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ABSTRACT

Anthropology studies show that genetic features are in-
herited by children from their parents resulting in visual
resemblance between them. This paper presents a novel SIFT
flow based genetic Fisher vector feature (SF-GFVF) which
enhances the facial genetic features for kinship verification.
The proposed SF-GFVF feature is derived by applying a
novel similarity enhancement method based on SIFT flow
and learning an inheritable transformation on the Fisher vec-
tor feature so as to enhance and encode the genetic features
of parent and child image in kinship relations. In particular,
the similarity enhancement method is first presented by ap-
plying the SIFT flow algorithm to the densely sampled SIFT
features in order to intensify the genetic features. Further
analysis shows the relation of the extracted genetic features
to anthropological results and discovers interesting patterns
in different kinship relations. Finally, an inheritable transfor-
mation is applied to the enhanced Fisher vector feature which
is learned with the criterion of minimizing the distance be-
tween kinship samples and maximizing the distance between
non-kinship samples. Experimental results on the two repre-
sentative kinship databases, namely the KinFace W-I and the
Kinship W-II data sets show that the proposed method is able
to outperform other popular methods.

Index Terms— SIFT flow based genetic Fisher vector
feature, kinship verification, inheritable transformation.

1. INTRODUCTION

Kinship verification from facial images, which is an emerging
research area in computer vision, has gained increasing atten-
tion in recent years [1], [2], [3], [4], [5]. Pioneer works in
anthropology [6], [7] believe that there are some genetic re-
lated features which are inherited by children from its parents
that can be used to determine the kinship relations.

Kinship verification is a challenging task as the correlated
visual resemblance between parents and their offspring have
to be captured. In order to effectively classify kinship rela-
tions, the genetic features between parent and child have to
be enhanced and encoded in the feature representation. Many
feature representation methods such as LBP [8], Gabor fea-
tures [9], Fisher vector [10], learning-based (LE) descriptor

Fig. 1. The framework of our proposed SF-GFVF feature.

[11], etc. have been proposed for representing face images.
But these methods are not explicitly designed in order to cap-
ture and enhance the similarities and genetic relations be-
tween parent and child images. Another issue is that unlike
traditional face recognition problem, the similarity gap be-
tween kinship images is much larger specifying the need for
more powerful visual features.

To address these issues, this paper proposes a novel SIFT
flow based genetic Fisher vector feature with applications to
kinship verification. We enhance the genetic inheritable fea-
tures of parent and child image in kinship relations by match-
ing densely sampled SIFT features and visual correspondence
between them using the SIFT flow algorithm [15]. We ana-
lyze and correlate the enhanced genetic features to the anthro-
pological results and find interesting patterns in different kin-
ship relations. We then apply an inheritable transformation
with the objective of pushing the non-kinship samples as far
as possible and pulling the kinship samples as close as possi-
ble. The experimental results on the two challenging kinship
databases, the KinFace W-I and the Kinship W-II dataset [3]



show the effectiveness of the proposed method. The frame-
work of our proposed method is illustrated in figure 1.

2. RELATED WORK

Several research efforts have been invested in kinship verifica-
tion by the anthropology and the computer vision community.
Studies [6, 7] in anthropology have confirmed that children
resemble their parent more than other people and they may
resemble a particular parent more at different ages. Lu et al.
[3] proposed neighborhood repulsed metric learning (NRML)
in which the intraclass samples within a kinship relation are
pulled as close as possible and interclass samples are pushed
away for kinship verification. Dehghan et al. [4] proposed
to apply the generative and the discriminative gated autoen-
coders to learn the genetic features and metrics together for
kinship verification. Lu et al. [12] presented the results of var-
ious teams on the FG 2015 Kinship Verification in the Wild
challenge.

Many feature representation methods have been proposed
to represent face images. Liu et al. [9] showed the effec-
tiveness of Gabor features for face recognition. Wolf et al.
[13] proposed the three-patch LBP computed by comparing
the values of three patches. Cao et al. [11] proposed the
learning-based (LE) descriptor which is learned by unsuper-
vised learning techniques. Simonyan et al. [10] proposed
to apply the Fisher vectors [14] for face verification which
achieves very good performance.

3. SIFT FLOW BASED GENETIC FISHER VECTOR
FEATURE

3.1. SIFT Flow based Similarity Enhancement Method

We present a novel similarity enhancement method by extend-
ing the SIFT flow algorithm [15] for kinship images so as to
find inheritable feature relations between the kinship images
and enhance the similarities between them. The SIFT flow al-
gorithm matches the densely sampled SIFT features and finds
the correspondence estimated by SIFT flow. It can be formu-
lated similarly as the optical flow wherein SIFT descriptors
are matched instead of the pixel to pixel correspondences be-
tween two images. The SIFT flow is based on the criteria that
the SIFT descriptors are matched along the flow vectors and
the flow field is smooth [15]. The energy function for SIFT
flow [15] is defined as follows:

E(w) =
∑

p

min(‖s1(p) + s2(p + w(p))‖1, t)+∑
p

η(|u(p) + v(p)|) +
∑
p,qεε

min(α|u(p) + u(q)|, d)+

min(α|v(p) + v(q)|, d)

(1)

where p = (x, y) are the grid coordinate of images, w(p) =
(u(p), v(p)) is the flow vector at p, s1, s2 are the two SIFT

images to be matched and ε contains all the spatial neighbor-
hoods.

To visualize the SIFT images, the top three principal com-
ponents of the SIFT image are mapped to the principal com-
ponents of the RGB space, as shown in figure 2. The purple
and the orange regions in the visualization highlight the in-
heritable genetic feature regions in the kinship images. Our
objective is to enhance these genetic regions in the kinship
images. For a query parent-child image pair, the SIFT flow is
applied to match dense correspondences between the parent
and the child SIFT descriptors. If the image pair is in kinship
relation, the genetic facial regions are enhanced by adding
weights to those specific facial regions.

Our proposed similarity enhancement method results in
interesting phenomena that correlate the enhanced genetic
features to the anthropological features. Naini et.al [16]
analyzed the contributions of heredity and environment on
external facial features. The relative strength of genetic influ-
ence on different facial parameters is assessed using optical
surface scanning and twin method. The anthropological re-
sults [16] show that eyes, chin and parts of the forehead show
higher visual resemblance between parent and their offspring
and provide large feedback. The results shown in figure 2
show high correlation to the anthropological results with high
feedback in parts of forehead and eye regions. Interesting
patterns can be deduced for different relations from figure 2.
It can be observed that the father-son and mother-daughter
relation show large visual correspondence in different parts
of facial regions leading to the deduction that individuals of
the same gender in kinship relations share higher visual re-
semblance. It can also be seen that mother-daughter relation
has higher genetic responses compared to father-daughter re-
lation confirming the observation that mothers resemble their
daughters more as in [6].

3.2. Inheritable Genetic Transformation

We first briefly review the Fisher vector method. Fisher vec-
tor is widely used for visual recognition problems such as
face recognition [10], object recognition [14]. Particularly,
let X = {dt, t = 1, 2, ..., T} be the set of T local descriptors
extracted from the image. Let µλ be the probability density
function of X with a set of parameters λ, then the Fisher ker-
nel [14] is defined as follows: K(X,Y) = (GX

λ )TF−1λ GY
λ

where GX
λ = 1

T 5λ log[µλ(X)], which is the gradient vec-
tor of the log-likelihood that describes the contribution of the
parameters to the generation process. And Fλ is the Fisher
information matrix of µλ. Essentially, the Fisher vector is de-
rived from the explicit decomposition of the Fisher kernel as
the symmetric and positive definite Fisher information matrix
Fλ has a Cholesky decomposition as F−1λ = LTλLλ. There-
fore, the Fisher kernel K(X,Y) can be written as a dot prod-
uct between two vectors LλGX

λ and LλGY
λ which are defined

as the Fisher vectors of X and Y respectively. Fisher vector



Fig. 2. Visualization of SIFT images of different kinship relations using the top three principal components of SIFT descriptors.
The purple and orange regions in the visualization highlight the inheritable genetic feature regions in the kinship images.

focuses on the image specific features and discards the image
independent features but this does not guarantee enhancement
of genetic features in parent and child images.

We therefore learn an inheritable genetic transformation
W on the SIFT flow based genetic Fisher vector pi(i =
1, 2, ...,m) and ci(i = 1, 2, ...,m) for each training pairs (pi,
ci) where pi denotes the parent image and ci denotes the child
image. The learned SF-GFVF for the parent and child image
are as follows: ui = WTpi and vi = WT ci. The objective
of learning the inheritable transformation is to minimize the
distance between ui and vi if ui and vi have kinship relations
and maximize the distance otherwise.

Let D = {(ui, vi)|ui, vi ∈ Rn×1(i = 1, 2, ...,m)} be the
training data that consists of m pairs of SIFT flow based ge-
netic Fisher vector features derived from the kinship images.
Therefore, multiple objectives for the SF-GFVF method can
be formulated as:

max
W

(d2(ui, v∗i )− d2(ui, vi))

max
W

(d2(u∗i , vi)− d2(ui, vi))
(2)

where d2(ui, vi) = (pi−ci)TWWT (pi−ci), u∗i is the nearest
neighbor of ui and v∗i is the nearest neighbor of vi. Note
that there are 2*m objective functions in equation 2 since i =
1, 2, ...,m.

In practice, it is difficult to solve a multiple objective prob-
lem for high dimensions since it is computationally expensive
and a single solution may not exist. Therefore, linear scalar-
ization [17] is applied in order to convert the multi-objective
problem into a single objective function with a weighted sum
of the individual objective functions. Assuming the same
weight λ2i for the objective functions of each training pair
(ui, vi), we want to maximize the following objective func-
tion:

max
W

m∑
i=1

λ2i (d
2(ui, v∗i ) + d2(u∗i , vi)− 2 ∗ d2(ui, vi))

s.t.

m∑
i=1

λi = 1,WTW = I
(3)

Then objective function in equation 3 can be further simpli-
fied as Tr (WT (Q1 + Q2 − 2Q3)W) where Q1 =

∑m
i=1 λ

2
i (pi−

c∗i )(pi − c∗i )
T . Q2 and Q3 can be computed in a similar way.

Then the algorithm of optimizing the objective function in
equation 3 is summarized as follows.

Algorithm 1 SF-GFVF Learning Algorithm
Input: Training Images: D = {(ui, vi)|ui, vi ∈ Rn×1(i =
1, 2, ...,m)}
Output:Inheritable tranformation W

1: Step 1 (Initialization)
Initialize λi = 1/m and W = I

2: Step 2 W is fixed, optimize on λi

λi =
f−1(ui, vi)∑m
i=1 f

−1(ui, vi)
(4)

where f(ui, vi) = d2(ui, v∗i )+d2(u∗i , vi)−2∗d2(ui, vi)
3: Step 3 λi is fixed, update W

max
W

Tr(WT (Q1 + Q2 − 2Q3)W)

s.t.WTW = I
(5)

4: Step 4 Continue to Step 2 if not converged

After the SF-GFVF is derived, principal component anal-
ysis with whitening transformation is applied in order to ex-
tract the most expressive features. A fractional power co-
sine similarity measure (FPCSM) is then applied as follows
to compute the similarity between two images.

FPCSM(ui, vi) = CS(sign(ui)|ui|α, sign(vi)|vi|α) (6)

where CS(a,b) = aT b
‖a‖‖b‖ is the traditional cosine similarity

measure and α (0 < α < 1) is the power parameter.
The linear scalarization optimization procedure may be

similar to metric learning methods such as NRML [3] in terms
of mathematical formulas but the differences are as follows.
(i) Our method uses multiple objective function instead of



a common global objective function which helps to prevent
dominance of one term in the function over other terms. (ii)
Our method enhances the genetic features in kinship images
and is proposed from the feature learning point of view and
not the metric learning point of view.

4. EXPERIMENTS

This section demonstrates the performance of our proposed
method on two challenging kinship databases: the KinFaceW-
I dataset and the KinFaceW-II dataset [3]. There are four
kinship relations in both the datasets: father-son (F-S), father-
daughter (F-D), mother-son (M-S), and mother-daughter
(M-D). In KinFaceW-I dataset, each image pair in the kin-
ship relation was acquired from different photos whereas in
KinfaceW-II, they were obtained from the same photo. In
the KinFaceW-I dataset, there are 156, 134, 116, and 127
image pairs for each of the relations defined above. In the
KinFaceW-II dataset, there are 250 pairs of the images for
each relation. In our experiments, we conduct 5-fold cross
validation where both datasets are divided into five folds
having the same number of image pairs [3].

4.1. Comparison with other popular methods

This section presents the comparison between our proposed
SF-GFVF method and other state-of-the-art deep learning and
metric learning methods. In table 1 and 2, ANTH denotes an-
thropological results, GGA denotes gated autoencoders and
DGA denotes discriminative autoencoders. It can be observed
that the result on the KinFace W-II dataset is better than the
KinFace W-I dataset due to the availability of more training
samples. Another reason is that the KinFace W-II dataset con-
tains kinship images from the same photo therefore helps to
reduce the illumination and background noise compared to
the KinFace W-I dataset which contains kinship images from
the different photos. Experimental results in table 1 and table

Methods F-S F-D M-S M-D Mean
CSML [18] 61.10 58.10 60.90 70.00 62.50
NCA [19] 62.10 57.10 61.90 69.00 62.30
LMNN [20] 63.10 58.10 62.90 70.00 63.30
NRML [3] 64.10 59.10 63.90 71.00 64.30
MNRML [3] 72.50 66.50 66.20 72.00 69.90
ITML [21] 75.30 64.30 69.30 76.00 71.20
GGA [4] 70.50 70.00 67.20 74.30 70.50
ANTH [4] 72.50 71.50 70.80 75.60 72.60
DGA [4] 76.40 72.50 71.90 77.30 74.50
SF-GFVF 76.27 74.64 75.48 79.98 76.09

Table 1. Comparison between the SF-GFVF and other popu-
lar methods on the KinFaceW-I dataset

Methods F-S F-D M-S M-D Mean
CSML [18] 71.80 68.10 73.80 74.00 71.90
NCA [19] 73.80 70.10 74.80 75.00 73.50
LMNN [20] 74.80 71.10 75.80 76.00 74.50
NRML [3] 76.80 73.10 76.80 77.00 75.70
MNRML [3] 76.90 74.30 77.40 77.60 76.50
ITML [21] 69.10 67.00 65.60 68.30 67.50
GGA [4] 81.80 74.30 80.50 80.80 79.40
DGA [4] 83.90 76.70 83.40 84.80 82.20
SF-GFVF 87.20 79.60 88.00 87.80 85.65

Table 2. Comparison between the SF-GFVF and other popu-
lar methods on the KinFaceW-II dataset

KinFaceW-I F-S F-D M-S M-D Mean
FV 75.02 70.56 65.49 78.39 72.37
SF-GFVF 76.27 74.64 75.48 79.98 76.09
KinFaceW-II F-S F-D M-S M-D Mean
FV 80.00 68.60 79.40 78.20 76.55
SF-GFVF 87.20 79.60 88.00 87.80 85.65

Table 3. Comparison between the SF-GFVF and Fisher vec-
tor on the KinFaceW-I and KinFaceW-II dataset

2 show that our method outperforms deep learning methods
[4] and other metric learning based methods.

4.2. Comparison Between SF-GFVF and FV

This section presents the comparison between our proposed
SF-GFVF method and the original Fisher vector (FV) [14]
method. Experimental results in table 3 show that our pro-
posed SF-GFVF method improves upon the original FV
method by approximately 4 percent and 9 percent in the Kin-
Face W-I and KinFace W-II datasets respectively. The reason
is that the original Fisher vector method focuses on image
specific features but it does not enhance the genetic features
in kinship images. Our method uses the SIFT flow algorithm
and inheritable transformation to encode and enhance the
facial genetic features in kinship relations.

5. CONCLUSION

This paper presents a SIFT flow based inheritable Fisher vec-
tor feature (SF-GFVF) for kinship verification. The proposed
SF-GFVF feature uses SIFT flow algorithm to enhance the
genetic features in kinship images. An inheritable transfor-
mation is then applied to the enhanced Fisher vector by op-
timizing multiple objective functions. Experimental results
show that the proposed method is able to outperform other
popular methods for kinship verification.
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