

Towards Hypermedia Support for Database Systems

Anirban Bhaumik*+
anirbanbhaumik@usa.net

Michalis Vaitis**

vaitis@cti.gr

Deepti Dixit*
deeptidixit@hotmail.com

Michael Bieber*

bieber@njit.edu

Roberto Galnares*
galnares@homer.njit.edu

Vincent Oria*

oria@homer.njit.edu

Aparna Krishna*
aparna7@yahoo.com

Qiang Lu*/***

qiang@suda.edu.cn

Manolis Tzagarakis**
tzagara@cti.gr

Firas Alljalad*

firas@homer.njit.edu

Li Zhang*
lxz9848@oak.njit.edu

* Collaborative Hypermedia Laboratory, CIS Department, New Jersey Institute of Technology, USA
** Computer Technology Institute University of Patras, Greece

*** Suzhou University, Peoples Republic of China +Primary Author

Abstract

Using a dynamic hypermedia engine (DHE), we
propose to automate the following features for database
systems, both on and off the Web. First we automatically
generate links based on the database's relational
(physical) schema and its original (non-normalized)
entity-relationship specification. Second, the application
developer can specify which kinds of database elements
are related to diverse elements in the same or different
database application, or even another software system.
Our current DHE prototype illustrates these for a
relational database management system. We propose
integrating data warehousing applications into the DHE.
We also propose incorporating data mining as a new kind
of automated link generation. Passing the application
element selected by a user, a data mining system that
would discover interesting relationships for that element.
DHE would then map each relationship to a link.

Keywords

Hypertext, hypermedia, database, automated linking,
metadata, Dynamic Hypermedia Engine data mining, data
warehousing, E-R Diagram, database schema, wrapper

1. Introduction and Motivation

Database queries typically return results in a plain text
format. Some applications on the World Wide Web
generate link anchors for database elements, but these
anchors normally hold a single link to the most obvious
destination for the dominant type of user.

We could consider each element within a database
application as a potential starting point for information
exploration. Each element could have multiple links,
each representing a different relationship (schema-based
or otherwise). The ability to explore a piece of

information in more detail could help users resolve doubts
about or simply better understand that item, as well as the
analysis or display of which it is a part. Users may wish to
dig deeper around data values and symbols they see,
labels on graphs or user input forms, options in pop-up
lists, or even on the menu commands they can invoke.

The purpose of this paper is to explore all aspects of
hypermedia support for database applications. We base
much of our discussion on our experience designing the
Dynamic Hypermedia Engine (DHE). DHE
automatically generates anchors, sets of links and
metadata within database applications, as well as
supporting users with other types of hypermedia
structuring, navigation and annotation functionality,
including guided tours and annotation. DHE is the only
tool that provides automated linking and hypermedia
services based on the application structure (as opposed to
search or lexical analysis), without altering applications.
Thus it is uniquely suited to support databases and other
analytical applications on the Web that generate the
contents of their displays dynamically in response to user
queries. We have successfully provided hypermedia
support to a database application used by the New Jersey
Department of Transportation and describe that as a
motivating example.

This paper proceeds as follows. After introducing the
Dynamic Hypermedia Engine (DHE), we describe
hypermedia support for databases. First, we show how
DHE can support existing relational DBMS. Then we
describe how DHE uses databases internally to support
hypermedia. Next we look at integrating object-oriented
databases, data warehousing and applications that use
database support. Then we consider generating links
through data mining. After this we present a literature
review of hypermedia and database, followed by a short
conclusion.

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 1

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

2. The Dynamic Hypermedia Engine

We have just developed the very first cut of a Web-
based prototype of the Dynamic Hypermedia Engine
(DHE), which redesigns an older PC-based prototype
(Bieber 1999). Figure 1 shows a screenshot of a database
query result in the main frame. DHE has added anchors
to all parts of the query result, including the field names at
the column heads. The user has clicked on “Counseling
Center - department,” resulting in metadata for the
element in the bottom center frame and a list of links in
the bottom right-hand frame. Selecting any link will
generate an SQL query to create the appropriate result.
Currently the list of links includes only database structural
links, such as finding the primary keys for this element.
As we later describe, however, we are developing a
module to add links automatically based on a database’s
original (unnormalized) Entity-Relationship schema. The
bottom left-hand frame contains menus for any integrated
application or DHE internal module. Links represent
relationships and relationships have “meta-information”
as well. Selecting an asterisk next to any link will provide
metadata and a list of links for it. DHE’s next release will
provide these for menu items as well. The metadata
frame currently displays the full RDF record—see §3.2.
DHE’s next release will format the metadata nicely.
Future versions will filter and rank order the links and
metadata based on the user task and preferences.

Figure 1: Screen from the Preliminary DHE Web
Prototype

As this demonstrates, DHE link generation does not
result from any type of lexical analysis. Our focus is not
on the display content of the link anchor, but rather on the
application elements underlying each anchor. A
"mapping rule" encodes each relationship found between
two elements of interest at the "class level". For example,
suppose an application display shows the name of a
university department. Departments generally have
professors and courses taught (based on the standard
entity-relationship diagram within a database system), as
well as a Web page, an annual budget (within the
accounting system), hires-in-progress (within the
personnel system), a location on a map (within a
geographic information system), etc. Individual mapping
rules contain an algorithm or computation (set of
commands) leading to the appropriate component in these
respective systems. When the user selects a particular
department, DHE constructs these commands with the
actual department instance selected and sends them to the
appropriate destination system, which then retrieves—or
more often generates—the resulting page. For example,
one mapping rule could state that an element of type
“department” would be related to an element of type
“annual budget” through a relationship with the semantic
type “annual budget for” and with a parameterized
command to retrieve annual budgets from the accounting
system. Developers may take advantage of this to
integrate database applications with other applications
without altering their contents; they only have to add new
mapping rules for the relevant element types.

DHE executes concurrently with database
management systems, database applications, and other
applications such as the accounting system, providing
automated link generation and other hypermedia
functionality without altering them. Developers write an
independent application “wrapper” and a set of mapping
rules for each. Note that once a wrapper is written and
the mapping rules are specified for each type of
application (geographic information system, relational
database management system, accounting package, etc.),
DHE will support all instances of that application in the
future (new maps, database contents, budget sheets, etc.).

DHE executes as follows. Applications or their
wrappers connect to DHE through World Wide Web
components, such as servlets and JavaServer pages. DHE
intercepts all messages passing between the application
and its user interface, and uses the mapping rules to map
each appropriate element of the message to a hypermedia
anchor. Our Web browser wrapper merges these anchors
into the document being displayed and passes the
resulting HTML document through the Web component
servlet to the user's Web browser. When the user selects
an anchor, the browser wrapper passes it to DHE, which
returns a list of possible links (one for each appropriate
relationship as determined by the mapping rules) and

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 2

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

metadata. If the user selects a DHE link (e.g., to add an
annotation or stage in a guided tour), DHE processes it
entirely. If the user selects a relationship with a
destination in a known application, DHE infers and
instantiates the appropriate SQL queries or other
application commands from the relationship's mapping
rule and passes them to the target application for
processing. If the user selects a user-created annotation or
tour, etc., DHE retrieves it. Thus DHE automatically
provides all hypermedia linking (as well as navigation) to
applications, which remain hypermedia-unaware and in
fact often entirely unchanged.

Figure 2 shows DHE’s logical engine architecture.
We shall describe some of the major components here.
The others are described on our project Web site
(http://space.njit.edu:8001). For our current Web
prototype, we have programmed all modules in Java. We
use XML as our message format. While the browser
wrapper currently produces HTML documents for
display, we intend to migrate to XML documents, which
take advantage of the Web's new XLink, and XPointer
standards to handle anchors and links. We use RMI for
inter-module communications. We intend to keep up with
Web standards as they become available, whenever
practical for our environment.

Figure 2: DHE’s Logical Architecture

User Interface Wrappers serve three important
functions: First, they translate DHE’s internal messages
from DHE's standard format to a format the browser (or
other User Interface or UI) can process, and vice versa.
Second, they handle communication between the engine
and the UI. Third, they implement any functionality DHE
requires from the UI (e.g., maintaining parameters),
which the UI cannot provide itself.

The Message Manager Module enables the
communication between all DHE modules, routing all
DHE internal messages.

The Mapping Rules Module uses mapping rules to
map the application data and relationships to hypermedia
objects at run-time. The Mapping Rules Module maps the
element instances in the virtual document to global
element types (classes), and infers all relevant
relationships (links) and metadata for the given element
classes. These links and metadata are passed in messages
to the UI Wrapper for display.

The current DHE prototype implements mapping rules
as a record in a database table. A mapping rule record
contains the type of the element, the system that owns this
element type, the relationship and the system that is
responsible for navigating this relationship; the target
system (which maybe different from the owner system).
The relationship, which is the heart of the mapping rule, is
a parameterized command that can be understood by the
target system, the mapping rules module sends this
command to the target system, which executes it and
returns the response back to the UI Wrapper. For example
a mapping rule for the Freight System (see 3.3) would
contain the following information:

• Element Type: dhyme:fdwm:stcc
• Owning System: FDWM (Freight Database Wrapper

Module)
• Command: getSICode

where getSICode is a command (which obtains the
Standard Transportation Code for a given item) that can
be executed by the Freight Database Wrapper Module.

Application Wrappers, like user interface wrappers,
manage the communication between DHE and their
application systems, such as database applications and
DBMS. They translate user requests from DHE’s internal
format to the application’s programming interface (if
any). They receive output from the application, convert it
to the DHE format, mark the elements for the mapping
rules module, and send it to DHE for eventual display on
the UI.

Other Hypermedia Functionality: We are planning to
implement a series of other service modules over the next
few years. Most will implement various kinds of
hypermedia structuring, navigation and annotation
functionality (Bieber et al. 1997; Conklin 1987; Nielsen
1995). Hypermedia structuring functionality includes
local and global information overviews; node, link and
anchor typing; as well as keywords, attributes and
metadata on all of these. Navigation functionality
includes structure-based query, sophisticated history-
based navigation and bi-directional linking. Annotation
functionality includes adding user-declared links,
comments and bookmarks to dynamically-generated
documents and displays.

What distinguishes these DHE modules from similar
modules in other Web applications and other non-Web
hypermedia systems is the dynamic nature of our

USER

INTERFACE

(BROWSER)

USER
INTERFACE
WRAPPER

USER
PREFERENCES

INDEXES

OTHER
SERVICES

MAPPING
RULES

APPLICATION
WRAPPER

MESSAGE
MANAGER

APPLICATION

DYNAMIC
HYPERMEDIA
ENGINE

OTHER
APPLICATION
WRAPPERS

OTHER
APPLICATIONS

OTHER
U I

WRAPPERS

OTHER
USER

INTERFACES

USER

INTERFACE

(BROWSER)

USER
INTERFACE
WRAPPER

USER
PREFERENCES

INDEXES

OTHER
SERVICES

RULES

APPLICATION
WRAPPER

MESSAGE
MANAGER

APPLICATION

DYNAMIC
HYPERMEDIA
ENGINE

OTHER
APPLICATION
WRAPPERS

OTHER
APPLICATIONS

OTHER
U I

WRAPPERS

OTHER
USER

INTERFACES

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 3

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

applications. Our target applications generate documents
and screens in response to user queries and other dynamic
prompts. Therefore the screens and documents are not
static, but "virtual"; they must be generated every time
they are needed, and regenerated upon demand within
each of these modules. Thus documents on a guided tour,
pointed to by a bookmark or link, or found during
structural search may not exist until the user actually
selects the anchor representing it (Bieber & Kacmar
1995). We do this by maintaining sufficient parameters
about each document or screen to create the SQL queries
or other commands to regenerate them. These commands
are not always the same as the original command that
generated the document in the first place. (Bieber 1990)
and (Bieber 1995) discuss this regeneration in more
detail.

Several approaches exist for integrating hypermedia
functionality into primarily non-hypermedia information
systems (Bieber 1999). These include employing
hypermedia data models, hypermedia toolkits, link
services, hyperbases, hypermedia development
environments, open hypermedia systems, and
independently executing hypermedia engines, such as
DHE.

Hypermedia engines execute independently of an
application with minimal modifications to it, and provide
the application’s users with hypermedia support. Few
approaches provide transparent hypermedia integration as
our engine does. Notable projects include Microcosm’s
Universal Viewer (Davis et al. 1994), Freckles (Kacmar
1993, 1995), the OO-Navigator (Garrido and Rossi 1996;
Rossi et al. 1996) and SFX (Van der Stemple, 1999a,b,c).

Microcosm's Universal Viewer and Freckles
seamlessly support an application’s other functionality but
provide only manual linking. OO-Navigator comes the
closest to our approach, providing a seamless hypermedia
support for computational systems that execute within a
single Smalltalk environment. This approach meets our
goal of supplementing Smalltalk applications with
hypermedia support without altering them. Our approach
applies to both object-oriented and non object-oriented
applications.

SFX's engine is very similar to DHE, but it only
serves one specific environment. SFX dynamically
generates anchors within the reference section of
academic papers being displayed on the Web. Selecting
these will lead to the original work within bibliographic
databases. DHE, in contrast, provides a generalized
approach for linking and additional hypermedia
functionality for most analytical applications.

In the sections that follow we describe various ways
that we can support database management systems and
applications.

3. Hypermedia Support for Existing
Database Systems

Developers can retrofit existing database applications
to work with DHE. This section begins by describing
such an integration. Then we describe the different kinds
of links and metadata that DHE provides, and conclude by
describing a database application we have successfully
provided hypermedia support to.

3.1 Integrating Database Applications

One of the first tasks in providing hypermedia support
is to intercept messages between the computational and
user interface (UI) portions of the application [Bieber &
Kacmar 1995]. In the case of a Relational Database
Management System (RDBMS), the application
comprises only a computational portion. The RDBMS
provides a standard way of requesting computational
services (i.e., store, retrieve and analyze data) by means
of Structured Query Language (SQL) statements. The
Relational Database Wrapper Module we describe below
does this and provides its own interface for entering SQL
queries and displaying their results.

Database applications build a customized interface
and possibly a larger set of functionality around a
RDBMS. Database applications, therefore, are
responsible for their own UI. Database applications send
SQL statements to their RDBMS. The RDBMS then
executes these statements and returns the results of these
statements back to the application, which then customizes
and displays them.

We have developed a service module, the Relational
Database Wrapper Module (RDWM), which accepts
requests to execute SQL statements on the underlying
database, and retrieves metadata for a database element. It
also provides a UI allowing users to execute SQL
statements and view results, metadata and all the
relationships of the data affected by the SQL statement.
This UI provides a view of the data stored in the database
enhanced by metadata, hyperlinks and additional
hypermedia functionality.

The RDWM passes through the following states.

Receiving Request Messages

A DHE module waits until it receives a request to
perform a service. The RDWM either interacts with the
RDBMS, retrieves metadata for an element or generates a
user input form for display for users to enter SQL
statements.

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 4

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

Identifying an Element of Interest

Once the result of the SQL statement has been passed
to the RDWM for display, the RDWM parses the results.
It uses the SQL query itself to determine what elements
are in the results. The following twelve types of elements
exist in the RDBMS context:

Columns Tables Indices
Stored Procedures Catalogs Schema
Drivers Users User Rights
Table/Column
Privileges

JDBC
Types

The RDBMS Product
Instance itself

Any instance of the above types can be uniquely

identified, have metadata, and have one or more
relationships associated with it. If any user might be
interested in exploring that type of object in terms of its
metadata or relationships, the RDWM would mark each
of its instances as an “element of interest”, and therefore a
potential anchor. Marking an item involves providing its
unique identifier and its element type. (Later the
Mapping Rules Module will use the element type to find
relationships and metadata for a given element. If an
element has at least one relationship (link) or piece of
metadata, then the Mapping Rules Module will specify
that the UI Wrapper make it into an anchor.)

Relationships between Elements

DHE specifies relationships based on the element
type. The twelve types of relationships noted above are
each interrelated. DHE could write a mapping rule for
each, which DHE could then use to generate a link for
each of its instances containing the appropriate SQL
command to generate the contents of the link’s endpoint.
Figure 1 shows some of these links. Wan (1996; Wan &
Bieber 1997) gives several mapping rules (called “bridge
laws”) for relational databases.

Retrieving Metadata

The RDWM retrieves metadata on demand. It is
passed the URI of the element whose metadata is being
asked for. It then uses the Java Database Connectivity
(JDBC) API to retrieve information relevant to the
element. The current version of the DHE uses the
physical schema to retrieve metadata. Future versions of
the DHE will use dedicated metadata repositories, and
data dictionaries to retrieve additional metadata as well.

The RDWM uses the Resource Description
Framework (RDF) to model database metadata. RDF
defines metadata in terms of “resources”, where each
resource is any entity that can be uniquely identified, i.e.,
has a URI (Lassila et. al 1999). Hence all “elements of

interest” are resources and have associated metadata.
Resources and elements are thus interchangeable in the
RDWM context and the element identifier corresponds to
its URI.

3.2 Enhanced Links Through a Schema Mapper

Most database applications provide no contextual
information about the underlying schema of the database
from which query results were retrieved. The DHE
utilizes a dedicated Database Schema Mapper Module to
add value to database applications by making this
information explicit.

The DB Schema Mapper (DSM) runs in conjunction
with the Relational Database Wrapper Module. As
mentioned earlier the RDWM provides metadata by
examining the physical schema and returns attributes such
as names of columns, data types etc. To this metadata the
DSM adds schematic information for the values retrieved
from a database query.

The schematic information about a particular database
has to be entered one time through a user interface by a
system developer or administrator at the time the system
is being designed or integrated with DHE. At runtime
when a query has been issued, the DSM checks its
internal database to see if the schematic information is
available. If it is, then it allows the user the ability to view
the underlying E-R schema as well as the relational
schema of the database from which the query result was
retrieved.

The DSM receives messages either from the RDWM
or from the User Interface Wrapper. The RDWM passes
query result sets through the DSM to add schematic
information. The DSM parses the original query to get the
table name. It then queries its own internal database to
see if it contains schema information for that table. If so,
the DSM generates the E-R and relational schemas, marks
whichever elements of interest each contains, and sends a
message to the UI Wrapper to display these together with
the regular query results.

The UI Wrapper sends the DSM messages when a
user follows a DSM-related link. Assume, for example,
that the user selects a table and chooses a link to highlight
that table in the relational schema. The mapping rule
corresponding to that link sends the appropriate command
to the DSM. The DSM must follow its internal mapping
from the RDWM URI scheme to the DSM URI scheme to
identify the corresponding table element in the relational
schema. Then the DSM creates a new display where it
indicates that the UI Wrapper should highlight certain
elements.

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 5

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

3.3 NJ DOT Freight Database Application

The New Jersey Department of Transportation has an
extensive database that contains commodity (coal,
vegetable oil etc.) flow information between various
counties in New Jersey and various zones in the
Northeastern U.S. A rudimentary web interface to this
database exists; we have created a DHE module that
supplements this system and provides enhanced metadata,
exposes the various interrelationships between the
“elements of interest” in the system and provides
additional functionality.

Architecture

The Freight Database Wrapper (FDW) is a DHE
module that acts as the wrapper to the Freight system.
Like other application wrappers described in previous
sections, the FDW provides a gateway to application
specific commands. Users may view the system through
the DHE’s user interface and view reports on commodity
flows between counties and zones, via a set of menu items
and mapping rules.

The FDW may also use the RDWM to completely
bypass the existing Web-based Freight system and access
the underlying database directly. This serves a twofold
purpose:

• Metadata that is currently not provided by the
system can be extracted directly from the
database by means of SQL statements executed
by the RDWM.

• New mapping rules maybe formulated, these
mapping rules would correspond to SQL
statements that would be executed on the Freight
database, thus providing additional functionality
not available in the existing system.

The FDW may also be used in conjunction with the
DSM, providing users with a view of the internal schema
of the Freight system’s database.

4. Tightly Integrating Database Applications

Prior sections discussed integrating database
applications independently of DHE. In this section we
describe how database applications could be developed
more quickly if designed to take advantage of DHE’s
infrastructure. In this role the DHE will provide access to
a relational database for applications that need it. All
requests to a database i.e., SQL statements that need to be
executed on a database will be routed to the RDWM,
which will execute the statement and return the
hypermedia enriched results to the application.

To integrate with DHE, an application normally routes
all database access requests to its application wrapper. In

this case, because the application is being developed from
the ground up, this wrapper maybe a part of the
application itself. The wrapper (or wrapper portion of the
application) would pass a DHE-formatted XML message
to the RDWM to perform any database services requested
by the application—usually the execution of a SQL
statement or retrieval of metadata from the RDBMS being
wrapped by the RDWM.

RDWM would still be responsible for marking up any
query results, passing the hypermedia-enriched document
is then routed back to the application wrapper.

At this point the Application Wrapper may take the
enriched document and translate it to the native
application’s native User Interface, and display it there.
However, should the application developer decide to use
DHE’s user interface instead of writing its own, then the
Application Wrapper could then add any additional
content and pass the final display document to the
Mapping Rules Module via the Message Manager. If it
adds additional, non-database elements, then the
application wrapper should mark these up too, as
described in §3.1, so they also may be made into anchors.
Each of these additional elements types will require its
own mapping rules for determining links and metadata.
Many application commands can be moved into the link’s
mapping rules.

The application could also take advantage of other
DHE services, such as the menu manager and the user
preference manager, not to mention the other hypermedia
functionality that all applications receive.

5. Integrating Data Warehousing

This section proposes integrating a data warehousing
application within the DHE infrastructure, one of our
future research topics. This would provide hypermedia
support to data warehousing applications, as well as
facilitate linking among data warehouses and other
applications. As enterprise-wide data warehouses grow in
size and complexity, discovering information from these
data warehouses will become complex and involved. We
expect that a DHE-based data warehouse, offering
hypertext functionality will ameliorate this situation, and
allow data warehouse builders to concentrate on the
business processes that generate and retrieve information.

A data warehouse comprises a repository of
information built using data from diverse, and often
departmentally isolated, application systems within an
organization so this data can be modeled and analyzed by
managers (Johnson 1999; Inmon 1996). Data
warehouses usually are customized for a particular
enterprise. Most vendors offer platforms on which
enterprise data warehouses (or smaller datamarts) may be
built.

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 6

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

The DHE maybe used top offer a complete end–to-end
solution with the added benefit of obtaining hypertext
functionality without any additional effort.

The data warehouse has two broad functions:
• Accessing the data from the data warehouse (through

on-line analytical processing - OLAP)
• Loading the data from the operational systems into the

data warehouse
Accessing the data will proceed in an analogous way

to accessing regular database contents. To load data into
the data warehouse a loader module will have to be
designed and developed. The Loader Module will be like
any other DHE module, and will perform the following
functions:
• Map data from Operational Systems to the Data

Warehouse
• Extract Metadata from Operational Systems
• Eliminate Noise

Once the extraction process is complete, the loader
module sends a message to the RDWM containing the
data to be loaded as well as the metadata. The RDWM
then loads this into the data warehouse.

An argument could be made that a loader module is
not required and the DHE is simply used to access data
from the warehouse. However this approach would not
allow the DHE to retrieve metadata from the operational
systems. Moreover a complete end-to-end solution
requires that we provide a loader module.

6. Research in Hypermedia and Databases

While the hypermedia paradigm embodies an
approach to structure and navigate information, it has
several shortcomings. In particular, few hypermedia
systems have focused on methodologies for information
storage and retrieval. Database systems, on the contrary,
are only concerned with storage and retrieval of
information based on a formal model. They exhibit
powerful methodologies for information storage, and
effective indexing and querying. Furthermore they
provide facilities such as transaction management,
concurrency and access control as well as locking
mechanisms.

Several techniques have been proposed recently for
the integration of hypertext and databases. Some address
the issue of building hypertext structures over existing
databases to provide more direct navigation through
hyperlinks.

Hara and Botafogo (Hara et al 1994) use an SQL-like
data definition language to map single relations or
relational views to node types. A node type is similar in
nature to an entity type, i.e., it models a real world object
or concept in the hypertext conceptual schema defined
over the database contents. Its specification includes the

correspondences between relation attributes and node
fields, as well as presentation information. At run time, a
node type produces two kinds of nodes: a composite one
for the whole relation, and a number of nodes
corresponding to the tuples of the relation. The same
language is used to define link types among node types. A
WHERE-clause is used to constraint the creation of links
during navigation.

In a similar approach, Falquet et al. (Falquet et al
1995, Falquet et al 1998) offer a declarative language to
produce databases views composed of node and link
schemas, accessed through the WWW. Each node schema
is based on one object class or a set of inter-related object
classes. The content of the node is composed of a subset
of the attributes of the class(es). Foreign keys to other
classes constitute link types to the corresponding nodes.
Two kinds of links are supported: Reference links are
indented to offer navigation structure within the nodes,
while inclusion links are indented to create nested
structures (part-of relationships). In addition, the
specification of the relational view includes presentation
information. The above definitions form the input to a
cgi-script that produces HTML pages for the end-user.
DHE would enhance the existing views specified through
the database application.

The above approaches leave the original client
application intact, introducing a new interface that
provides hypermedia-based interaction with the database.
On the contrary, DHE overlays linking facilities within
the original user interface application by means of user
interface wrappers.

Domenicus (Constantopoulos et al. 1996) is a
hypermedia engine developed over a repository
management system, called Semantic Index System (SIS).
Domenicus offers hypermedia functionality (such as
alphabetic lists, subject catalogs, guided tours, query
cards, hyperlinks, image annotations, bookmarks and
history), based on predefined queries over the information
objects and their structure, managed by SIS. Presentation
Card Specifications are executed at run-time to present
objects or classes of objects stored in SIS, while hyperlink
classes dynamically produce links during navigation.
Different presentation models can coexist for the same
repository instance, to fulfil the searching, browsing and
updating requirements of different user groups. DHE
provides many of these features in a generic way over any
application, allowing tours and indexes to contain
elements from several systems. Also, in DHE queries are
only predefined to the extent that mapping rules hold
skeleton queries for particular classes of database
elements.

Other approaches suggest embedding database queries
into HTML pages. For example, a mechanism offering
cross-language variable substitution between HTML and
SQL is the core of the DB2 WWW Connection system

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 7

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

(Nguyen et al. 1996), which enables quick and easy
construction of applications accessing relational databases
from the Web. The developer creates macros that consist
of HTML and SQL commands, written in distinct
sections. The sections are tied together via variable
substitution. Macros are stored at the Web server and are
processed by CGI-scripts in order to get user input or
produce output reports. DHE does not store single
database queries in the pages displayed on the Web.
Instead we generate a list of several possible links for any
element from specifications in the mapping rules.

Instead of providing hypertext functionality for a
specific database, Geldof (1996) uses an abstract page
definition language to construct templates embodying
presentation guidelines for terms of an ontology; a
conceptualisation containing objects, concepts and
relationships among them, that are presumed to exist in
some area of interest. Actual information sources are
linked separately with the terms of the ontology, using a
definition language as well. CGI-scripts in Perl are
computed to dynamically generate the HTML pages
returned to the user for browsing. While this approach
adds a certain level of automated linking to aid
navigation, DHE provides a generally larger set of links
based solely on the database structure and entity-
relationship schemas, as well as metadata. DHE,
however, does not provide customized templates for
domain-specific navigational contexts. DHE might
integrate well with Geldof’s approach to provide an
additional level of functionality.

Moreover, many products have been released recently
that aim to interface RDBMS and Web servers (Frank
1995). The solutions employed in these products require
huge programming effort in SQL or a scripting language.
The ease of integration with DHE depends on how easy it
is to parse application displays to identify the elements of
interest, and to specify the commands to return to the
application in the mapping rules. If the application has an
API or marks the elements in the displays (as should
become the custom as XML becomes more prevalent),
building the application wrapper should be relatively
easy.

 The approaches presented above presuppose the
hypertext designer’s insight into the intrinsic semantics of
the relational structure. A different approach was
proposed by Papadopoulos et al (1996). Instead of relying
on the relational schema of the database, a more
semantically enriched Extended Entity-Relationship
(EER) schema is semi-automatically produced, by
incorporating a reverse engineering methodology.
Hypertext views, consisting of node and link types, can be
defined over the EER schema, while the SQL queries to
instantiate them at run-time where automatically created,
based on mapping information gathered during the
reverse engineering process. Currently DHE requires

people to enter the entity-relationship schemas manually
to the Database Schema Mapper (see §3.3). This
application could help to automate this process, and
perhaps provide additional relationships, which DHE
could provide for database applications.

Assisting Information Retrieval

Some systems utilize hypermedia as well as
information retrieval facilities resulting in Hypermedia
Information Retrieval Systems. Such systems provide
users with the possibility of storing large amounts of
textual and multimedia elements as well as building
networks of semantic relationships among these elements
within the database for use in retrieval (Agosti et al.
1996). Although querying and browsing are considered as
complementary paradigms (Chiramella 1997), the
particular difficulty in creating such systems lies in the
fundamental distinction between structure and content.
Hypermedia Information Retrieval Systems concentrate
on providing automatic and semi-automatic conversion of
text into hypertext (Salton et al. 1994; Furner et al. 1996,
Golovchinsky 1997) aiming at “interactive retrieval” as
well as applying information retrieval capabilities to
hypermedia structures (Savoy 1996; Chiramella et al.
1996).

7. Future Research Plans

Given our basic DHE infrastructure, we can begin to
research many interesting ways to take advantage of and
enhance database systems and technologies.

Integrating Data Mining

Currently DHE determines links from the mapping
rules. Because the person who develops the application
wrapper also writes the mapping rules at the same time,
the types of relationships DHE finds are known ahead of
time. Data mining brings the opportunity of a new kind
of dynamic linking. Data mining searches large databases
for relationships and global patterns and relationships that
are not immediately obvious, such as a relationship
between patient data and their medical diagnosis
(Holsheimer 1994), or mining through data generated
from user activities on Web sites (the so-called
“clickstream”).

Data mining tools discover these relationships or
models at runtime as opposed to design time. Thus, DHE
must request the data mining tool to discover the
relationships for an element of interest at runtime, and
then use these discovered relationships to create
hyperlinks.

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 8

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

Of course, in addition, the DHE could provide
hypertext functionality to commercial data mining tools.
A commercial data-mining tool could have a wrapper
written for it, just as with any other application.

Relationship-based Design of Database

We currently are developing a relationship-based systems
analysis methodology, Relationship-Navigation Analysis
(RNA) to help analysts determine the interrelationships
within their applications (Bieber & Yoo 2000; Yoo &
Bieber 2000a,b; Yoo 2000). Once identified, each
relationship could be designed and implemented as a link
in the application. We have developed RNA to help in
any application domain, not just databases. In future
research we intend to compare RNA with a traditional
database analysis technique. We believe RNA could be
used as a tool to help designers make the “hidden”
relationships explicit in an application, as well as identify
relationships in application components outside the
database contents.

8. Conclusion

Many enterprises have investments in legacy backend
systems that need to be accessed over the World Wide
Web. Unfortunately this usually means either a complete
retrofit of the existing system or a customized interface to
the system. We believe the DHE is the first such
generalized system to impart hypermedia functionality to
any application without any change to it.

To integrate a legacy application with the Engine, a
developer has to follow 3 quick and simple steps.
• Write one or more mapping rules
• Implement a DHE module that executes the

command behind these mapping rules on the system
and populates the result of this command into a
DHE message

• Register the module with the Message Manager
Because of the “modular” architecture of the DHE,

modules maybe added and removed at will without
affecting or disrupting the rest of the Engine, which
allows the developer to prototype, develop and deploy a
module easily. Also, because the DHE uses XML as its
internal messaging protocol the developer will find it easy
to integrate with the rest of the Engine.

While the main purpose of this study has been to
describe our hypermedia and database research, we hope
that it also sets forth a research agenda for joint research
in these two fields. Database applications need to interact
with their users. Hypermedia can supplement database
applications in many ways, making them more effective.
The Dynamic Hypermedia Engine enriches the user’s
experience with the power of hypermedia by providing it

to applications lacking it, and also eases the development
of complex database systems by automatically providing
these hypermedia services.

Acknowledgements

We gratefully acknowledge funding by the United
Parcel Service, the NASA JOVE faculty fellowship
program, by the New Jersey Center for Multimedia
Research, by the National Center for Transportation and
Industrial Productivity at the New Jersey Institute of
Technology (NJIT), by the New Jersey Department of
Transportation, and by the New Jersey Commission of
Science and Technology.

References

Agosti, M. and Smeaton A., (1996). Information Retrieval and
Hypertext. Boston: Kluwer Academic Publishers.

Berners-Lee T., Fielding R. & Masinter L. (1998), "Uniform
Resource Identifiers (URI): Generic Syntax", Internet
Engineering Task Force Request For Comments 2396, August
1998.

Bieber, M. (1990) “Generalized Hypertext in a Knowledge-
based DSS Shell Environment,” Ph.D. dissertation (University
of Pennsylvania, Philadelphia, PA 19104, 1990).

Bieber, M. (1995) On Integrating Hypermedia into Decision
Support and Other Information Systems, Decision Support
Systems 14, 1995, 251-267

Bieber, M. (1999), Supplementing Applications with
Hypermedia, Technical Report, New Jersey Institute of
Technology, Information Systems Department.

Bieber, M. and Kacmar, C. (1995) Designing Hypertext Support
for Computational Applications, Communications of the
ACM, 38(8), 1995, 99-107.

Bieber, M., Vitali, F., Ashman, H., Balasubramanian V., and
Oinas-Kukkonen, H., (1997) “Fourth generation hypermedia:
some missing links for the World Wide Web,” International
Journal of Human Computer Studies 47, 31-65.

Bieber, Michael and Joonheee Yoo (2000). Hypermedia: A
Design Philosophy, ACM Computing Surveys (forthcoming).

Chiramella, Y., and Kheirbek, A. (1996) An Integrated Model
for Hypermedia and Information Retrieval, In Information
Retrieval and Hypertext, M. Agosti, A. Smeaton (Eds),
Kluwer, Amsterdam (NL),139-176.

Chiramella, Y., (1997) Browsing and Querying: Two
Complementary Approaches for Multimedia Information
Retrieval, In Proceedings of Hypertext – Information Retrieval
– Multimedia, (HIM ’97), 9-26, Dortmund, Germany.

Chiu, C. and Bieber, M. (1997) A Generic Dynamic-Mapping
Wrapper for Open Hypertext System Support of Analytical
Applications, ACM Hypertext'97 Proceedings, ACM Press,
Washington, D.C., April 1997, pages 218-219.
http://www.cis.njit.edu/~bieber/pub/ht97/ht97-mac.html

Conklin, J., (1987) "Hypertext: a Survey and Introduction,"
IEEE Computer, volume 20 number 9, 1987, pages 17-41.

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 9

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

Constantopoulos, P., Theodorakis, M., Tzitzikas, Y., (1996).
Developing Hypermedia Over an Information Repository,
Proceeding of the 2nd Workshop on Open Hypermedia
Systems, ACM Hypertext ’96 Conference, Washington, DC.

Davis, H., Knight, S., and Hall, W., (1994) “Light Hypermedia
Link Services: A Study of Third Party Application
Integration,” Proceedings of the Fifth ACM Conference on
Hypermedia Technologies, Edinburgh, Scotland, 158-166.

Falquet, G., Guyot, J., Prince, I., Generating Hypertext Views
on Databases, CUI Technical Report No 101, University of
Geneva, (1995).

Falquet, G., Guyot, J., Nerima, L., Languages and Tools to
Specify Hypertext Views on Databases, International
Workshop webDB '98 selected papers, Valencia, Spain,
Springer-Verlag LNCS 1590, (March 1998).

Frank, M., Database and the Internet, DBMS Magazine, vol. 8,
no. 13, (December 1995).

Furner, J., Ellis, D., , Willett, P., (1996) The Representation
and Comparsion of Hypertext structures using Graphs , In
Information Retrieval and Hypertext, M. Agosti, A. Smeaton
(Eds), Kluwer, Amsterdam (NL), 75-96.

Gardner, S. R. (1998) Building the Data Warehouse,
Communications of the ACM, 41(9), Sep. 1998, 52-60.

Garrido, A., and G. Rossi, (1996) “A framework for extending
Object-Oriented Applications with Hypermedia
Functionality," The New Review of Hypermedia and
Multimedia 2, 1996, 25-41.

Geldof, S. (1996). Hyper-text generation from databases on the
Internet, Proceedings of the 2nd Intl. Workshop on
Applications of Natural Language to Information Systems
(NLDB ’96), Amsterdam, IOS Press, 102-114.

Golovchinsky, G., (1997), "What the Query Told the Link: The
Integration of Hypertext and Information Retrieval", In
Proceedings of Hypertext ‘97, 67-74, April 1997.

Hara, Y., Botafogo, R. A., Hypermedia Databases: A
Specification and Formal Language, Proceeding of the
Databases and Expert Systems Applications Conference
(DEXA), Springer-Verlag LCNS 856, (1994), 520-530.

Holsheimer, M. and Siebes, A. (1994) (Report CS-R9406) Data
Mining, The Search for Knowledge in Databases, CWI,
Amsterdam ,ftp://ftp.cwi.nl/pub/CWIreports/AA/CS-R9406.ps.Z

Inmon, W. H. (1996) Building the Data Warehouse, Second
Edition, Wiley Comp., ISBN O471-14161-5, USA, 1996.

Johnson, A. H. (1999) Data Warehousing, Computerworld,
33(49), Dec. 1999, 74-75.

Kacmar, C. (1993) “Supporting Hypermedia Services in the
User Interface,” Hypermedia 5(2), 1993, 85-101.

Kacmar, C. (1995) “A Process Approach for Providing
Hypermedia Services to Existing, Non-hypermedia
Applications,” Journal of Electronic Publishing: Organization,
Dissemination and Design.

Lassila Ora & Swick Ralph R. (Editors), "Resource Description
Framework (RDF) Model and Syntax Specification", W3C
Recommendation 22 February 1999.

Nielsen, Jakob (1995) “Multimedia and Hypertext: The Internet
and Beyond,” AP Professional.

Nguyen, T., Srinivasan, V. (1996). Accessing Relational
Databases from the World Wide Web, Proceedings of the
ACM SIGMOD Conference, 529-540.

Papadopoulos, A., Vaitis, M., Christodoulakis, D. (1996).
Building Hypertext Interfaces to Existing Relational

Databases. Proceeding of the 7th Intl. Conference on Database
and Expert Systems Applications (DEXA ’96), Springer-
Verlag LCNS 1134, Zürich, Switzerland, 276-288.

Rossi, G., A. Garrido and S. Carvalho. (1996) “Design Patterns
for Object-Oriented Hypermedia Applications”. Book chapter
in: Pattern Languages of Programs II. J. Vlissides, J. Coplien
and N. Kerth, eds. Addison- Wesley, pp. 177-191.

Salton, G., (1989) Automatic Text Processing: : the
transformation, analysis, and retrieval of Information,
Reading, MA: Addison-Wesley.

Salton G. and Allan J. and Buckley C. and Singhal A., (1994)
"Automatic Analysis, Theme Generation, and Summarization
of Machine-Readable Texts", in Science, Vol 264, 1421-1426.

Savoy, J. , (1996), Citation Schemes in Hypertext Information
Retrieval. In Information Retrieval and Hypertext, M. Agosti,
A. Smeaton (Eds), Kluwer, Amsterdam (NL), 99-120.

Van de Sompel, Herbert and Patrick Hochstenbach, (1999)
Reference Linking in a Hybrid Library Environment, Part 1:
Frameworks for Linking, D-lib Magazine 5(4).

Van de Sompel, Herbert and Patrick Hochstenbach, (1999)
Reference Linking in a Hybrid Library Environment, Part 2:
SFX, a Generic Linking Solution, D-lib Magazine 5(4).

Van de Sompel, Herbert and Patrick Hochstenbach, (1999)
Reference Linking in a Hybrid Library Environment, Part 3:
Generalizing the SFX solution in the "SFX@Ghent &
SFX@LANL" experiment, D-lib Magazine 5(10).

Wan, Jiangling (1996). Integrating Hypertext into Information
Systems through Dynamic Linking. Ph. D. dissertation, New
Jersey Institute of Technology, Institute for Integrated
Systems Research, Newark NJ 07102.

Wan, Jiangling and Michael Bieber (1997). Providing Relational
Database Management Systems with Hypertext. Proceedings
of the Thirtieth Annual Hawaii International Conference on
System Sciences (Wailea, Maui; January 1997), IEEE Press,
Washington, D.C., Volume VI, pages 160-166.

Yoo, Joonhee and Michael Bieber (2000). Towards a
Relationship Navigation Analysis. Proceedings of the 33rd
Hawaii International Conference on System Sciences, IEEE
Press, Washington, D.C., January 2000.

Yoo, Joonhee and Michael Bieber (2000). Finding Linking
Opportunities through Relationship-based Analysis. Hypertext
’00 Proceedings, San Antonio, June 2000, ACM Press.

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 10

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

