
A Generic Dynamic-Mapping Wrapper
for Open Hypertext System Support of Analytical

Applications

Chao-Min Chiu

The New Jersey Center for Multimedia Research
Rutgers University

University Heights-Newark, NJ 07102 USA
chchiu@2pegasus.rtrtgers.edu

ABSTRACT
Hypertext should augment everyday analytical applications
with supplemental navigation, structuring and annotative
features. Because analytical applications generate their
screen contents in real time, hypertext constructs and
navigation paths must be generated and mapped in real time.
We are developing a hypertext engine that provides dynamic
mapping automatically for any anal ytical application. We
propose a standard, generic open hypertext system (OHS)
wrapper for back-end or storage-level components that
dynamically generate their contents (e.g., the analytical
applications). The wrapper automatically maps hypertext
constructs-nodes, links and anchors—to application
contents, (The storage-level wrapper itself creates hypertext
constructs instead of the users.) The hypertext engine
delivers supplemental hypertext functionality based on these
mappings. Furthermore, by providing a standard format and
a set of guidelines, we are providing a standard protocol or
systematic approach for exchanging information between an
OHS and any analytical application. This adds to the work
in the OHS community on developing a standard protocol
for passing information among OHS and integrated
applications.

KEYWORDS: Hypertext, hypermedia, open hypermedia
systems, information systems, World Wide Web

1 A GENERIC DYNAMIC-MAPPING WRAPPER...
Despite over 30 years of active hypertext research, and the
recent vast interest in the World Wide Web, hypertext has
yet to make its greatest impact on the everyday analytical
applications in the scientific and business world (accounting
and finance systems, CAD, CASE, CBT, DBMS, decision
support systems, executive information systems, geographic

information systems, spreadsheets, etc.). Hypertext should
augment these applications with supplemental navigation,
structuring and annotative. features. Hypertext functionality
will have only secondary importance for these applications;

Permiaaion to make digitdrhard copies of all or part of this material for

personal or ckmroom use is granted without fee provided that the copies

are not rtrads or distributed for profit or comnrerci al advantage, tfre copy-

right notice, h title of the publication and ita date appear, and noticz is

given that wpyrigbtis by pmnission of the ACM, fnc. To copy othenvise,
to republish, to post on seavera or to redistribute to lists, requima specific
pemrission atrdfor fee,

Hypsrtext 91, Southampton UK
01997 ACM %89791-866-5,.,$3,50

Michael Bieber

The New Jersey Center for Multimedia Research
New Jersey Institute of Technology

University Heights—Newark, NJ 07102 USA
bieber~cis.njit.edu — http://megahertz.njit. edu/-bieber

users will employ them for their primary analytical
functionality. Hypertext will give more direct access to this
primary functionality, give access to metainformation about
objects that appear on the application screen, provide
alternate navigation paths through the application space, and
enable annotation and ad hoc links. Because these analytical
applications generate their screen contents in real time (as
opposed to just retrieving existing documents and display
contents), hypertext constructs and navigation paths must be
generated and mapped for these screens in real time. Our
research goal is to provide a hypertext engine that can
handle this real-time or dynumic mupping automatically for
any analytical application. (We call these applications
dynamic-mapping information systems or DMISS.)
Furthermore, as we cannot expect to change these

applications in any major way, we need to leave them
“hypertext-unaware”. The hypertext engine will perform all
hypertext functions, and maintain all hypertext mappings
and constructs on their behalf. Indeed, for applications with
APIs where we can provide our own user interface, we need
make no changes to the application at all, while providing
with complete hypertext functionality.

We propose a standard, generic open hypertext system
(OHS) wrapper for back-end or storage-level components
(DMISS) that dynamically generate their contents. The
wrapper automatically maps hypertext constructs (nodes,

links, anchors) to DMIS contents. The hypertext engine
delivers supplemental hypertext functionality based on these
mappings. In other words, from the OHS viewpoint, the
storage-level wrapper itself creates many of the nodes, links
and anchors instead of the users at the user interface level.
Furthermore, by providing a standard format and a set of
guidelines, we are providing a standard protocol or
systematic approach for exchanging information between an
OHS and any DMIS. This adds to the work in the OHS
community on developing a standard protocol for passing
information among OHS and integrated applications.

To the extent that other OHS support dynamic-mapping
applications, they do so on a case-by-case basis instead of in
a standard way (e.g., integrating Chimera with Framemaker
[l]), they only support limited domains (e.g., Garrido and

Rossi’s support for DMIS applications written in

218

[User] -- [WI] -- [WI Wrapper] =========== [WI Knowledge Base]

I
[Dynamic Mapping’Hypertext Engine]

I
[DMIS] -- [DMIS’Wrapper] ========= [DMIS Knowledge Base]

. .

[D&S Instance 1] [DMIS Instance i] [DMIS Instance n]

Figure I: Basic Architecture fora Dynamic-Mapping Hypertext Engine.
Solid iinesindicete bidirectional flows of meseegesamongthe subsystems. Dotted iinesindicetethevarious
instances of (written within) the DMiS (e.g., a particular database within a DBMS or a map within a geographic

information system). Double Iinesindicate thsta-p~r stores andrdtieves informtiion MthaknoWd@ k-.

VisualWorks Smalltaik [5]), or they only map hypertext to
display values as opposed to the objects underlying these
values (e.g., with Microcosm’s Universal Viewer [4]).

We map hypertext iinks to DMIS elements based on an
element’s internal identity, not to its display value. A
stock’s price, for example, can change, but the stock’s
identity never does. Weprovide mapping rules (bridge laws
[2]) describing which components of the DMIS’S internal
structure correspond to which hypertext constructs (nodes,
links, and anchors).

We model DMIS as having two logical parts: a
computational portion and a user interface portion [3].
DMIS application content is produced (generated or
retrieved) in the computational portion and displayed in the
interface portion. In this research we concentrate on the
computational portion. In the architecture below we assume
that the user interface displays the information that the
hypertext engine sends it and that it provides a means for
selecting link markers. (This interface may be separate from
the DMIS application, though in future research we wish to
access DMISS through their native interfaces while not chan-
ging their computational portions at all. We initially intend
to implement this architecture for DMISS with APIs, so we
can utilize a WWW browser as a separate user interface.)

Figure 1 presents our basic architecture. The final

architecture will serve multiple DMISS and user interfaces
(UI), including WWW browsers. All components of the

architecture may be distributed. The architecture’s
Dynamic-Mapping Hypertext Engine (DHTE) will serve any
DMIS and UI that has an appropriate wrapper and wrapper
knowledge base. To integrate a new DMIS or UI, one has to
specify just a wrapper and knowledge base (which could
very well prove a complex task). We currentiy are
developing guidelines for doing this.

The wrappers serve three important functions. First they
translate messages from the DHTE’s standard format to
something the UI or DMIS can process, and vice versa.
Second, they pass messages between the two systems.
Third, they buffer the UI or DMIS, implementing any

functionality the engine requires of the them, which they do
not provide.

The UI knowledge base contains the information the UI
wrapper needs to communicate with its UIS. In it, the UIS
handler maintains communication formats, current param-
eter settings and any routines necessary to maintain the level
of coordination the DMIS requires of the UI. The DMIS
knowledge base contains all mapping rules for converting
DMIS constructs to hypertext constructs. It also contains
network access information for each DMIS, as well as
routines necessary to build messages for it and parse its
responses.

ACKNOWLEDGMENTS
Ken Anderson and Uffe Wiil made invaluable comments
which helped frame this research — thank you both! This
research has been funded generously by the New Jersey
Center for Multimedia Research, the New Jersey
Commission of Science and Technology, the NASA JOVE
faculty fellowship program, the AT&T Foundation, and the
New Jersey Institute of Technology under Grant 991967.

REFERENCES
1.

2.

3.

4.

5.

K. Anderson, R. Taylor and E. J. Whiteheaci, “Chimera
Hypertext for Heterogeneous Software Environments,”
ECHT’94 Proceedings, 94-107.

M. Bieber, “On Integrating Hypermedia into Decision
Support and Other Information Systems,” Decision
Support Systems 14, 1995,251-267.

M. Bieber and C, Kacmar, “Designing Hypertext

support for Computational Applications,”
Communications of the ACM 38(8), 1995,99-107.

H. Davis, S. Knight and W. Hall, “Light Hypermedia
Link Services: A Study of Third Party Application
Integration,” ECHT’94 Proceedings, 158-166.

A. Garrido and G. Rossi, “A Framework for Extending
Object-Oriented Applications with Hypermedia
Functionality,” forthcoming in the Hypermedia Journul,
Taylor Graham.

