi), cci = F(Yi), xci = WTpci and
yci = WT cci (i = 1, 2, ...,m). It is easy to see that matrix
M = WWT is symmetric and positive definite. To keep the
notation simple, we use D(xi, yi) instead of D(Xi,Yi) in
the remaining parts of the paper, where xi is the vector that
represents the image derived from the feature descriptors in
Xi. The introduction of W alleviates the assumptions on the
Fisher information matrix since W can be learned from the
training data and contains sufficient information for recog-
nizing kinship relations.

The derivation of W and wc consists of two iterative
procedures. Let D = {(xci , yci )|xci , yci ∈ Rn×1(i =
1, 2, ...,m, c = 1, 2, ..., k)} where k is the number of the
type of features and m is the number of training samples.
The main purpose of the transformation W and weights wc
is to push away the nearby non-kinship samples as far as
possible while pulling the kinship relation samples as close
as possible, and approximate the ideal similarity matrix. In
other words, the distance between xci and yci should be as
small as possible if xci and yci have kinship relations and the
distance should be as large as possible otherwise. There-
fore, the objective function for the MAFK method can be



formulated as follows.

min
W,wc

‖DI −
k∑
c=1

wcDc‖2F + α

k∑
c=1

w2
c + λ

k∑
c=1

dc|wc|

s.t.WTW = I,
k∑
c=1

wc = 1, wc > 0

(5)

In the above objective function, the first and second term
show the reconstruction criterion and the regularization for
the weights of different metrics. The third term represents
the criterion of pushing away the nearby non-kinship sam-
ples as far as possible while pulling the kinship samples as
close as possible. dc is defined as follows:

dc =

m∑
i=1

2 ∗Dc(xci , y
c
i )−Dc(xci , (y

c
i )
∗)−Dc((xci )

∗, yci )

= Tr (WT (2Mc
1 −Mc

2 −Mc
3)W)

(6)
where Mc

1 =
∑m
i=1 pci (cci )T , (xci )∗ is the nearest neighbor

of xci , (yci )∗ is the nearest neighbor of yci , Dc ∈ Rm×m is
the similarity matrix for the c-th feature (c = 1, 2, ..., k)
and DI ∈ Rm×m is the ideal similarity matrix which
is derived by multiplying the scaled label vector (0.5 for
scaling in our experiment) with its transpose. Note that
Mc

1 is not symmetric and we make it symmetric by using
Mc

1 = (Mc
1 + (Mc

1)
T )/2 without influencing the value of

dc. Mc
2 and Mc

3 are computed in a similar way.
Now the problem becomes a constrained, non-negative,

and weighted variant of the sparse representation problem.
The term

∑k
c=1 dc|wc| that corresponds to the criterion of

pushing away the nearby non-kinship samples and pulling
close the kinship samples behaves as a regularization for
the multiple metric learning problem. The objective func-
tion in equation 5 is optimized using an iterative procedure.
Specifically, given the fixed wc, we approximately update
W by discarding the reconstruction criterion and optimiz-
ing the following objective function:

max
W

Tr(WT
k∑
c=1

wc(Mc
2 + Mc

3 − 2Mc
1)W)

s.t.WTW = I

(7)

This can be done by deriving the eigenvectors of the matrix∑k
c=1 wc(M

c
2 + Mc

3 − 2Mc
1).

Then given the W, we optimize the following problem
to derive wc:

min
wc

‖DI −
k∑
c=1

wcDc‖2F + α

k∑
c=1

w2
c + λ

k∑
c=1

dc|wc|

s.t.

k∑
c=1

wc = 1, wc > 0

(8)

We apply the FISTA algorithm [2] to optimize the ob-
jective function defined in equation 8. The structure of the
FISTA algorithm remains the same but the proximal oper-
ator is different since our method is a constrained, nonneg-
ative, and weighted variation of the sparse representation
problem. We thus replace the original soft thresholding op-
erator in the FISTA algorithm with an efficient projection
operator [8] considering the non-negative constraint. In or-
der to further improve the efficiency of the optimization pro-
cess, we transform the objective function defined in equa-
tion 8 into a quadratic programming problem by using the
fact that λ

∑k
c=1 dc|wc| = λ

∑k
c=1 dcwc since wc > 0.

After the MAFK is derived, a novel normalized multiple
similarity measure (NMSM) is further proposed, where the
MAFK is normalized as follows

NMSM(xi, yi) =
k∑
c=1

wc
Dc(g(xci ), g(yci ))

‖WT g(xci )‖‖W
T g(yci )‖

(9)

where g(x) is the power transformation defined as g(x) =
sign(x)|x|β , β (0 < β < 1) is the power parameter, and
both the power and the sign operations are element-wise.

The proposed NMSM takes advantage of normalization
through fractional power transformation and the L2 nor-
malization. The fractional power transformation is able to
transform from the data into a near Gaussian shape with a
stable variance [14], [30]. With the help of the L2 normal-
ization, it can be proved that the NMSM is proportional to a
weighted linear combination of the whitened cosine similar-
ity measure for each feature. This shows its theoretical roots
to the Bayes decision rule for minimum error [17] under
some conditions such as the multivariate Gaussian distribu-
tion assumption, therefore, provides theoretical guarantee
to achieve better performance.

Figure 3. Example images from the KinFaceW-I and KinFaceW-II
data set



Table 1. Comparison between the MAFK and other methods on
the KinFaceW-I data set

Methods F-S F-D M-S M-D Mean
CSML [26] 61.10 58.10 60.90 70.00 62.50
NCA [10] 62.10 57.10 61.90 69.00 62.30
LMNN [32] 63.10 58.10 62.90 70.00 63.30
NRML [24] 64.10 59.10 63.90 71.00 64.30
MNRML [24] 72.50 66.50 66.20 72.00 69.90
ITML [6] 75.30 64.30 69.30 76.00 71.20
DMML [36] 74.50 69.50 69.50 75.50 72.25
MPDFL [37] 73.50 67.50 66.10 73.10 70.10
GGA [7] 70.50 70.00 67.20 74.30 70.50
DGA [7] 76.40 72.50 71.90 77.30 74.50
Polito [22] 85.30 85.80 87.50 86.70 86.30
LIRIS [22] 83.04 80.63 82.30 84.98 82.74
NUAA [22] 86.25 80.64 81.03 83.93 82.96
DDMML [23] 86.40 79.10 81.40 87.00 83.50
MAFK 88.15 85.22 82.41 90.95 86.68

5. Experiments

This section evaluates the effectiveness of our pro-
posed method on two challenging kinship databases: the
KinFaceW-I data set and the KinFaceW-II data set [24].
These two data sets contain images for four kinship
relations, namely, father-son (F-S), father-daughter (F-
D), mother-son (M-S), and mother-daughter (M-D). The
KinFaceW-I data set has 156, 134, 116, and 127 image
pairs for each relation respectively, whereas, the KinFaceW-
II data set has 250 image pairs for each kinship relation.
Example images are shown in figure 3. The parameters for
the MAFK method are selected based on a grid search with
cross validation approach. In our experiments, we follow
the experimental protocol as defined in [24], [22] to have a
fair comparison with other methods.

5.1. Implementation Details

The AISE method is first applied to derive the similarity
enhanced images. Second, we derive the AIF-DAISY fea-
ture and the AIF-WLD feature on the similarity enhanced
images. The dense color SIFT feature is derived with a step
size of 1 and five scale patch sizes as 2, 4, 6, 8, 10. Then, the
dimensionality of the opponent color SIFT feature is further
reduced to 64 by PCA. The spatial information [28] is also
added to the SIFT feature increasing the dimension to 66.
The AIF-WLD and the AIF-DAISY features are computed
similarly. For the AIF-DAISY feature, the dimensionality
is reduced from 200 to 66 by PCA. Afterwards, a Gaus-
sian mixture model with 256 components is estimated for
the Fisher score computation. Then the score space based
multiple metric learning is learned from the data with the

Table 2. Comparison between the MAFK and other methods on
the KinFaceW-II data set

Methods F-S F-D M-S M-D Mean
CSML [26] 71.80 68.10 73.80 74.00 71.90
NCA [10] 73.80 70.10 74.80 75.00 73.50
LMNN [32] 74.80 71.10 75.80 76.00 74.50
NRML [24] 76.80 73.10 76.80 77.00 75.70
MNRML [24] 76.90 74.30 77.40 77.60 76.50
ITML [6] 69.10 67.00 65.60 68.30 67.50
DMML [36] 78.50 76.50 78.50 79.50 78.25
MPDFL [37] 77.30 74.70 77.80 78.00 77.00
GGA [7] 81.80 74.30 80.50 80.80 79.40
DGA [7] 83.90 76.70 83.40 84.80 82.20
Polito [22] 84.00 82.20 84.80 81.20 83.10
LIRIS [22] 89.40 83.60 86.20 85.00 86.05
NUAA [22] 84.40 81.60 82.80 81.60 82.50
DDMML [23] 87.40 83.80 83.20 83.00 84.30
MAFK 91.40 87.20 90.80 89.80 89.80

parameters α = 1 and λ = 0.1 for both the KinFaceW-I
data set and the KinFaceW-II data set. The normalized mul-
tiple similarity measure with β = 0.5 is applied. Finally a
two class support vector machine is used to determine the
kinship relations between images.

5.2. Comparison with popular learning methods

The experimental results in table 1 and table 2 show
that our method is able to achieve better performance com-
pared to other learning methods. Note that our method
can improve upon other learning methods that use multi-
ple features, such as MNRML [24], DMML [36], DDMML
[23], Polito [22], LIRIS [22] and MPDFL[37]. The MN-
RML [24] method uses multiple facial feature representa-
tions in a common learned distance metric so that comple-
mentary information can be used to improve the verifica-
tion performance. The DMML [36] method simultaneously
learns multiple distance metrics using local features such
as LBP, SPLE and SIFT to extract different and comple-
mentary information from each face image. The DDMML
[23] method jointly learns multiple neural networks so that
the correlation of different features of each sample is maxi-
mized. The Polito [22] group proposed a multi-perspective
approach to kinship verification by applying a multi-step
feature selection process on three features namely LPQ,
TBLBP and WLD. Similarly, the LIRIS [22] group applied
the triangular similarity metric learning method (TSML)
on four different face descriptors LBP, HOG, OCLBP and
FV. The multiview prototype-based discriminative feature
learning (MPDFL) method learns a common coefficient ma-
trix using multiple low-level descriptors such as LBP, SPLE
and SIFT for mid-level feature representation.



Table 3. Evaluation of the effectiveness of the anthropology in-
spired features (AIF-SIFT, AIF-WLD and AIF-DAISY) on the
KinFaceW-I and the KinFaceW-II data sets.

KinFaceW-I F-S F-D M-S M-D Mean
SIFT 73.41 69.02 66.40 79.56 72.09
WLD 73.35 65.69 70.69 71.70 70.36
DAISY 71.79 65.68 66.34 75.96 69.94
AIF-SIFT 75.61 72.75 75.04 85.87 77.32
AIF-WLD 85.27 78.40 79.40 84.18 82.22
AIF-DAISY 80.75 81.40 77.60 84.18 80.98
MAFK 88.15 85.22 82.41 90.95 86.68
KinFaceW-II F-S F-D M-S M-D Mean
SIFT 80.40 70.20 79.80 80.00 77.60
WLD 68.80 62.00 63.20 65.00 64.75
DAISY 76.40 69.80 71.00 70.60 71.95
AIF-SIFT 88.20 82.00 87.80 85.20 85.80
AIF-WLD 75.40 71.60 73.00 77.00 74.25
AIF-DAISY 87.80 85.00 89.20 86.00 87.00
MAFK 91.40 87.20 90.80 89.80 89.80

The second observation is that our method often achieves
better results on F-S and M-D kinship relations than F-D
and M-S kinship relations, which is consistent to the an-
thropological results [1]. The reason is that the similarity
variation between images of different gender is larger than
the images of the same gender, and our proposed MAFK
method is able to capture such a variation by learning the
new transformation and the weights of multiple features.

The third observation is that our proposed MAFK
method achieves more improvement on the KinFaceW-II
data set compared to the KinFaceW-I data set. The rea-
son is due to the availability of more training samples in the
KinFaceW-II data set.

To better visualize the difference between our proposed
MAFK method and other learning methods, the ROC curves
of different methods on the KinFaceW-I and KinFaceW-II
data sets are shown in figures 4 and 5. It can be seen that the
ROC curves of the proposed method are higher compared to
other multi-metric learning methods.

5.3. Evaluation of the Anthropology Inspired Fea-
tures

This section assesses the effectiveness of the anthropol-
ogy inspired features (AIF). Note that three anthropology
inspired features (AIF-SIFT, AIF-WLD and AIF-DAISY
features) are evaluated separately first (simply assign the
weight of the feature set to 1, and others to 0). Similarly,
without applying the AISE method for deriving similar-
ity enhanced images, we do the same for SIFT, WLD and
DAISY features separately to obtain the results. The exper-

imental results in table 3 show that the performance of the
anthropology inspired features (AIF-SIFT, AIF-WLD and
AIF-DAISY features) derived from the enhanced images
using the AISE method significantly improve the perfor-
mance of SIFT, WLD and DAISY features without applying
the AISE method.

6. Conclusion

This paper presents a novel multiple anthropological
Fisher kernel framework (MAFK) for kinship verification.
First, three new anthropology inspired features are ex-
tracted, namely the AIF-SIFT, AIF-WLD and AIF-DAISY
features. Second, a multiple anthropological Fisher kernel
framework is proposed to combine multiple features and
their metrics between images in a unified paradigm by itera-
tively learning a new transformation and the weights. Third,
a novel normalized multiple similarity measure is presented
for effective normalization. Experimental results show that
the proposed method is able to achieve better results com-
pared to other popular methods for kinship verification.
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