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Abstract—Smart phones can collect and share Bluetooth
co-location traces to identify ad hoc or semi-permanent so-
cial groups. This information, known to group members but
otherwise unavailable, can be leveraged in applications and
protocols, such as recommender systems or delay-tolerant
forwarding in ad hoc networks, to enhance the user experience.
Group discovery using Bluetooth co-location is practical be-
cause: (i) Bluetooth is embedded in nearly every phone and has
low battery consumption, (ii) the short wireless transmission
range can lead to good group identification accuracy, and
(iii) privacy-conscious users are more likely to share co-location
data than absolute location data.

This paper proposes the Group Discovery using Co-location
traces (GDC) algorithm, which leverages user meeting fre-
quency and duration to accurately detect groups. GDC is
validated on one month of data collected from 141 smart
phones carried by students on our campus. Users rated GDC’s
groups 30% better than groups discovered using the K-Clique
algorithm. Additionally, GDC lends itself more easily to a
distributed implementation, which achieves similar results with
the centralized version while improving user’s privacy.

Keywords-Mobile social computing, group discovery, co-
location traces, smart phones

I. INTRODUCTION

The incorporation of social information into online and
mobile applications or services has become mainstream in
the past several years. However, collecting social networking
information is generally application-dependent and limited
to on-line activities. As such, a large amount of social
information that results from face-to-face interactions is not
captured. This is especially true for informal groups, which
do not advertise their meetings on-line. Examples of such
groups include a student study group, faculty who routinely
have lunch together, or coworkers who sometimes play golf.

Capturing information about social groups formed through
face-to-face interactions could be used in several types of
services. Recommender services can benefit from a signifi-
cant amount of additional social information to provide geo-
social group recommendations such as meeting places or
events of interest based on common user preferences [1].
Systems such as Mobius [2] can enforce socially-aware
access control: multimedia content generated at a group
meeting is only shared with group members, including
those who were not present. The information about groups
could also be leveraged in systems such as RoamWare [3]
for mobile computer supported cooperative work. Finally,
forwarding in delay-tolerant ad hoc networks can be made
socially aware by selecting a next hop device that belongs
to a person who shares a group with the destination; in
this way, the next hop has a higher probability to meet the
destination [4].

One way to identify this type of social group is to leverage
information collected automatically from smart phones car-
ried by mobile users, such as location or co-location. Using
this information, a group can be defined as a relatively small
set of users who spend a significant amount of time together
and meet for a significant number of times [5]. Discovering
such groups, however, is difficult: (i) group members do not
necessarily attend all group meetings, (ii) guests or people
who pass by the meeting location can appear to be part
of groups, (iii) group members spend different amounts of
time at meetings, (iv) the collected data is incomplete due to
sampling frequency and mobility, and (v) users may collect
different data for the same group meeting.

Our GPI algorithm [6] used location to identify, with high
accuracy and low false positives, groups and their associated
places. However, there are several issues which prompted
the need for a different algorithm. First, GPI requires a
localization system on every mobile device, which is not
always available (especially indoors). Second, many users
are often reluctant to share location traces for long time
due to privacy concerns. Even anonymous location traces
are vulnerable to user identification through data mining
techniques, which can lead to user tracking and home iden-
tification [7]. Third, localization systems running on phones
(e.g., GPS, Place Lab [8]) consume a significant amount of
battery power. Finally, the accuracy of localization systems
can vary significantly across different places.

This paper presents the Group Discovery using Co-
location traces (GDC) algorithm, which uses Bluetooth co-
location traces to identify groups. A co-location trace for
a user is a set of records of other users who are within
a certain proximity at the same time. GDC leverages the
Bluetooth discovery protocol to collect these traces. GDC
is practical and achieves good efficiency for several rea-
sons. Unlike localization systems, Bluetooth is available on
nearly all mobile phones and can work indoors. Sharing co-
location information, instead of absolute location, may be a
participation incentive for those users with concerns about
their location being tracked. Finally, Bluetooth consumes
much less power than GPS and WiFi, while helping with
the accuracy of the algorithm due to its short transmission
range (i.e., 10m).

Well-known graph algorithms, such as K-Clique [9] and
WNA [10], could be employed to detect groups based on
co-location. They work by inserting an edge in the graph
between any two users who have been around each other for
a certain amount of time. However, since these algorithms
use only pair-wise information, there is no guarantee that
their detected groups spent any time together. Furthermore,



important parameters that can be used to classify groups,
such as group meeting frequency and total group meeting
time, are lost. Finally, K-Clique does not allow for weighted
edges, which leads to lower group detection accuracy, and
WNA does not work for overlapping groups, thus missing
many groups.

This paper makes the following contributions:
• it introduces GDC, a novel and practical algorithm

that leverages Bluetooth co-location traces to accurately
identify social groups. GDC associates a group meeting
time and meeting frequency with each group, which can
be used to compare, categorize, and rank groups.

• it presents the validation and evaluation of GDC with
one-month of data collected from 141 smart phones
carried by students on our campus. Additionally, GDC
was tested on the Reality Mining dataset [11].

• it compares GDC against K-Clique on our dataset by
asking the users to participate in a survey deployed on
Facebook. Using a Likert scale, we observed that GDC
performed well: GDC-discovered groups received 30%
higher ratings than K-Clique’s groups.

• it presents a distributed version of GDC, in which
users do not share data with a centralized server, but
only with people they have met. This implementation
achieves similar results with the centralized version and
significantly contributes to user privacy protection.

The rest of this paper is organized as follows. Section II
describes the GDC algorithm. Section III presents the ex-
perimental results and analysis. Section IV describes the
distributed GDC version and presents comparison results
between the two GDC versions. Section V discusses the
related work, and Section VI concludes the paper.

II. GDC ALGORITHM

A. Input Data

The GDC algorithm discovers social groups from a set of
co-location traces. These traces are collected by a program
running on every smart phone, which invokes the Bluetooth
discovery protocol to periodically (1-3 minutes) query all
nearby Bluetooth devices (i.e., in a 10m transmission range)
for their MAC addresses. These data are typically uploaded
to a server at certain time intervals. Every instance of a
detected Bluetooth device is stored as a Bluetooth record,
which includes the MAC address of the initiator, the MAC
address of the discovered device, and a timestamp. Records
including unknown devices (i.e., not registered with the data
collection module) are discarded.

B. Definitions

A Bluetooth record consists of a pair of co-located users
and a timestamp (i.e., the time when they were co-located).
If a smart phone detects N users in one discovery query, then
N Bluetooth records will be created, one for each device.

A Bluetooth trace is the collection of all Bluetooth records
for a specific user resulting from queries performed by the
smart phone carried by that user.

A pair-wise meeting record (or simply pair-wise meeting)
is a collection of contiguous Bluetooth records for the same

pair of users (i.e., without time gaps between them, where
time gap is a function of the Bluetooth discovery frequency).

A group meeting involves a set of at least three users, and
it requires that all possible user pairs in the set have pair-
wise meetings at the same time. Implicitly, this means that
all the participants at a meeting must be in the Bluetooth
transmission range of each other.

A cluster is a set of users, who have one or multiple
meetings together.

A group is a cluster of users who spend a significant
amount of time together over a series of meetings. Not all
members of a group have to be present at every meeting, but
they must be present at a significant number of meetings. A
set of groups can be overlapping and thus share members,
but each group must be notably different from the others
in terms of total time spent together (and meeting times).
A cluster becomes a group if it fulfills all of the necessary
requirements, defined by GDC parameters, and if it does not
significantly overlap other groups.

C. GDC Description

Given a set of pair-wise co-location records, GDC iden-
tifies groups of users. Naturally, groups may share users,
and consequently, groups can be overlapping. However, the
groups outputted by GDC are notably different from each
other, whether in terms of members or total time spent
together. Not only does GDC find all groups that spend at
least a specified minimum amount of time together for at
least a specified number of meetings, but these parameters
are maintained in the final output to allow groups to be
compared, categorized, and ranked.

GDC discovers these groups in four different phases, each
dependent on the results from the previous phase. The first
phase transforms individual Bluetooth trace records into
meeting records, which detail the start and end times of
individual meetings between two users. The second phase
takes these meeting records and calculates the time spent
by all permutations of users who appeared together over
different meetings. This phase results in a raw list of
potential user clusters. The third phase compares the views
of different users and removes some of the clusters that do
not appear in all the cluster members’ views. The fourth
phase takes the global list of clusters and identifies the final
groups by eliminating subgroups of little significance.

In the first phase, GDC goes linearly through all the Blue-
tooth records to identify pair-wise meetings between users
and the durations of these meetings. Each meeting record
represents a collapsed time-frame for several “chained”
Bluetooth records. In this way, many one-time encounters
(e.g., people passing each other) are discarded. The meeting
granularity (MG) parameter is used to indicate the maximum
amount of time that two Bluetooth records can be apart and
still be considered part of the same meeting (pseudo-code
line 5). Ideally, this parameter should be large enough such
that missing a single Bluetooth record (e.g., the user stepped
out of the meeting to take a phone call) would not result
in two different meetings, but small enough to capture real
changes in group structure. In our evaluation, we set MG to
15 minutes based on empirical observations of the clusters



Phase 1 Creating Pair-wise Meeting Records
1: Sort union of Bluetooth records ri by user, userwith, time
2: endtime = 0, starttime = r0.time
3: for all ri in records do
4: if (ri.user == ri−1.user) AND (ri.userwith == ri−1.userwith)

then
5: if (ri.time − ri−1.time > MG) then
6: if (endtime 6= 0) then
7: addmeeting(ri−1.user.meetings, ri−1.userwith,

starttime, endtime)
8: end if
9: starttime = ri.time, endtime = 0

10: else
11: endtime = ri.time
12: end if
13: else
14: if endtime 6= 0 then
15: addmeeting(ri−1.user.meetings, ri−1.userwith, starttime,

endtime)
16: end if
17: starttime = ri.time, endtime = 0
18: end if
19: end for
20: if endtime 6= 0 then
21: addmeeting(ri.user.meetings, ri.userwith, starttime, endtime)
22: end if

Figure 1. Co-location for three users according to each user’s perspective

created by GDC’s second phase. At this value, the number of
additional clusters started to level off. The same value can be
applied to other datasets as long as the Bluetooth discovery
frequency remains similar (once every 1-3 minutes).

Two users can have different views of the same meeting
due to the randomness of the periodic Bluetooth discov-
ery, potential wireless collisions, and the varying distance
between users. GDC merges the user views of the same
meeting by taking the union of their individual views.

Phase 2 Creating User Clusters
1: for all x in users do
2: lasttime = 0, currentwith = new minheap([user, endtime] keyed on

endtime)
3: for all m in x.meetings do
4: while (currentwith[0].endtime ≤ m.starttime) do
5: for all cluster c in allCombinations(x,

allUsers(currentwith)) do
6: c.totaltime += currentwith[0].endtime - lasttime
7: c.frequency += 1
8: updateClusters(x.clusters, c)
9: end for

10: lasttime = currentwith[0].endtime
11: remove(currentwith[0])
12: end while
13: for all cluster c in allCombinations(x,

allUsers(currentwith)) do
14: c.totaltime += m.starttime - lasttime
15: c.frequency += 1
16: updateClusters(x.clusters, c)
17: end for
18: currentwith.add([m.userwith, m.endtime])
19: lasttime = m.starttime
20: end for
21: end for

The second phase analyzes the correlation between pair-
wise meeting records to identify all user clusters formed
during the entire period analyzed. It is necessary to consider
all possible combinations of users at this stage (lines 5
and 13) because there is not enough information to tell if
overlapping clusters should be put together in one group
or kept separate. This information will be derived later
based on the total meeting time and the number of meetings
for each cluster. For example, in Figure 1, according to
A’s perspective, GDC selects the following clusters: (AB:3,
AC:3, ABC:2). The same figure illustrates that users may
have different perspectives of their clusters. According to B,
the results are (AB:3, BC:2, ABC:2). For instance, this can
be due to the fact that users separated by a distance close
to the transmission range may have fewer records of each
other than a users located between them.

For each user, GDC goes linearly through its meeting
records and constructs its clusters, calculating how much
time she spent and how many times she met with every
permutation of users clustered together for a meeting. These
values are updated for each new meeting record processed.
The min-heap in the pseudo-code (line 2) is used to process
all these permutations for each meeting. Note that at the
end of this phase, each user has a localized version of each
cluster as users can have different perspectives on group
meetings.

Phase 3 Creating Global Clusters
1: globalclusters = []
2: for all x in users do
3: for all c in x.clusters do
4: if (minTime(allUsers(c)) > MGT) AND

(minFreq(allUsers(c)) > MGMF) then
5: c.totaltime = minTime(allUsers(c).totaltime)
6: c.frequency = minFreq(allUsers(c))
7: globalclusters.add(c)
8: else
9: for all user y in c do

10: delete(c, y.clusters)
11: end for
12: end if
13: end for
14: end for

The third phase consolidates each user’s perspective of
clusters into a global view of all clusters (updated in line
7). Additionally, it eliminates all clusters that met for a
total time less than a threshold called minimum group time
(MGT) and have a meeting frequency less than the minimum
group meeting frequency (MGMF). This is shown in lines
8-11. By including MGMF in the algorithm, we can relax
MGT to provide better identification accuracy for groups
with frequent but brief encounters. We take a conservative
approach and set the meeting time and meeting frequency for
a cluster to the minimum values across all members (lines
5-6).

Although each cluster should appear in the cluster list of
each of its members, this is not always the case because
cluster members might not have attended all meetings for
that cluster. GDC removes a cluster that does not appear in
the lists of all its members. Unfortunately, this means that
groups whose members are located within a range larger than
the Bluetooth transmission range, such as a large auditorium,



are not detected. However, many times, by including groups
“linked” through one or a few users, GDC would erroneously
merge different groups that meet at the same location. Our
current version may miss a few large groups, outputted as
overlapping subgroups, but it guarantees that the identified
groups exist in reality (in the sense that their members have
spent time together). One possible optimization is to check
the group meeting times at the end of GDC’s execution, and
merge groups that meet with a certain frequency at the same
time and share a significant percentage of their users.

Phase 4 Selecting the User Groups
1: Sort globalclusters by descending cluster length
2: finalclusters = [], addcluster = true
3: for all i in globalcluster do
4: addcluster = true
5: for all j in finalcluster do
6: if (allUsers(i) is subset of allUsers(j)) AND

(i.totaltime*GTP < j.totaltime) then
7: addcluster = false: break
8: end if
9: end for

10: if addcluster then
11: finalclusters.add(i)
12: end if
13: end for

The final phase determines whether each of the global
clusters should be considered a significant group or a sub-
group of another significant group. The second phase of the
algorithm, in which GDC generates all the possible cluster
permutations, guarantees that two clusters are either disjoint
or one includes the other. This last stage is necessary for
two reasons. First, most people may not arrive at or leave
from a meeting at the exact same time. Second, many users
may miss a few group meetings. GDC must tolerate both
these issues and remove insignificant subgroups as they are
included in other groups.

However, GDC must also allow for subgroups to be
considered as standalone groups if their members meet
much more frequently than any of the other members of a
larger group. For example, a group of students who hangout
together frequently could play weekly basketball games
with other students. In this case, both groups should be
considered. GDC uses the total time a group spent together
as a weight to determine whether a group should be kept
or removed. Specifically, a group A is removed (i.e., it is
a subgroup) if all its members belong to another group B
and B’s total time is more than half A’s total time (the GTP
parameter in line 6 is set to 0.5). This parameter practically
denotes how much more time the subgroup members must
spend together compared to all the group members in order
to be considered a standalone group. The output of this phase
is the final output of GDC.

D. Computational Complexity

The complexity of GDC is O(R × 2L), where R is the
total number of Bluetooth records and L is the maximum
number of users in a group. The assumption is that R >> N
(the number of users) and MR = R/const (the number of
meeting records). This complexity is due to the second phase
of the algorithm, which has a complexity of O(MR× 2L).
Although this complexity is exponential in L, the value of

Figure 2. Number of hours of collected data per user

L is relatively low because of the limited number of users
who can be found together at any one time in a transmission
range of 10m. For our dataset, the maximum number of users
found together was 15 and the average was 6.8.

III. EXPERIMENTAL EVALUATION

The goal of this evaluation was to understand if GDC
performs well in real-world settings and to compare GDC’s
performance against a well-known graph algorithm for com-
munity detection, K-Clique [9].

A. Data Collection

We collected one month of Bluetooth co-location data
for a set of 141 students at NJIT. The study took place
on our medium size urban campus, and the subjects were
representative of the various majors offered on campus; 75%
were undergraduates and 25% were graduates. Also, 28%
were women and 72% were men.

We equipped the participants with HTC Windows Mobile
8595 and 8525 phones, which come preloaded with Win-
dows Mobile 5. Under supervision, each participant installed
a custom application that quietly recorded the Bluetooth
addresses of nearby devices using the Bluetooth discovery
protocol. Discovery queries occurred on each device at a
random interval between 1 and 3 minutes. The randomness
was introduced to minimize the potential delays due to
wireless collisions (which could lead to losing records). Each
discovery query took approximately 20-30 seconds to finish,
which is in line with previous studies [12]. The local records
were uploaded to a server periodically.

Figure 2 depicts the total number of hours recorded for
each user as well as the cumulative distribution function.
This figure shows that less than 24 hours worth of data
was collected for 78 users. There were, however, some
users for whom large amounts of data were collected (over
300 hours). The typical user provided a few hours of data
per day, especially during the week days. Essentially, this
figure shows that our dataset is sparse. There are several
causes: Our sample size (141 users) is small compared to
the university student population of 9000. Furthermore, our
users were volunteers; we did not select them based on
friendships. Therefore, many of them did not meet each
other. Finally, many students are commuters and come on
campus just for courses.

GDC was also tested on the Reality Mining dataset [11],
which is denser than our dataset, as illustrated in Table I.



Table I
REALITY MINING DATASET VS. NJIT DATASET (SCALED UP TO 9 MONTHS FOR

THIS COMPARISON)

NJIT Dataset Reality Mining
Number of users 141 96
umber of different co-located
user pairs 3510 6219

Average number of meetings
per pair 19.51 30.44

Std dev of number of meet-
ings per pair 29.57 66.58

Average total meeting minutes
per pair 683.83 917.55

Std dev of total meeting min-
utes per pair 4090.23 4116.55

For a fair comparison, we scaled the NJIT dataset up to
nine months (the same as the Reality Mining data collection
period). Despite their differences, both datasets exhibit large
and similar standard deviations for the pairwise number of
meetings and total time spent together.

B. Validation Methodology

The output of GDC was verified by surveying the partici-
pants from the data collection phase. A Facebook application
was created to present each user with a selection of groups
generated by GDC and K-Clique (the users were not aware
of what algorithm produced which group). Users ranked the
groups on a Likert scale, from 1 to 5, where 1 is very bad
and 5 is very good. Users were also encouraged to mark
groups as “don’t know” if they were not sure. This was
included to address the well established fact that people are
not always able to recall interactions or accurately report
data on all their relationships [11]. Each user was presented
with a variety of groups that pertained to him, including
at least two groups found only by GDC and two groups
found only by the K-Clique algorithm, and when applicable,
a group that was found by both algorithms. Users had the
option to continue to rank groups until they exhausted all
groups in which they were considered a member.

Every study participant who indicated in a pre-survey
that they used Facebook were invited to use our Facebook
application. Eighty-eight users responded to the Facebook
questionnaire, with 56 belonging to at least one group from
either algorithm, thus composing 482 different ratings for
265 different groups. Of these ratings, approximately 60%
were for groups only from K-Clique and 32% were for
groups only from GDC (as we will see later, K-Clique
discovers more groups). Two hundred twenty-one groups
received ratings within the Likert scale, with the other
44 groups receiving only “don’t know” ratings. 93 groups
received two or more ratings, while 128 groups received
only one rating. Each participant rated 8.6 groups and each
participant was a member of 12.9 groups on average.

It is important to note that these metrics are self-reported
user ratings and do not represent whether these groups
actually met or not, but rather represent the user’s perception
of the group. It is known with certainty that all the subjects
in a GDC-discovered group were co-located for at least the
minimum required parameters, but the subjects may not be
aware of this co-location. For example, they may be familiar
strangers, who meet with certain frequency and recognize

Figure 3. Distribution of user ratings for GDC groups function of group
meeting frequency. MGT=2000s.

Figure 4. Distribution of user ratings for GDC groups function of group
meeting time. MGMF=1.

each other’s faces, but do not know each other’s name.
Thus, it is difficult for users to accurately self-report on these
groups [13].

For the validation, GDC was run using the following
parameters: MG = 15min (threshold for considering a pair-
wise meeting), MGT = 2,000s (threshold to consider a
group), and MGMF = 1 meeting (threshold for meeting
frequency). These parameters were chosen to be as inclusive
as possible, but with the intention of increasing their values
post-survey to better understand their effect on groups.

K-Clique was chosen because of its shared ability with
GDC to detect overlapping communities. Two users who
spent at least 2,000s together have an edge in the graph
analyzed by K-Clique. The groups used in our survey
represent the union of K-Clique results for values of K ≥ 3.

C. Results

Effect of parameters on group detection accuracy.
Figures 3 and 4 show how the user ratings vary with the
group meeting frequency (MGMF) and group meeting time
(MGT). As expected, the ratings are much better for higher
frequencies and larger amounts of time. What is interesting,
however, is that even groups that meet only 2 times receive
significantly higher ratings than groups meeting only once.
The results also show that meeting frequency is a better
predictor of group quality than meeting time. As MGMF is
increased, the poorly rated groups virtually disappear. These
results also emphasize the importance of GDC’s ability to
associate MGMF and MGT with the groups it detects. These
parameters can be used as tuning knobs for the algorithm,
allowing users to trade off the number of detected groups
for detection accuracy.

Comparison of results for NJIT and Reality Mining
datasets. Figure 5 presents a comparison of the groups



Figure 5. Groups discovered by GDC for our dataset (MGT=2000s,
MGMF=1) and the Reality Mining dataset (MGT=18000s, MGMF=9).

Figure 6. Visualization of the groups detected by GDC and K-Clique

detected by GDC when applied on the two datasets. We
increased linearly the values of the two GDC parameters
for the Reality Mining dataset to account for the longer data
collection period. Although many more groups are detected
for the Reality Mining dataset, the results in terms of group
distribution as a function of their size are relatively similar.
For example, approximately 60% of the groups in both
categories have just 3 members, and most of the other groups
have 4-5 members. Unlike Reality Mining, our dataset shows
a few larger groups (e.g., 13 members).

GDC vs. K-Clique comparison. For this comparison, the
values of the parameters for GDC were: MGT=2000 and
MGMF=2. The threshold for a K-Clique edge was 2000s.
Figure 6 shows the social network graphs created from the
groups detected by the two algorithms, and Figure 7 presents
the user ratings for these groups.

GDC discovered 65 groups, and K-Clique discovered
292 groups. Twenty one groups were discovered by both
algorithms, but only 13 of them received ratings within the
Likert scale, with a 2.62 average score (indicating results
between poor and okay). Since these groups are common
and our goal is to understand the difference between GDC
and K-Clique, we exclude them from further comparisons.
If these groups would be included in the comparisons, the
K-Clique accuracy would remain almost the same, while
GDC’s would decrease slightly.

Within the 271 remaining K-Clique groups, only 51 are
real groups according to our definition, which is that all
members of a group spend at least some time together
throughout the study. This result is expected because K-
Clique’s group detection is based on social tie transitivity
and does not account for time spent together, which is a
major characteristic of co-location. Consequently, users rate
K-Clique discovered groups low.

GDC, on the other hand, detects fewer groups, but it
guarantees that all these groups exist (i.e., their members

Figure 7. User rating comparison between GDC and K-Clique

spent time together). The results show that it outperforms
K-Clique. A χ2 test proves that the difference is statistically
significant: χ2 (4,N=260) = 21.807, p < .001. Additionally,
by treating the Likert data as continuous, the means of the
ratings can be compared: GDC has a mean of 3.62, com-
pared to K-Clique’s 2.73. A t-test proves that this difference
is statistically significant: t(258) = -4.057, p < .001. Finally,
we believe that the low meeting frequency considered in
this experiment prevented GDC from achieving even higher
ratings; our conjecture is that low meeting frequency groups
included familiar strangers and users rated these groups low
because they did not know the names of the group members.

IV. DISTRIBUTED GDC
So far, GDC was assumed to run on data collected at a

central location. By modifying GDC’s design, the algorithm
can run in a distributed manner such that each mobile phone
stores co-location traces and calculates groups for its owner
without relying on a centralized server. Phones can exchange
data directly with other phones of interest. This section
presents the benefits of a distributed version of GDC (D-
GDC), describes the changes required by this version, and
highlights a few initial results.

A. Benefits
The main benefit of D-GDC is better privacy for users,

who are protected from sharing data with a “big brother”.
Each user must share data with other users, but these are
the same users who have been recorded in her proximity. In
general, this is not private information as the users physically
saw each other. Two users who do not have any co-location
records will never exchange information. Depending on the
application, final social groups might be pooled together;
however, co-location traces still remain local, thus specific
details, such as time of encounter, can remain private.
Interactions with users who are not in any final social groups
will remain confidential as well.

Other benefits of a distributed version are resilience and
flexibility. D-GDC is more resilient as there will be no cen-
tral point of failure: both data and processing are distributed.
It is also more flexible as it allows users to run the algorithm
at different time intervals according to their needs. This is
important because groups change over time, but at different
rates for individual users.

B. Changes
In the centralized version of GDC, the first phase simply

takes a union of all Bluetooth records, creating shared per-
spectives among users with mutual co-location data. Having



Table II
SIMILARITY OF GROUPS DETECTED BY D-GDC AND GDC

Request using
“seen with”

Request every-
one ever seen

Local
only

Average similarity 74.38% 77.33% 58.24%
Groups with similarity >
90% 56.53% 59.77% 19.14%

shared perspectives is vital because of errors associated
with recording co-location via Bluetooth. Thus, the first
phase of D-GDC must involve Bluetooth record swapping
between co-located users such that each user can resolve
most of the errors their local data would otherwise contain.
This information exchange is achieved via the Internet or
opportunistically in an ad hoc manner.

In the centralized version, clock synchronization between
mobile phones was not necessary as the server associated
server-side timestamps with each Bluetooth record. In the
distributed version, mobile phones have to timestamp their
own records. However, we can rely on the cellular network,
which synchronizes the clocks on all phones connected to
the network.

Using intelligent policies, it is possible to exchange some
limited sets of Bluetooth records between frequently co-
located users. To enable this exchange, users should record
mutual co-location through a “seen with” list for each co-
located user; this is possible since more than one user is
often seen in a single scan. Ultimately, this list can be
used to control which records are shared. The advantage
of this method is that the privacy goals of the system can
be reflected through policies.

Each user develops her own perspective on groups (the
quality of these perspectives is presented in Section IV-C),
with information exchange being controlled early in the
process. As a simple example, when a user, Alice, initiates a
request for Bluetooth records with another user, Bob, she can
request data on all the users in the “seen with” list she has
on Bob. Bob, in turn, could either simply fulfill her request,
or only send her data on users in his “seen with” list on
Alice. Through this simple message exchange step, users
will aggregate a representative subset of Bluetooth records.
The remainder of GDC runs as previously described.

C. Results

To evaluate D-GDC, we developed a system to replay the
collected Bluetooth data while emulating message exchange
between users. Each user is represented as a thread. The sys-
tem allows a number of policies controlling when message
exchanges occur and what data to send. For example, a user
attempts communication with another if they have seen each
other for half of the meeting granularity (MG) threshold.
Then, the requester asks for records on all mutually co-
located users based on her “seen with” list. Alternatively, a
user could simply ask for records on every user she has ever
seen; while this represents a lax personal privacy policy for
the requesting user, it may ensure a more complete response.

Table II shows how similar the results of GDC and D-
GDC are. Since many groups share a significant number of
members, but they are not exactly the same, we define the
similarity between two groups (A and B) as follows:

s = 0.5×
„

A.members ∩ B.members

A.members ∪ B.members
+

A.meetings ∩ B.meetings

A.meetings ∪ B.meetings

«

For every user U, we compute the similarity between her
GDC groups (i.e., groups in which U is a member) and
the groups discovered on U’s local phone by D-GDC. For
each GDC group, we considered the D-GDC group with the
highest similarity. Then, we compute the average similarity
for all groups of each user, and finally, the average similarity
across all users.

The results show that D-GDC groups have a high simi-
larity with GDC groups. We also observe that the “request
using seen with” policy of D-GDC performs similarly with
the “request everyone ever seen”; thus, the first policy should
be used for better privacy protection. Additionally, the results
demonstrate that D-GDC outperforms a localized version of
the algorithm (i.e., “local only” policy), in which GDC runs
only on the locally collected data. This difference is even
clearer when we look at the second row of the table, where
we see how many GDC groups have a similarity of 90% or
greater with D-GDC groups.

D-GDC can achieve better performance for higher values
of the MGT and MGMF parameters as well as for denser
data. For example, due to our sparse data, several users
ended up with a few groups in the centralized version, but
no groups in the decentralized version. If these users are
discarded because their group membership is borderline, the
performance of D-GDC increases by over 10%.

V. RELATED WORK

Traditional social network studies involve self-reported
relational data, which may have accuracy problems [13]. Ob-
serving co-location data directly can provide more accurate
insights into human mobile social patterns. Over the past few
years, there have been several projects that have utilized co-
location information to learn social properties [4], [11], [14],
[15].

The Reality Mining project at MIT [11] deployed one
hundred mobile phones to users over the duration of an
academic year (nine months). By calculating the entropy
of specific users, they were able to compute the probability,
with accuracies of up to 90%, that a user will come into
contact with another user within a certain time frame.
Similarly, researchers at Intel Research Lab and University
of Cambridge [16], [17] used iMotes to collect co-location
data. Participants initially included students and researchers
at Cambridge; a subsequent study covered a conference
environment, InfoCom′06. Contact times for users in these
experiments followed a power-law distribution. More ap-
plicable to social networking was the finding that contact
times adhered to the users’ underlying social network. All
these studies focused on incorporating social ties between
individuals into applications. Instead of this microscopic
view, our work concentrates on the macro perspective,
identifying communities in the social network.

Community detection in complex networks plays an im-
portant role in social computing [18], [19]. Several commu-
nity detection methods have been proposed and examined



in the literature. FAST and WNA [10] are both hierarchical
methods for detecting communities in graphs that can easily
be modified to deal with weighted graphs. However, they
cannot detect overlapping communities, which are natural
in human networks. This problem is overcome by the K-
clique algorithm [9], which on the other hand does not
work for weighted graphs. Unlike these algorithms, GDC
is able to solve both problems: it detects overlapping com-
munities, and it uses the amount of time spent together
and meeting frequencies as weights. Even more importantly,
GDC guarantees that the detected communities are groups
according to our definition (i.e., their members spend time
together). All the other algorithms mentioned above are
based on social tie transitivity and end up with many non-
existent groups, whose members never spend time together
(Section III explained this issue in detail).

In [17], the authors propose three distributed community
detection algorithms, which share certain goals with D-GDC.
The phones exchange the complete local sets of familiar
users (i.e., their contact time is above a threshold). The
algorithms differ in the way they merge this information
into the local data structures. Unlike these algorithms, D-
GDC allows users to specify sharing policies that can
restrict the information being exchanged, thus improving
their privacy. The most important difference, however, comes
from the very nature of these algorithms: D-GDC detects
groups that actually spend time together, while those in [17]
extend graph algorithms such as K-Clique, which are not
appropriate for detecting such groups.

VI. SUMMARY

This paper presented GDC, an algorithm for group dis-
covery based on co-location traces collected from mobile
phones. These groups can be used to provide new socially-
aware features in applications, middleware, and ad hoc
network protocols. Additionally, they can be used to address
social science questions such as: do online social networks
and co-location based social networks reinforce each other
or do they capture different types of social ties?

GDC was validated on two different types of datasets,
and, according to the user ratings, it outperforms the K-
Clique algorithm by 30%. Its groups are guaranteed to exist
because their members have spent time together, and the
most relevant groups can be selected by increasing the values
of the meeting frequency and meeting time parameters.
Finally, this paper presented a distributed version of GDC,
which runs on mobile phones and achieves good group
detection accuracy while protecting the privacy of the users.
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