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ABSTRACT

Multi-window interfaces allow users to work on logically in-
dependent tasks simultaneously in different sets of windows
and to move among these logical tasks at will (e.g., through
selecting a window in a different task). Hypertext back-
tracking should be able to treat each logical task separately.
Combining all traversals in a single chronological history log
would violate the user’s mental model and cause disorienta-
tion. In this paper we introduce task-based backtracking, a
technique for backtracking within the various logical tasks
a user may be working on at any given time. We present
a preliminary algorithm for its implementation. We also
discuss several ramifications of multi-window backtracking
including the types of events history logs must record, delet-
ing nodes from history logs that appear in multiple logical
tasks, and in general the choices hypermedia designers face
in multi-window environments.

Keywords: hypertext, hypermedia, backtracking, multiple
window, history log, session log, multiple pane.

1 INTRODUCTION

Characteristic features such as annotation and backtracking
distinguish hypertext and hypermedia systems from other
software applications that solely provide primitive “linking”
abilities [2,16,21]. As software environments become more
complex, designers must consider an increasing number of
facets of these features to serve users adequately [5]. For
example, annotation (reader-initiated comment and link au-
thoring) in cooperative software environments must cooper-
ate with access privileges among the individuals, work groups
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and “global” user community. Hypertext systems should re-
connect annotations to a generated document upon its regen- |
eration. Concerning backtracking, multi-window interfaces
allow users to work on separate tasks simultaneously in d-
ifferent windows. Hypertext backtracking should treat each -
task separately and not automatically combine all traversal- |
s in a single chronological “history log.” In this paper we |
discuss the ramifications of multi-window backtracking and |
present a preliminary algorithm for its implementation, ‘

Multiple windows allow users to display related nodes |
on the computer screen side-by-side, such as two linked ]
documents!. Users also can work on semi-independent sub- !
tasks of the same project, such as two sections of an an- ]
nual report. Here a user may traverse links between the ;
two subtasks on occasion, but primarily will work on each .
independently, traversing within separate clusters of nodes |
within each of the two subtasks. Many users work on en- |
tirely unrelated tasks in separate windows. An analyst can
prepare a multi-spreadsheet budget in one set of windows, }
while on the same computer screen performing a portfolio §
analysis for a client in another set of windows. Periodically {
he or she will switch to the other task by selecting one of its §
windows. Additionally, the analyst could have an unrelated:|
software application running in a third set of windows, such |
as hypertext-supported electronic mail. Occasionally the us- |
er will interrupt the other tasks to work here. Backtracking {
should reflect the user’s logical work flow in all these cases, ]

To illustrate backtracking alternatives, consider Figure 13 §
example. Suppose we have a multi-window hypermedia sys- |
tem, in which each document appears in a separate window.
Documents have links to other documents. A link traver-
sal from a document to anther might open a new window. }
Assume the user performs the following actions: 1

(i) Open Document A into Window A

(ii) Traverse a link from Document A to Document B,
opening it into Window B

(iii)Traverse a link from Document B to Document C,

1 A single software application may support these related nodes, or seps- .
rate applications may support each. Link services such as Sun Link Service
[20] and architecture’s such as Microcosm [9,11], Multicard [21], PROXHY
[13] and SP2 [23] facilitate links among windows in multiple applications,
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Figure 1: A Simple Multi-window Navigation Example

opening it into Window C

(iv) Click the mouse on Document B, making it the
active document, and its window the active window
(v) Traverse a link from Document B to Document D,
opening it into Window D

Now the user backtracks several times starting from Docu-
ment D all the way to Document A. Which of the following
paths will he or she follow? (Which path should he or she
follow?)

()b—-B—-C—-B-A
@D—B-—A
3D—-B—-C—A
4D—-C—-B-—A

Each of these paths could result, depending on a given hy-
pertext system’s design. Case (1) presents the most complete
form of backtracking. It follows a chronological order and
_ faithfully returns to every previously visited window, includ-
' ing a double return to Window B. Case (2) backtracks along
direct links only. It ignores the click from Document C
to Document B and thus the “tangential” traversal, which
 abruptly ends at Window C. Case (3) backtracks chronolog-
ically along each link traversal, revisiting each node only
' once. Case (4) backtracks chronologically to each node vis-
ited, either ignoring nodes activated through clicking, or only
revisiting nodes once.

Although none of the hypermedia literature addresses multi-
- window backtracking, research has progressed on other im-
portant backtracking issues. For example, several systems
display a chronological “history list” of recently visited nodes
' (orrecently traversed links) [18,19]. To reduce user disorien-
tation, Nielsen includes the time since the user last visited a
node in its history list entry [19). Users can “backjump” [18]

ECHT *94 Proceedings

to any node on the list. Normally the system then removes
the intervening nodes from the history list, presuming that
the user wished to pass them by. (Some systems such as Mi-
crocosm {9,11] and Rhythm [17] provide only history lists
without any explicit backtracking features. These systems
do not remove the intervening nodes.) Garzotto et al. have
modeled both parametric and conditional backtracking [12].
Parametric backtracking go-back(X) allows the user to enter
a node characteristic in the parameter X, which causes the
system to backtrack to the most recently traversed departure
node with that characteristic. Conditional backtracking go-
back(query-expression) evaluates guery-expression and re-
turns to the most recently traversed departure node satisfying
it. Landow discusses “arrival rhetoric”—how systems should
redisplay departure nodes upon backtracking [15]. One tech-
nique is to scroll to and highlight the link marker that the
user originally selected to initiate traversal. Research on
these important backtracking features applies equally well in
multi-window environments.

In this paper we shall address the following issues, which we
have not found elsewhere in the hypertext literature.

¢ What options exist besides chronological backtracking?

e What kind of data structure can support alternate back-
tracking schemes?

e When a user opens or selects a window, should the
history list record this event?

o Should backtracked nodes be deleted from the history
list?

e Could users repeatedly backtrack over the same se-
quence of (previously backtracked over) nodes?

In §2 we introduce task-based backtracking to complement
chronological backtracking for multi-window environments.
In §3 we describe the event structure and our extensions to
the history log to support both task-based and chronological
backtracking. §4 presents and contrasts algorithms for both
types of backtracking. §5 reflects on our results and describes
intended extensions to this research.

Apart from a note in the final section, we shall not differ-
entiate whether windows belong to the same or different
applications. The paper’s principles apply to hypertext (and
hypermedia) support for both situations, To a certain de-
gree, our conclusions apply to single-pane and multi-pane
single-window systems, as we also.shall explain in the final
section.

2 TASK-BASED BACKTRACKING

Assume that in Figure 1, Document A contains the summary
of an annual report, Document B contains its table of con-
4ents, and Documents C and D represent two separate and
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essentially independent sections of the report that share no
common links. In his or her own mind, the user can consider
working on each section as a logically separate. task. Thus
the user would find backtracking path D — B — A more
appropriate than, e.g., D — C — B — A when working on
Document D’s task. Backtracking to Document C actually
puts the user “out of context” temporarily, thus potentially
disorienting him or her. The longer the sequence of “out of
context” nodes, the greater the disorientation the user would
experience.

We designed task-based backtracking to complement chrono-
logical backtracking specifically for these types of cases. To
implement task-based backtracking, we employ a mechanism
which separates chronological link traversals into subtasks.
Every subtask consists of a sequence of link traversals (also
called an event-path). Subtasks represent a period of activity
during which the user traverses links among window belong-
ing to the same overall “logical task.” Opening and closing,
selecting or backtracking to another window all could signal
a switch to a different logical task. Thus we end the cur-
rent subtask whenever the user selects a different window or
backtracks, and begin a new subtask when the user next tra-
verses a link. A series of subtasks represents an entire logical
task. For example, we logically distinguish the subtasks com-
prising the path A — B — C from the subtasks comprising
the path A— B — D. (Logical tasks may overlap.) Logical
tasks are inferred dynamically—and only implicitly—during
backtracking?.

As we discuss in §3 and §4, backtracking within a single sub-
task proceeds chronologically while inter-task backtracking
(i.e., when backtracking spans multiple subtasks) will depend
on the policy incorporated by the system designer. When the
user backtracks beyond the start of a subtask Y, the system
searches for an earlier subtask X containing a destination
node N matching the departure node N of Y’s first entry.

When several subtasks contain node N, the designer’s policy °

will determine which subtask to continue backtracking along.
Designers typically will choose either the most chronolog-
ically recent subtask or the first subtask containing N as a
destination node. Alternatively the system could allow the
user to choose among the options, though this may disrupt
the user’s train of thought.

Task-based backtracking only can approximate the user’s
mental - model of a logical task. In Figure 1’s example, for
instance, if Documents C and D indeed belong to the same
logical task and the user simply selected Document B for
convenience, then task-based backtracking will bypass doc-
ument C in violation of the user’s mental model. Chrono-
logical backtracking would have matched this mental model
more accurately.

2] ogical tasks also could be inferred from the subtask logs of §3.2, which
extends beyond the scope of this paper’s analysis.
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3 'AN IMPLEMENTATION FRAME-
WORK

In §4 we present algorithms for implementing chronological
and task-based backtracking. In this section we present the
structures of the underlying events and traversal (history)
logs. '

3.1 Event Structure

We define an event as any user action which affects the sys-
tem status. These actions usually cause some change on the
user interface such as creating a new window or closing an
existing one. We classify events into forward, backwards
and switching events. Link traversal is a forward even-
t. Backtracking (executing a backtrack command) is a
backwards event. Selecting, opening and closing comprise
the switching events as each deactivates the current window
and activates a different one. (Closing a window activates
the window beneath it, if any,) To support different kind-
s of backtracking, the system keeps a complete set of user
event information, which we record in the following event
structure.

We represent each event by a tuple (I, A). The event iden-
tifier I provides a unique reference to the event. A contains
the set of attributes which characterizes the event. Event
attributes include the following:

Event-type An event can be one of five types:

e ‘traversal’ — traverse a link to a new (or already
displayed) window;

e ‘open’ — create a new window (or activate an
already displayed window) explicitly by execut-
ing an “‘open window,"” “open new document,” ot
“open new node" command; a '

o ‘select’ — activate an existing window directly by
selecting it, not through any link traversal;

o ‘close’ —close an existing window directly by ex-
ecuting a “close window” or “close node” com-
mand; and

o ‘backtrack’ - backtrack along a link, or more
generally, along a previous event by executing a
“backtrack” command.

Departure-object This field contains the identifier of the -
“departure” node from which an event originates. For |
congciseness, in the rest of the paper we assume that each
node is displayed in an entire single window and shall -
not distinguish between nodes and their windows. ;

Destination-object This field identifies the identifier of the
“destination” node that the event activates. i




Subtask-log-id This field indicates the subtask log (see §3.2)
referencing this event.

Log-index This field contains an integer indicating the even-
t*s chronological position in the chronological log (see
§3.2). This attribute applies only to traversal events,

Backtracked-index This contains the Log-index of the
event backtracked over for a backtrack event. When
backtracking over a switching event, this field will con-
tain the Log-index of the initiating event’s departure
node.

| The system stores events in a system session structure called
system traversal logs, which we describe next.

32 System Traversal Logs

- To track user actions and enable multiple types of backtrack-
' ing, we maintain a system session log structure consisting of
three types of traversal logs:

¢ History Log
The history log records the complete event structure
for every user event, including event identifier and all
attributes. (In addition to backtracking, users could
employ the history log to create trails and guided tours.
Experimenters could use it to trace and analyze user
actions.)

"o Chronological Log
Unlike the history log, the chronological log only regis-
ters forward (traversal) events. Each entry contains an

event identifier correspondmg to an event in the history

log.

¢ Subtask Logs
Similarly, subtask logs only contain forward events.
Each subtask log contains all uninterrupted forward
traversals. The system starts a new subtask log whenev-
er a forward event happens after a backwards or switch-
ing event. Each entry contains an event identifier corre-
sponding to an event in the history log.

Figure 2 illustrates the traversal logs corresponding to Figure
1. For conciseness, we only show logical contents for each
log. In the history log we show only event types and pairs
of event endpoints. We call such pairs event “edges” follow-
ing graph theory terminology. In the chronological log and
subtask logs, instead of event identifiers, we show the event
edges stored in the corresponding history log event structure.

Figure 2 includes two separate subtask logs. Backiracking
. from Window D can follow several options, depending on
the traversal logs used. For chronological backtracking, the
' system can backtrack to each destination and departure node
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Figure 2: Traversal Log Contents of a Simple Navigation
Example

in the chronological log, resulting in §1’s case (1). Eliminat-
ing a second backtrack to Document B will result in case (3).
Case (4) backtracks only along the destination nodes of each
traversal event in the chronological log, concluding at the
original departure node a. Performing task-based backtrack-
ing along subtask logs results in case (2). Starting at event
bd, backtracking goes from the destination node d to its de-
parture node b, finds a previous event with b as its destination
node, and backtracks to its departure node a. §4 presents this
algorithm in more detail. Following this latter backtracking
path records the two backtracking events db and ba in the
history log, as shown in Figure 2.

Although Figure 2 demonstrates the flexibility of the system
session log structure, it is too simple to illustrate the ad-
vantages of task-based backtracking—this paper’s the major
motivation. We turn now to Figure 3’s more complicated
example. To simplify representation, we draw a graph of n-
odes instead of windows to represent user events. Figure 3(a)
portrays a graph representation of a user navigation session.
Each node represents a window (a displayed hypertext node).
Each edge represents a user event. Different line styles in-
dicate different event types (traversing, selecting, closing or
backtracking). The numbers over edges indicate the chrono-
logical order of events. Figure 3(b) depicts the traversal logs
for this series of navigation steps. (Whenever a user event
takes place, some corresponding system action must be taken
to update the contents of the traversal logs.)

Suppose the user begins this session by opening node a and
traversing links to node b and then to node c. We register
edges ab and bc in the history log, chronological log and sub-
task1 log. At node c, the user selects (e.g., clicks on) node
a and traverses a-link in it to node e. Only the history log
records ca. We record edge ae in the history log, chrono-
logical log and a new subtask log (subtask 2). Then the user
traverses to node f which we register in all three logs. Next,
the user backtracks from f to e. As with selecting, we record
this event only in the history log. Traversing from e to ¢ to
f leads to a new subtask (subtask 3), which concludes when
the user again selects node ¢. Subtask 4 contains traversal
events from cto dto f to g. Closing node g activates the prior
node, node f, again. The final subtask (subtask 5) records
the traversal from node f to node h.

Because chronological backtracking is relatively simple, in
this section we only illustrate task-based backtracking to
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Figure 3: Traversal Logs

show how subtask logs are deployed. For the sake of il-
lustration, suppose the user is still at node ¢ in subtask 4, and
decides to backtrack instead of closing that node. There is no
ambiguity as the only choice is to return along subtask 4 to
f. From node f there are three possible back path choices:
f — d (subtask 4), f — c (subtask 3), or f — e (subtask
2). By default, paths within the same subtask have higher
priority, so path f — d is chosen. Backtracking from node
d to ¢ proceeds unambiguously. Because node c originates
subtask 4, inter-task backtracking now occurs. Two choices
are available from node ¢: returning to node e in the middle
of subtask 3 or to node b at the end of subtask 1. The choice
depends on the system’s designer. The system could pick a
default or prompt the user to decide.

As we discuss in §4.3, a backtracked event should not neces-
sarily be deleted from the subtask logs during backtracking.
This is because a node might belong to multiple logical tasks
(such as window B in Figure 1, and nodes c and f in Figure
3). If a multi-path node is removed upon backtracking, we
might mess up other paths which pass through it, thereby
disorienting the user.

4 BACKTRACKING ALGORITHMS

In this section, we illustrate the procedures of chronological
backtracking and task-based backtracking using the mecha-
nism and structures defined in the previous section,’ The user
does not have to backtrack starting at the latest node. Instead,
he or she is free to select any existing node (i.e., window)
and invoke backtracking from there.

ECHT ’94 Proceedings

To simplify the discussion, we only consider single-step
backtracking. We must distinguish the first step of a back-
tracking sequence from its intermediate steps.. We tell this
from the event-type of the history log’s latest event. If the
event-type is "backtrack”, this is an intermediate step, other-
wise it is the first step. We have to locate the starting event
in the chronological log. As we shall see, this too would be
a policy-dependent choice.

If the current backtracking activity is the first step (i.e., the
previous event was not a backtracking event), we have to find
a starting event from the starting node which is always the
destination of the latest event in the history log.

4.1 Chronological Backtracking

Multiple events in the chronological log may contain the s-
tarting node. In the case of chronological backtracking, this
starting node could appear as an event’s departure or desti-
nation node. Which of the multiple events to choose as the
starting event is a designer policy decision. (Usually the de-
signer will implement either the first or the chronologically
most recent. By default we choose the latter.) Chronolog-
ical backtracking is resolved by using the event sequencé
recorded in the chronological log. Gaps might exist, how-
ever, between event edges. Consider the example in Figure
2. In the history log, each edge consecutively connects t0
its next edge. For any pair of adjacent edges, the destination
node of the preceding edge is the same as the departure node
of the succeeding edge. (This applies for individual subtask
logs too.) However, for the chronological log, gaps such s
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that between edge bc and bd occur because it does not record
switching events. When backtracking reaches such a gap,
special processing is needed to ensure that no node is missed.
Once a starting event (containing the starting node) is located,
we can backtrack from it and add this backtrack event to the
history log. Continuing to backtrack does not require us to
relocate a starting node, but continues in strict chronological
order straight up to the beginning of the chronological log.
Therefore, locating the starting event for the first backtrack-
ing step and for any intermediate step in subsequent iterations
is quite different. To find the starting event of an intermediate
backtracking step, we search the chronological log to match
the latest event in the history log (i.e., the previous back-
tracking step) against the adjacent events which created it.
We operationalize this procedure in the following algorithm.

In the algorithm description, symbols such as Eventl and
Nodel beginning with upper-case letters but not surrounded
by quotation marks represent variables. As variable names,
these symbols should not be confused with object identifiers.

¢ Algorithm 1: Chronological-backtracking()

1. Determine whether this is the first step of a backtracking
sequence:

o LetLatestEvent = the latest event in the HISTORY
LOG.

e Let StartNode = the destination node of Lat-
estEvent.

o If the ‘event-type’ of LatestEvent is not “back-
track”, goto 3.

2. Locate the StartEvent of an intermediate backtracking
step:
¢ Let Nodel = the departure node of LatestEvent.
e Let StartIndex = the ‘Backtracked-index’ of Lat-
estEvent (see §3.1).

o Search the CHRONOLOGICAL LOG for S-
tartEvent among events with ‘Log-index’ less or
equal to StartIndex:

- Case 1 (no gap):

* An event Eventl is found which has S-
tartNode as its departure and Nodel1 as its
destination.

* Let StartEvent = Eventl, goto 5.

- Case 2 (indicating a gap):

» Two adjacent events Eventl and Event2
are found where Event1 precedes Event2,

* Event2 has Nodel as its departure node.

* Eventl has StartNode as its destination.

*x Let StartEvent = Eventl, goto 4.
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3. Locate the StartEvent for the first step of a backtracking
sequence:
Let StartEvent = the latest event in the CHRONOLOG-
ICAL LOG which contains StartNode as one of its end-
points.

4. If StartNode is the destination node of StartEvent:

o Let ToNode = departure node of StartEvent.
o Create a new event (=NewEvent) with the follow-
ing attribute values:
‘Event-type’ = “backtrack”
- ‘Departure-object’ = StartNode
~ ‘Destination-object’ = ToNode
- ‘Subtask-log-id’ =0
- ‘Log-index’ =0
- ‘Backtracked-index’ = ‘Log-index’ of S-
tartEvent
o Add NewEvent to the HISTORY LOG.
¢ Display the contents of ToNode.
o Exit.

5. If StartNode is the departure node of StartEvent (indi-
cating a gap):

o If StartEvent is the first event in the CHRONO-
LOGICAL LOG, exit. ‘

¢ PrevEvent = the event immediately preceding S-
tartEvent in the CHRONOLOGICAL LOG.

o ToNode = destination node of PrevEvent,

o If StartNode = ToNode, Let StartEvent = Pre-
vEvent, goto 4.

o Create a2 new event (=NewEvent) with the follow-
ing attribute values:

‘Event-type’ = “backtrack"”

- ‘Departure-object’ = StartNode

- ‘Destination-object’ = ToNode

- ‘Subtask-log-id’ = 0

- ‘Log-index’ =0
- ‘Backtracked-index’ = ‘Log-index’ of S-
tartEvent

e Add NewEvent to the HISTORY LOG.
¢ Display the contents of ToNode.
o Exit.

In Algorithm 1, the difficulty lies in how to locate the S-
tartEvent. It is relatively easier to find the first in a series of
backtracking steps in which case we just search the chrono-
logical log and choose the latest occurrence of the currently
active node. For the case of an intermediate backtracking
step, we search the chronological log starting with the event
whose ‘Log-index’ is less or equal to the ‘Backtracked-index’
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of the LatestEvent found in the history log (step 2). When-
ever an event is backtracked, we construct a new event for
the history log with different contents depending on whether
the StartNode is the departure (step 5) or destination (step 4)
of the StartEvent. If the backtracked-over event is a traversal
event, the new event will have the same link identifier as
the starting event, with the departure and destination nodes
reversed. If a switching event is backtracked over (a “gap” is
reached), an entirely new event (as opposed to the reverse of
an old event) is created for the history log. This event has no
link associated with it, indicating it does not backtrack over
a traversal event.

4.2 Task-based Backtracking

Because task-based backtracking does not backtrack over
switching events, every backtracked event can be found di-
rectly in one of the subtask logs. There might be multiple
instances of such events occurring in multiple subtask logs.
We choose the latest one by default. The locating procedure
of the starting event and backtracking within a single subtask
log are similar to Algorithm 1. The major difference here
is that whenever an intermediate backtracking reaches the
beginning of a subtask log, we have to locate its destination
within another subtask log. This may occur in the middle of
a subtask log, as is the case in Figure 2 when we backtrack
from bd to ab.

o Algorithm 2: Task-based-backtracking()

1. Determine whether this is the first step of a backtracking
sequence:

o LetLatestEvent = the latest event in the HISTORY
LOG.

o If the ‘event-type’ of LatestEvent is not “back-
track", goto 3,

2. the StartEvent of an intermediate backtracking
step:
o Let Nodel = the departure node of LatestEvent.
o Let StartIndex = the ‘Backtracked-index’ of Lat-
estEvent.

o Search the CHRONOLOGICAL LOG for S-
tartEvent among events with ‘Log-index’ less or
equal to Startindex, where the departure node of
StartEvent is StartNode and the destination node
of StartEvent is Nodel.

o Let Currentlog = ‘Subtask-log-id’ of StartEvent.

e Goto 4.

3. Locate the StartEvent for the first step of a backtracking
sequence:
Let StartEvent = the latest event in the CHRONOLOG-
ICAL LOG which.contains StartNode as one of its end-
points.

A ]
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4. If StartNode is the destination node of StartEvent:

o Let ToNode = departure node of StartEvent,
o Create a new event (=NewEvent) with the follow-
ing attribute values:
- ‘Event-type’ = “backtrack"
- ‘Departure-object’ = StartNode
- ‘Destination-object’ = ToNode
- ‘Subtask-log-id’=0
~ ‘Log-index’ =0
~ ‘Backtracked-index’ = ‘Log-index’ of S-
tartEvent
¢ Add NewEvent to the HISTORY LOG.
¢ Display the content of ToNode.

o Exit.

5. If StartNode is the departure node of StartEvent and
StartEvent is not the first event in the current SUBTASK
LOG:

o PrevEvent = the previous event of StartEvent.
¢ ToNode = destination node of PrevEvent.

o Let StartEvent = PrevEvent.

¢ Goto4.

6. If StartNode is the departure node of StartEvent and
StartEvent is the first event in the current SUBTASK
LOG, discard the current StartEvent, goto 2.

Algorithm 2 is similar to Algorithm 1 except in the handling
of intermediate backtracking steps. If the StartEvent of sucha
step is not the beginning of a subtask log, we simply backtrack
to the previous event without worrying about any “gaps” (step
4). If StartEvent is the first event in the current subtask log,
we relocate the StartEvent as if this were a first step of a
backtracking sequence (step 6). The resulting event is not
necessarily at the end of a subtask log. We often jump from
the beginning of the current subtask log to the middle of
another subtask log. '

4.3 Deleting Backtracked Events

In the above two algorithms, we purposely left out deleting
backtracked entries from the chronological or subtask logs.
It is up to the system designer to choose a deletion strategy
based on the needs of his or her users.

In the case of chronological backtracking, if the user selects
some node which is not chronologically the latest, we can
classify such an event as either “backjumping” or “reposi-
tioning". If we treat it as backjumping, either the first or
the most recent (our default) of the events containing this
current node is chosen as the starting event. All event traver-
sal (chronologically) later than this event would be deleted
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from the chronological log and their windows closed. We
also delete each event from the chronological log after it is
backtracked, and close its window. On the other hand, if we
treat such a selecting only as a repositioning, we do not delete
events from the traversal logs.

Consider the possible deletions in the case of task-based back-
tracking. A backtracking sequence could start at any entry
of any subtask log and also could jump from one subtask log
to any entry of another. We should not delete any entry in
a subtask log which we do not enter it from its end; other-
wise we will remove backtracking access for the succeeding
events in that subtask log. If we do enter a subtask log at
its end, we could delete subsequent backtracked events until
this subtask log is empty and we backtrack up to another. But
this approach, too, can cause inaccessible events. Consider
Figure 3. Suppose the user starts backtracking from node h
in subtask 5 and then we jump to event ef of subtask 2 by
choosing the first event containing node f. Backtracking and
deletion continue until we reach node a. All of the events in
subtask 2 have been deleted at this point. Since other nodes
are not affected, the user may select node f later again and
start another backtracking sequence. This will lead us to sub-
task 3. However, this sequence will be blocked at event ec of
subtask 3 because no further events from subtask 2 remain.
We lost event ae by deleting it from subtask 2 and this event
turned out to be needed in another backtracking sequence.

Deletion strategy is another of the many designer’s issues in
backtracking. Efforts are needed to address this problem to
find a mechanism that can satisfy the majority of applica-
tions. Designers can update §4.2s algorithm fairly easily to
incorporate the deletion strategy chosen.

5§ CONCLUSION AND FUTURE RE-
SEARCH

We kept the paper’s algorithm simple to emphasize our strong
belief that hypertext systems should support alternative forms
of backtracking. Relatively easy extensions include incorpo-
rating conditional backtracking and parametric backtracking,
as well as backjumping (see §1).

Task switching has relevance for both single-pane and multi-
pane single-window hypermedia systems. Their designer-
s should consider treating both opening and backjumping
from a history list as “switch events” for users to change
logical task domains. Task-based backtracking then could
supplement these systems’ functionality. Of course, either
event could reflect its more typical interpretation—going to
or returning to a node in the same logical workgroup. Fu-
ture research must develop ways of presenting backtracking
options without disorienting the user.

For multi-pane systems, “switch events” and backtracking
options depend on each pane’s domain and purpose. In KMS
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' [1], for example, each of the two panes may hold the same

type of node. In Janus [10] and gIBIS [8], for example, each
pane serves a different purpose. We leave to future study the
extent to which pane context affects switching logical tasks.
In some systems, users open multiple windows simultane-
ously. In this case, we also need to extend the algorithms
accordingly.

Multi-window backtracking is but one of many backtrack-
ing related issues that have arisen in our current research
on designing hypermedia engines [2,3]. We view it as an
obligation to couple backtracking with all forms of forward
navigation. To this goal, backtracking issues reserved for our
future research include:

o Backtracking within guided tours:
If one considers a guided tour as an enforced series of
link traversals, may users backtrack along these either
during or after the tour? Can tours explicitly incorporate
backtracked steps as part of the “stops” users must visit
(e.g., if the tour should reflect the exact stages an analyst
or trainee should follow in an analysis [4])?

¢ Backtracking along “destructive” link traversals:

In complex hypertext-supported application domains,
traversing links can trigger application-based command-
8 in addition to simply displaying a document destina-
tion [2,6,7]. For example, in a document management
domain [24], traversing an action link may result in
merging two directory folders. What happens when a
user backtracks across such a link? Should backtracking
trigger an “undo” operation or simply reflect the current
state of the departure nodes? This reflects the anal-
ogous question of backtracking to nodes which have
been deleted. Backtracking along computation links,
such as in Schnase and Leggett’s biological modeling
application [22] or Bieber’s Max system [4,14] would
face similar issues.

We also shall investigate different ways of presenting task-
based backtracking options in conjunction with chronological
backtracking without confusing the user.

Like so many other hypertext features, backiracking seem-
s simple and intuitive. The desire to exploit the wealth of
features and opportunities that hypertext provides applica-
tion systems and their users, however, calls for sophisticated
backtracking options. Judging from the recent hypermedi-
a literature, backtracking rescarch appears to be experienc-
ing a temporary hiatus. This paper demonstrates the wealth
of backtracking issues still “waiting in the wings” for re-
searchers and system designers to tackle.
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