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• A 2-D Poincaré map is derived and analyzed to assess phase-locking of coupled neurons.
• Criteria for the existence of bistable periodic solutions are found.
• Bistability depends on synaptic depression and neuronal phase response properties.
• Analytic predictions from the map agree with numerical simulations of models.
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a b s t r a c t

We consider a recurrent network of two oscillatory neurons that are coupled with inhibitory synapses.
We use the phase response curves of the neurons and the properties of short-term synaptic depression
to define Poincaré maps for the activity of the network. The fixed points of these maps correspond to
phase-locked modes of the network. Using these maps, we analyze the conditions that allow short-term
synaptic depression to lead to the existence of bistable phase-locked, periodic solutions. We show that
bistability arises when either the phase response curve of the neuron or the short-term depression profile
changes steeply enough. The results apply to any Type I oscillator and we illustrate our findings using the
Quadratic Integrate-and-Fire and Morris–Lecar neuron models.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Coherent activity in deterministic networks of coupled oscilla-
tors often takes the form of phase-locked activity. In this situation,
relative to some common reference point, each network element
is assigned a phase that is periodic over time. The relative phase
differences between the network elements can then be computed
to determine potential phase-locked states. Such networks arise
in a variety of physical and biological contexts, such as cardiac
networks [1], central pattern generating neuronal networks [2],
and those described by weakly-coupled Kuramoto oscillators [3].

Various mathematical approaches have been developed to un-
derstand phase-locking. One of the most common methods relies
on weak coupling among the network elements, so that the tech-
nique of averaging can be applied. This allows the phase relation-
ship between the network elements to be systematically reduced
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to the study of sets of equations on a torus, whose roots correspond
to phase-locked states [4]. Along similar lines, phase models have
been used in large networks of globally coupled oscillators to
derive a continuum description of phases where the existence and
stability of clustered, incoherent or synchronized states is stud-
ied [5,6]. Another common method uses the phase response curve
(PRC) to derive maps whose fixed points correspond to phase-
locked solutions [7]. The PRCmeasures the response of an oscillator
to perturbations given at specific phases of the oscillation cycle.
The PRC is amappingwith domain given by the perturbation phase
and range equal to the change of phase of the periodic trajectory.
A positive (negative) value of the PRC implies that a perturbation
given at that phase causes the oscillator to increase (decrease) its
phase relative to a specified reference point. Neuronal models for
which the PRC is strictly of one sign are Type I, while those inwhich
the PRC changes sign are Type II [8].

Oscillatorsmay also be subject to inputs that are not necessarily
weak. In this case, the spike-time response curve characterizes
how the timing of the next spike is affected by an input. By
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normalizing against the intrinsic period of the neuron, one effec-
tively obtains a phase response curve, albeit one that may not
quantitatively match the one obtained fromweak perturbations. A
synaptic current from a presynaptic neuron can be thought of as an
(not necessarily weak) input to a postsynaptic cell that may affect
its phase. While there are a wide variety of synapses, we will focus
on inhibitory synapses that exhibit short-term synaptic depression
where the strength of the synapse increases as a function of period
of the presynaptic neuron. We are interested in finding situations
where more than one stable periodic solution exists as a result of
the short-term synaptic depression.

Multistability of solutions refers to the existence of multiple
stable solutions for the same set of parameters. Each of these solu-
tions has a basin of attraction defined as the set of initial conditions
for which the starting trajectory asymptotically approaches this
solution.Multistability is thought to be of importance to a neuronal
network in that each of the stable solutions corresponds to a
different network output state. Thus, the capabilities of a network
are expanded in the presence of multistability. It has been shown
previously that synaptic depression can lead to bistable states
in neuronal networks [9–11]. Synaptic depression can enhance
information about stimuli in competitive networks that display
a multitude of dominance times [12], but can also detract from
multistability of dominance times in noise induced switching in
excitatory networks [13].

In this study, we show that bistability of different phase-locked
states can arise in a pair of Type I neurons in which just one
of the synapses exhibits short-term depression. Further, we de-
velop a technique for finding the phase-locked states that relies
on knowing only the PRC of each neuron, rather than the spe-
cific mathematical equations needed to describe the evolution
of a model’s voltage variable. Calculating a PRC of a neuron is
a feed-forward process in that the timing of the perturbation to
a neuron can be externally controlled. There is significant work
on approximating PRCs from experimental data; for example see
[14,15]. Themaximal synaptic strength as a function of cycle period
or frequency (synaptic plasticity profile) can also be calculated
in a feed-forward manner [16]. Huang [17] developed a method
to combine these two types of feed-forward information into a
feedback Poincaré map. The stable (unstable) fixed points of this
map corresponded to stable (unstable) phase-locked solutions of
the reciprocally coupled inhibitory system. Using Huang’s method,
we derive two distinct 2-Dmaps. For each of thesemaps, we derive
conditions for the existence of bistable solutions. Our analysis
reveals that bistability occurs when either the PRC of the neuron
or the synaptic plasticity profile of the synapse has a sufficiently
steep derivative in a neighborhood of a fixed point. To illustrate our
proposed methods, we use the Quadratic Integrate-and-fire (QIF)
model [18] and the Morris–Lecar (ML) model [19]. The QIF is the
normal form of saddle–node bifurcation of fixed points. From it,
one can derive the theta model which is the canonical Type I phase
model.We use the QIFmodel becausewe can analytically derive its
PRC. The ML model is perhaps the most basic, biophysically based
planar model of a neuron and is widely used in mathematical and
computational studies.

This paper is organized as follows. In Section 2, we describe
the coupled systems governed by either the QIF or ML models,
together with their respective PRCs. In Section 3 we first derive
three distinctmaps. The firstmap is 1-D, previously derived inDror
et al. [7], that describes the behavior of two coupled neurons in
which the synapses are static (not depressing). The second two
maps are the aforementioned 2-D maps. We show that a stable
fixed point of the 1-Dmap has a corresponding fixed point of either
of the 2-D maps, however its stability may be different. In this
section, we also utilize a geometric method, developed in [20], to
determine existence of bistable solutions. Section 4 concludeswith
a Discussion.

2. Models and methods

The main results of this paper hold for neuronal models that
display Type I dynamics as described below. We will analytically
(numerically) calculate a family of PRCs for the QIF (ML) models.
We will use this family of PRCs to construct a 2-D map that
determines the existence and stability of phase locked solutions of
a reciprocally coupled set of two inhibitory neurons. We will also
use the model equations to conduct simulations and show that the
results agree with those obtained from the 2-D map.

2.1. Intrinsic neuron models: QIF and ML

The QIF [18] model is given by
dV
dt

= 1 + V 2 (1)

V (t+sp) = Vr , when V (t−sp) = Vt (Vr < Vt )

where Vt > Vr are the spike threshold and the resting potential,
respectively. As soon as the voltage V reaches the threshold Vt at
a spike time tsp, V is reset to the resting potential Vr . While we
consider homogeneous neurons in this study, there is no problem
in extending this to consider heterogeneity. To do so, one could
simply choose different values of Vt or Vr for the two neurons.

The ML [19] neuron is a conductance-based model neuron that
contains leak (L), potassium (K ) and calcium (Ca) currents. The
maximal conductance and reversal potential of a given current X
are denoted by ḡX and EX , respectively. The Ca current depends on
an instantaneous function m∞ of the membrane voltage (V ) and
is given by ICa = ḡCam∞(V )(V − ECa) where m∞(V ) = 0.5 (1 +

tanh((V − v1)/k1)). The parameter v1 is the half-activation value
of the Ca current and k1 is the reciprocal of the slope at that point.
The leak current is given by IL = ḡL(V − EL). The K current involves
a dynamic activation variable w and is given by IK = ḡKw(V − EK ).
The equations for the membrane voltage V and activation variable
w are given by
dV
dt

=
(
Iapp − IL − IK − ICa

)
/C (2)

dw
dt

=
w∞(V ) − w

τw(V )
where w∞(V ) = 0.5(1 + tanh((V − v2)/k2)) and τw(V ) =

1/(φ cosh((V − v2)/2k2)). The parameters v2, k2 and φ govern the
K kinetics. The parameter C denotes the membrane capacitance
and Iapp denotes the current externally injected to the neuron.
Depending on parameters, the ML equations can model either a
Type I or Type II oscillator. We choose parameters such that it is
the former. For the parameters we choose, the amount of time that
the voltage spends above a prescribed threshold Vth = 0 is almost
fixed.We shall assume that it is constant and call it tactive. This gives
thewidth of the action potential. The time between spikes can vary
based on the input a cell may receive. Heterogeneity between cells
can be introduced by varying Iapp.

2.2. Phase response curves

The PRC is a function defined for an oscillator that describes the
change in the cycle period of the oscillator, as a function of the
phase it receives a perturbation [1,8]. The PRC of an oscillatory neu-
ron can be obtained by applying small perturbations at different
phases of its cycle andmeasuring howmuch each perturbationwill
change theneuron’s next firing time.When an infinitesimally small
perturbation is used to calculate the change in phase, the resulting
curve is called an infinitesimal phase response curve (iPRC). For
appropriate choices of parameters, the iPRCs of the QIF and ML
models are called Type I since they are each of one sign. These types
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Fig. 1. PRC due to synaptic input. A. The PRCs obtained from the QIF model (1)
for different synaptic strengths. B. The PRCs obtained from the ML model (2) for
different synaptic strengths. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

ofmodel neurons delay their firing in response to inhibitory inputs
independent of the phase that the input is given. PRCs can also be
computed when the perturbations are not necessarily small. For
example, in both experimental and model neurons, a change of
phase in response to a short synaptic input can also be determined.
It is this type of PRC that we shall be interested in throughout this
study.

Denote by P0 the intrinsic period of a cell. Suppose a perturbing
input is given at time dt after the firing of the cell. This yields a
phase φ = dt/P0 at the time of the perturbation. Let Pc denote
the new cycle period which is the time between when a cell fires
prior to a perturbation and the subsequent firing of the cell when
a perturbation is given at phase φ. We define the PRC as

Z(φ) =
P0 − Pc

P0
. (3)

We assume that the effects of a perturbation to the current cycle
of a neuron only last for that cycle. Any effects that may linger to
subsequent cycles are ignored here, but treatment of such cases
can be found elsewhere [21].

The PRC of a QIF neuron can analytically be calculated as the
solution to the adjoint of Eq. (1) along the solution trajectory. It is
given by

Z(φ) =
arctan(tan(P0φ + arctan Vr ) − g) − arctan Vr

P0
− φ (4)

where g > 0 denotes the strength of the perturbation. In Fig.
1A, we show examples of the QIF PRC for a few different choices
of inhibitory synaptic strength. Note that as g increases, the PRCs
have larger amplitudes shifting to larger perturbation phases. Also
note, that for the set of g values chosen, the PRC is quite large with
changes of phase up to as much as 0.8, with large gradients for
large φ.

We compute the PRC of a ML model neuron numerically. We
choose parameters so that the oscillations arise through a saddle–
node on invariant circle (SNIC) bifurcation. Neurons that oscillate
through a SNIC bifurcation have a Type 1 iPRC [8]. A PRC obtained
from our model neurons for a range of synaptic strength is shown
in Fig. 1B where we created the PRC by applying a perturbation of
the form

Isyn = gpre→postH∞(Vpre − Vth)[Vpost − Einh],

where the Heaviside function H∞(Vpre − Vth) is 0 if Vpre < Vth and
1 otherwise. This is a type of perturbation that mimics a synaptic
input in that it contains the driving force Vpost − Einh where Einh is

the inhibitory synaptic reversal potential. The reference point to
compute the PRC is chosen to be when V crosses Vth in the positive
direction. Note again that this method of computing the PRC pro-
duces a small, insignificant, region of the PRC that is positive near
small stimulus phases due to the longer active duration of the ML
neuron. A similar feature was noted by Achuthan et al. [22] in their
study of phase resetting in the context of weak coupling. Also note
that for the smallest shown conductance of g = 0.01, the PRC is
very small in amplitude and has small gradients for all φ.

2.3. Modeling synaptic inputs

When a presynaptic cell rises above threshold, it sends an
inhibitory input to the postsynaptic cell. In the situation where the
synapse exhibits synaptic depression, the strength of this input is
an increasing function of the interspike interval, or alternatively a
decreasing function of the spiking frequency. For the QIF model,
we use a model for depression due to Abbott et al. [23]. We let r
denote the amount of available synaptic resources normalized to
lie between zero and one. The equations governing r are given by
dr
dt

=
1 − r

τr
between spikes of the presynaptic neuron (5)

r+
= f · r− when the presynaptic neuron fires.

Here, the amount of available synaptic resources is reset by a
fraction f ∈ (0, 1] at the instant that the neuron fires and recovers
to 1 with time constant τr after the spike. Hence, the value of the
depression variable r depends on the cycle period of the neuron.
To model a non-depressing synapse, we simply choose f = 1.

When the presynaptic neuron is firing with a fixed period of
P , the depression variable r oscillates between a minimum and a
maximum value at the steady state. This maximum value attained
at the onset of a spike at the steady state can be obtained from Eq.
(5) as

rss(P) =
1 − e−P/τr

1 − fe−P/τr
. (6)

The function rss(P) is called the steady state synaptic plasticity
profile and is shown in Fig. 2A. Observe that rss(P) is a monotone
increasing function.

For the ML model, we use an adapted version of the Abbott
model, as in [24], that takes into account the width of the action
potential as well as making the recovery from depression more
strongly dependent on the cycle period. The model involves two
variables r and s. As above, r keeps track of the amount of depres-
sion in the synapse. The variable s will be used to transmit infor-
mation about r to the postsynaptic cell whenever the presynaptic
cell exhibits a spike at time tsp.

dr
dt

=
r∞(Pc) − r

τα

H∞(Vth − Vpre) −
r
τβ

H∞(Vpre − Vth) (7)

ds
dt

= 0 (8)

r∞(Pc) =
1
2
(1 + α tanh((Pc − Ph)/kh)) (9)

s+(tsp) = r−(tsp) (10)

The function r∞(P) is the target level of recovery that the de-
pressing synapse is trying to reach for a given cycle period Pc . The
parameter α = 0.6 is chosen to limit the bounds of r∞ between
0.2 and 0.8, Ph is the half-activation period and kh is the reciprocal
of the slope at that point. The variable Pc is calculated and updated
on a cycle-by-cycle basis. In Section 3.5, in order to illustrate the
dependence of bistability on the steady state plasticity profile,
we shall choose different functional forms of r∞(P) to be used in
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Fig. 2. Steady state synaptic plasticity profiles rss(P) for the two synaptic models. A. The plasticity profile for the QIF model (6). B. The plasticity profile for the ML model
(11). Notice the difference in the scaling of the y-axes; the value of the depression variable changes over a much larger range for the synapse considered for the ML model.

Eq. (9). If we wish to model a non-depressing synapse, we take
s+(tsp) = 1.

Just as above for the spiking neuron model, when an ML-based
neuron is firing periodically with period P , the value of the depres-
sion variable oscillates between amaximumand aminimumvalue.
In this case, it is straightforward to show that the steady state value
of the depression at the onset of a spike is given by

rss(P) = r∞(P)
1 − e−(P−tactive)/τα

1 − e−tactive/τβ e−(P−tactive)/τα
. (11)

If we let f = e−tactive/τβ and then take the limit as tactive → 0 in
the term (P − tactive), Eq. (11) reduces to a form that is similar to
Eq. (6) except that the maximum is given by r∞(P) instead of one.
Note that for narrow action potentials, the term exp(−tactive/τβ ) is
close to one. Moreover, the steady state period will be relatively
large. Thus the fraction in (11) is effectively equal to one. Thus
rss(P) ≈ r∞(P). We shall use this approximation throughout the
duration of the paper. The function rss is plotted in Fig. 2B.

2.4. Coupled equations

We shall consider a coupled system of neurons A and B. The
synapse from A to B will always be non-depressing (f = 1 or
s+(tsp) = 1) and will have a fixed synaptic conductance ḡA→B. The
synapse from B to A can be either depressing or non-depressing
depending on the casewe are considering andwill clearly be noted
in the subsequent text.

For the QIF model, the effect on the postsynaptic cell of this
input is to decrease its voltage by an amount gpre→post r−. That is

V+

post = V−

post − gpre→post r−.

This decrease can be modeled using a Dirac delta function δ(t) in
the coupled set of equations below.

dVA

dt
= 1 + V 2

A − gB→Ar−δ(t − tB,sp)

dVB

dt
= 1 + V 2

B − ḡA→Bδ(t − tA,sp)

VA(t+A,sp) = Vr , when VA(t−A,sp) = Vt (Vr < Vt )

VB(t+B,sp) = Vr , when VB(t−B,sp) = Vt (Vr < Vt )

where t∗,sp represents the time of the spike of A or B. The dynamics
for the r variable are given by Eq. (5). Note that the term r− only
appears in the equation for dVA/dt .

For the ML model, let f (V , w) = (Iapp − IL − IK − ICa)/C . The
coupled equations for neurons A and B are
dVA

dt
= f (VA, wA) − gB→As+(tsp,B)H∞(VB − vth)[VA − Einh]

dwA

dt
=

w∞(VA) − wA

τw(VA)
(12)

dVB

dt
= f (VB, wB) − ḡA→BH∞(VA − vth)[VB − Einh]

dwB

dt
=

w∞(VB) − wB

τw(VB)
.

The variable s+(tsp,B) which appears only in the dVA/dt equation
is governed by the synaptic Eqs. (7)–(10). Thus at the moment that
neuron B spikes, neuron A receives a synaptic input of gB→As+(tsp,B)
and then remains constant through the duration of the action
potential of B.

2.5. Intrinsic and actual phase

We use a Poincaré section to define the phase of each cell at
each cycle. This will lead to a sequence of crossing times when a
particular trajectory crosses the Poincaré section at the nth cycle,
which in turn will lead to a sequence of phases. A schematic that
depicts various quantities of interest needed to derive the Poincaré
maps is shown in Fig. 3.

Choose the Poincaré section to be at VA = Vth. The amount of
time in the nth cycle that passes after cell A fires until cell B fires is
denoted by dtn, while the amount of time after cell B fires until cell
A fires is denoted by dτn (Fig. 3). The (activity) phase of neuronA (or
B) is defined as the firing time dtn (or dτn) normalized by the cycle
length. Therefore, the phases of A and B are, respectively, given by

φ̂n = dtn/Pn (13)
θ̂n = dτn/Qn.

In the derivations of the maps, we will make use of the PRCs of A
and Bwhich are defined in terms of P0 and Q0, the intrinsic periods
of A and B. To simplify these derivations we introduce the notation
of the ‘‘intrinsic phase’’ of neurons A and B which are defined,
respectively, as

φn = dtn/P0 (14)

θn = dτn/Q0. (15)

Because we will be considering both static and depressing cases,
we need separate notation to demarcate each of the PRCs of neu-
ron A. Our convention will be the following. We let ZA(φ, ḡB→A)
denote the PRC when it is created with a static synapse. We let
ZA(φ, gB→Ar−) denote the PRC when it depends on the strength of
the synaptic conductance. What differs is the choice of the second
variable. In the former case themaximal conductance ḡB→A is fixed,
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Fig. 3. The variables that are used to define the Poincaré maps are shown on the
simulation of ML neurons. The cycle length Pn of cell A in cycle n (measured when
voltage crosses Vth) can be divided into the delay between cell A activity to cell
B activity (dtn) and the opposite (dτn). The cycle period Qn of cell B in cycle n is
dτn + dtn+1 .

while in the latter, the maximal conductance gB→Ar− depends on
cycle period through either Eq. (5) for the QIF model or Eq. (7) for
the ML model. The PRC of cell B is always created with a static
synapse of strength ḡA→B and is simply denoted by ZB(θ ). At steady
state, the actual phase is related to the intrinsic phase through the
following:

θ̂ =
θ

1 − ZB(θ )

φ̂ =
φ

1 − ZA(θ, g)
,

where g = ḡB→A for the static synapse and g = gB→Arss for the
dynamic synapse, where rss is given by Eq. (6) for QIF or (11) for
ML.

3. Results

3.1. Derivation of the maps

For completeness, we start with the derivation of the Poincaré
map for the relative firing times of the neurons when they are con-
nected with static synapses [7,20]. Rewriting the PRC relationship
(3), we can obtain the cycle lengths of each cell in cycle n as

Pn = P0[1 − ZA(φn, ḡB→A)] (16)

Qn = Q0[1 − ZB(θn)]. (17)

Note that we use the PRC ZA(φ, ḡB→A) where the value in the
second argument is chosen for the non-depressing, static case. The
following equations relate the firing times of the two cells

dtn + dτn = Pn (18)

dτn + dtn+1 = Qn. (19)

From Eqs. (15), (16) and (18), θn can be written in terms of φn:

θn =
dτn
Q0

=
1
Q0

[Pn − dtn] =
1
Q0

[P0(1 − ZA(φn, ḡB→A)) − P0φn]

=
P0
Q0

[1 − ZA(φn, ḡB→A) − φn]. (20)

Similarly, φn+1 can be expressed in terms of θn:

φn+1 =
dtn+1

P0
=

1
P0

(Qn − dτn) =
1
P0

[Q0(1 − ZB(θn)) − Q0θn]

=
Q0

P0
(1 − ZB(θn) − θn) (21)

using Eqs. (17) and (19). Thus, plugging Eq. (20) into Eq. (21)
defines the following 1-D map for the intrinsic phase of cell A (14)
when the 1:1 firing order between the cells is maintained:

φn+1 = Π (φn)

=
Q0

P0

[
1 − ZB

(
P0
Q0

(1 − ZA(φn, ḡB→A) − φn)
)]

− 1 + ZA(φn, ḡB→A) + φn. (22)

The condition for 1:1 phase-locking is φn = φn+1 = φ∗. Plugging
this into the map gives the condition for a fixed point as

P0[1 − ZA(φ∗, ḡB→A)] = Q0[1 − ZB(θ∗)]

where θ∗
=

P0
Q0

[1 − ZA(φ∗, ḡB→A) − φ∗
].

To determine conditions for 1:1 phase-locked activity, it is
sufficient to rule out cases where either of the two neurons fires
consecutively. To avoid the case where B fires twice for every one
firing of A, dτi + Pi+1 < Qi+1 + Q0 must hold. This is equivalent to
ZA(φi+1, ḡB→A) > 1−Q0/P0[2−θi−ZB(θi)]. Since φi+1 = Q0/P0[1−

θi − ZB(θi)], ZA(φi+1, ḡB→A) > 1 − Q0/P0 − φi+1. So to obtain a 1:1
phase-locked solution, the fixed point φ∗

= Q0/P0(1−θ∗
−ZB(θ∗))

should satisfy ZA(φ∗, ḡB→A) > 1 − Q0/P0 − φ∗. Geometrically, at
the fixed point, the PRC of A, ZA(φ, ḡB→A), should lie above the line
ZA = 1−Q0/P0−φ. To avoid the case of A firing twice in succession,
we need the condition Qi+1 < dτi + P0, equivalently, ZB(θi) >

1 − P0/Q0 − θi. Locally, this amounts to ZB(θ∗) > 1 − P0/Q0 − θ∗,
i.e., the PRC of B, ZB(θ ), should lie above the line ZB = 1−P0/Q0 −θ

at the fixed point.
Next, we derive maps to predict the network activity in the

presence of synaptic depression. In the first case, we shall use
the dynamic equation (5) to derive a 2-D map for the phase φn
and the depression variable rn. This approach allows the transients
due to different initial conditions to potentially play a role in the
convergence of the map to a fixed point. In the second case, we
derive a 2-D map for the phase φn and the period Pn. For this
case, we use the steady state plasticity profile given in Eq. (9). This
approach assumes that the depression variable quickly reaches
its steady state plasticity value and as a result, we only need to
track how the cycle period changes. We note that the fixed points
of either of the two maps correspond to the same phase-locked
solutions.

For the first approach, assume that the strength of the B to
A synapse changes according to the dynamics of the depression
variable r Eq. (5) and is given by gB→Arn in cycle n. Assume that
we know the values φn and rn. Then we can compute the period of
neuron A in cycle n using the expression

Pn = P0[1 − ZA(φn, gB→Arn)]. (23)

We next modify Eq. (20) by rewriting Pn as given in (23) to obtain
the phase of neuron B in cycle n as

θn =
P0
Q0

[1 − ZA(φn, gB→Arn) − φn]. (24)

Eq. (17) giving the cycle length of neuron B becomes

Qn = Q0

[
1 − ZB

(
P0
Q0

[1 − ZA(φn, gB→Arn) − φn]

)]
(25)

in cycle n. Plugging (24) into (21) and computing the depression
variable using (5) over one cycle gives a 2-D map Πdyn for the evo-
lution of the intrinsic phase of cell A and the synaptic depression
variable from cell B to cell A

φn+1 = Π
dyn
1 (φn, rn)
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=
Q0

P0

[
1 − ZB

(
P0
Q0

(1 − ZA(φn, gB→Arn) − φn)

)]
− 1 + ZA(φn, gB→Arn) + φn

rn+1 = Π
dyn
2 (φn, rn) (26)

= 1 − [1 − frn] exp

×

(
−

Q0

τr

(
1 − ZB

[
P0
Q0

(1 − ZA(φn, gB→Arn) − φn)
)])

.

Observe that the first equation is the same as (22) except that now
the second argument of ZA depends on gB→Arn as opposed to ḡB→A.

For the second approach, we derive themapwhere the synaptic
strength from neuron B to A changes according to the steady-state
synaptic plasticity profile in Eq. (9) and is given by gB→Ar∞(Qn) in
cycle n. Assume that we know the values φn and Pn. The phase of
neuron B in cycle n can be found using (15) and (18) as

θn = (Pn − φnP0)/Q0. (27)

Plugging this into (17) immediately yields the expression for the
cycle length of neuron B in cycle n as

Qn = Q0 [1 − ZB ((Pn − φnP0)/Q0)] . (28)

We can now obtain the phase of neuron A in cycle n + 1 using
Eqs. (15) and (19) as

φn+1 = [Qn − dτn]/P0 = [Qn − θnQ0]/P0. (29)

We can use this phase to obtain the cycle length of neuron A in
cycle n + 1 as

Pn+1 = P0 [1 − ZA(φn+1, gB→Ar∞(Qn))] . (30)

Similar to Eq. (23), the period of neuron A is determined by ZA
which is a function of two variables. However, in this case the
synaptic strength received by neuron A in cycle n + 1 depends
directly on the cycle length of neuron B in cycle n. The map Π ss for
the activity of the network can be obtained by plugging the Eqs.
(27) and (28) into (29) and (30) as

φn+1 = Π ss
1 (φn, Pn)

=
Q0

P0

[
1 − ZB

(
Pn − φnP0

Q0

)]
−

Pn
P0

+ φn

Pn+1 = Π ss
2 (φn, Pn) (31)

= P0

[
1 − ZA

(
Q0

P0

[
1 − ZB

(
Pn − φnP0

Q0

)]
−

Pn
P0

+ φn,

gB→Ar∞

(
Q0

[
1 − ZB

(
Pn − φnP0

Q0

)]))]
.

A fixed point (φ∗, r∗) of themap (26) corresponds to a 1:1 solution.
This 1:1 solution is also represented by a fixed point of the map
(31) which occurs at (φ∗, P∗), where P∗ is the steady-state value
obtained from (23) at (φ∗, r∗). Thus the fixed points of the map
Πdyn (26) and Π ss (31) are equivalent. In the subsections below,
we will discuss two distinct ways to find fixed points of these
2-D maps. One way is to use information obtained from the 1-D
static map (22) as shown in Section 3.2. The second way is to use a
geometric method developed in [20] as shown in Section 3.6.

3.2. Relating fixed points of the static and depressing maps

We now use the 1-D map Π (22) to find fixed points of the 2-D
maps that utilize depression. Since we have already shown above
how to relate Πdyn to Π ss, we will restrict our attention to the
relationship between Π and Πdyn. In particular, we will show that
for every value of conductance ḡB→A that produces a fixed point

of the 1-D map Π , there exists a corresponding value of gB→A that
produces a fixed point of the 2-D map Πdyn. Bistability can occur
when this relationship is non-invertible.

At a periodic steady state, a depressing synapse behaves like a
non-depressing one in that the value rn converges to rss as derived
in Eq. (6), but where the period is determined by the actual period
of the feedback network. In particular, at the steady state, at each
spike, the voltage of the postsynaptic cell is changed an amount
gB→Arss. This same change can be achieved in a non-depressing
model by choosing ḡB→A = gB→Arss. In other words, for any steady
state value of a depressing synapse given by the pair gB→A and
rss, there exists a corresponding value ḡB→A of a non-depressing
synapse that yields the same synaptic output. Alternatively, given a
value ḡB→A for a non-depressing synapse, wewill show there exists
a pair gB→A and rss such that ḡB→A = gB→Arss. That such a pair exists
is not so obvious, because the value rss is determined by the steady
state period which is itself a function of gB→A.

A fixed point (φ∗, r∗) of the map Πdyn (31) satisfies

Q0

[
1 − ZB

(
P0
Q0

[
1 − φ∗

− ZA(φ∗, gB→Ar∗)
])]

= P0
[
1 − ZA(φ∗, gB→Ar∗)

]
ZB

(
P0
Q0

[
1 − φ∗

− ZA(φ∗, gB→Ar∗)
])

= 1 −
τr

Q0
ln

(
1 − fr∗

1 − r∗

)
. (32)

At the fixed point, the steady state period P∗ is found by substi-
tuting the values φ∗ and r∗ into Eq. (23) to obtain P∗

= P0[1 −

ZA(φ∗, gB→Ar∗)]. Because of periodicity, the value r∗
= rss(P∗) is

calculated from (6) by evaluating at P∗. Thus if we were to try
to use the depressing map Πdyn alone, we would end up with an
implicit equation for r∗ which is difficult to solve. Instead, let us
exploit the relationship between the 1- and 2-D maps to compute
P∗ independently of r∗.

Assume that the 1-D map Π yields a steady-state phase φ∗ of
neuron A when the synaptic strength from B to A equals ḡB→A. The
response ZA(φ∗, ḡB→A) of neuron A to perturbations received at the
phase φ∗ is obtained from its PRC given by Eq. (4). This determines
the steady-state period of neuron A determined by using (16) and
is given by P∗

= P0[1 − ZA(φ∗, ḡB→A)]. We can now use this value
of P∗ with Eq. (6) to obtain r∗. To be able to have the same steady-
state solution with the 2-D map, the phase and period must equal
φ∗ and P∗, respectively and ḡB→A = gB→Ar∗. Thus if the 1-D map
Π has a fixed point φ∗ with maximal conductance ḡB→A, the 2-D
map Πdyn will have a fixed point at the same fixed phase φ∗ if the
following holds

P∗
= P0[1 − ZA(φ∗, ḡB→A)] (33)

r∗
=

1 − exp(P∗/τr )
1 − f exp(P∗/τr )

(34)

gB→A =
ḡB→A

r∗
. (35)

To summarize, for a given ḡB→A and associated steady state phase
φ∗ of the 1-D map Π , solve (33) to find P∗. Substitute this expres-
sion into Eq. (34) to find r∗, and in turn use this value in Eq. (35) to
find gB→A. This procedure yields gB→A as a function of ḡB→A. That is
there exists a function h such that

gB→A = h(ḡB→A)

= ḡB→A
1 − f exp(P0[1 − ZA(φ∗, ḡB→A])/τr )
1 − exp(P0[1 − ZA(φ∗, ḡB→A])/τr )

. (36)

Alternatively, assume that the 2-D map is used to obtain a fixed
point of (φ∗, r∗) with the synaptic conductance from B to A equal
to gB→A. Then the 1-D map can be used with the synaptic strength
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fromB toA equal to ḡB→A = gB→Ar∗ to obtain the same steady-state
phase of φ∗. However, a priori, there is no guarantee that there is
a unique pair gB→A and r∗ whose product is ḡB→A. Uniqueness will
occur if the function h(ḡB→A) is invertible.When it is not, bistability
can occur.

The potential lack of invertibility of h(ḡB→A) is directly related to
the stability of the fixed points of the 2-D map Πdyn. Indeed while
fixed points of the one-dimensional map Π are stable for a large
range of ḡB→A values, the 2-Dmap undergoes two-distinct saddle–
node bifurcations as gB→A is varied. This will be discussed in detail
below in Section 3.4.

3.3. Conditions for bistability

We now analyze the relationship gB→A = h(ḡB→A) given in
(36). If this function is invertible, then for each gB→A there exists
a unique value of ḡB→A such that φ∗ is a fixed phase of both the
1-D and 2-D maps. Clearly, this will occur if and only if h(ḡB→A)
is monotonic. In the trivial case where there is no depression
(f = 1) or if the PRC is zero, gB→A equals ḡB→A, and h is an
increasing function. To find where bistability may be possible, let
us derive conditions under which h(ḡB→A) can be decreasing on
some interval.

For ease of notation, let us temporarily suppress the subscript
B → A. Then we can express h(ḡ) as

h(ḡ) =
ḡ

r(ḡ)
, (37)

where r(ḡ) is found from Eq. (34). The derivative of the function h
is

dh
dḡ

=
r(ḡ) −

dr
dḡ · ḡ

(r(ḡ))2
.

It is sufficient to find condition under which the numerator is
negative. That is, we require the following inequality to hold

r(ḡ) <
dr
dḡ

· ḡ.

Use the chain rule to find

r(ḡ) <
dr
dP

·
dP
dφ

·
dφ
dḡ

· ḡ. (38)

For bistability to occur, Eq. (38) must be satisfied at the fixed
point (φ∗, r∗). Observe that r(ḡ) is always positive, so the right
hand side of the inequality has to be positive. By definition, the
synaptic conductance ḡ is always positive. The derivative dr/dP
depends on the steady state plasticity profile which is also always
positive by definition. The derivative dP/dφ depends on the PRC
of the neuron, in fact, it equals −dZ/dφ, which can be positive
or negative. The derivative dφ/dḡ is obtained from the 1-D map
(22). As ḡ increases, neuron A receives more inhibition, recovers
later, causing θ to increase and φ to decrease, hence dφ/dḡ is
always negative. Thus for the right-hand side of (38) to be positive,
dP/dφ must be negative, or, equivalently, dZ/dφ must be positive.
Therefore, bistability is possible only if the fixed point occurs on
the increasing branch of the PRC. This is possible for networks
coupledwith small synaptic conductances, since small ḡ gives large
φ which falls on the increasing branch of PRC (Fig. 1).

So, the first condition for bistability is that, the conductance
ḡB→A must be small. In this case, to satisfy the inequality (38), the
product of the derivatives on the right hand side must be large
enough to compensate the small ḡ value. So, we expect to get
bistability when these derivatives are large in absolute value. We
will next show thatwe can achieve bistable phase locking solutions
with either a PRC that has a steep increasing branch (equivalently
large |dP/dφ|) or with a steady state depression profile that in-
creases rapidly with increasing period (large dr/dP). If dφ/dḡ is

large enough, we should also be able to get bistability. However,
we do not have direct control over this term, so it is difficult to
assess its impact. We will use the QIF model, that has a steep PRC
even for small synaptic conductances (Fig. 1A) to show that bista-
bility occurs even with a weak depression property (Fig. 2A) when
|dP/dφ| is large.Wewill next showusing theMLmodel if the PRC is
small in amplitude for small synaptic conductances (Fig. 1B), then
a much steeper plasticity profile (Fig. 2B) is necessary, i.e., dr/dP
has to be large to achieve bistability.

3.4. Bistability with depression in QIF neurons

Consider two identical QIF neurons (VtA = VtB = 7, VrA = VrB =

−8). Let the synaptic strength fromA to B be fixed at ḡA→B = 4.We
vary ḡB→A, the strength from B to A in a range from 3.3 to 4.8. The
steady-state phase φ∗ of neuron A obtained from the 1-Dmap (22)
Π as a function of ḡB→A is shown in Fig. 4A. We use these values
of φ∗ in Eq. (33) to find P∗. Then use Eq. (34) to determine the
value of the depression variable at the steady state (f = 0.5 and
τr = 5). Finally, use Eq. (35) to find the value of gB→A necessary
to obtain the same phase locking from the depressing map Πdyn

(26). The non-monotonic relationship h(ḡB→A) between the two
synaptic conductances is shown in Fig. 4B. Clearly for an interval
of values in the range, there exists more than one value of ḡB→A
corresponding to a single value of gB→A. This means that there is
more than one solution to the 2-Dmap for these values of synaptic
conductance.

To understand where this region of non-monotonicity lies, we
will briefly discuss the bistability conditions for the case of QIF
neurons. Note that as the synaptic strength ḡB→A is increased, the
phase of neuron A decreases (Fig. 4A). The firing period of the
network at the steady state is determined by this phase through
the PRC of neuron A. A Type I PRC first increases and then decreases
in absolute value with increasing phase (Fig. 1). Therefore, the
network period P∗ first increases and then decreases as ḡB→A is
increased. The steady-state value of depression r∗ is an increasing
function of P∗. As a result, r∗ also first increases and then decreases
with increasing ḡB→A.

The networks coupled with larger synaptic strengths yield
smaller steady-state phases of neuron A (Fig. 4A). The PRC is
increasing in amplitude for this range of phases. Therefore, for
larger synaptic strengths, r∗ decreases as ḡB→A is increased. The
synaptic strength gB→A equals the ratio ḡB→A/r∗. Hence, for larger
synaptic strengths, gB→A is always an increasing function of ḡB→A,
since the numerator ḡB→A is increasing and the denominator r∗ is
decreasing.

On the other hand, for smaller synaptic strengths, the phase
locking occurs at larger phases (Fig. 4A), where the PRC is de-
creasing in amplitudewith increasing phase. Here, increasing ḡB→A
would yield a smaller phase, a larger period, and a larger r∗ value.
In this case, whether gB→A is an increasing or a decreasing function
of ḡB→A depends on the derivative of r∗ with respect to ḡB→A. When
the PRC has a larger derivative (or when the derivative of the
plasticity profile is large enough aswill be shownnext) the increase
in r∗ is large, causing a decrease in gB→A. The non-monotonicity be-
tween the two conductances is observed for smaller ḡB→A (Fig. 4B)
and bistability occurs for synaptic conductances falling in this
range as expected. The intersection of the dashed horizontal line
at gB→A = 5.35 with the graph of h(ḡB→A) illustrates the corre-
spondence of three different ḡB→A values with it.

Having discussed conditions for bistability, we now plot the
steady-state phase values obtained from the 2-Dmap. Fig. 5 shows
the fixed points of the map Πdyn as a function of gB→A. The steady-
state phasesφ∗ are shown in Fig. 5A and the value of the depression
variable r∗ is shown in Fig. 5B. The stability of the fixed points
can be found numerically as explained below. The stable solutions
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Fig. 4. Phase locking of QIF neurons with static synapses. A. Steady-state intrinsic phase of neuron A obtained from the map Π given in Eq. (22) as a function of the synaptic
coupling strength ḡB→A . B. The relationship gB→A = h(ḡB→A) between the synaptic strengths of the static map Π and the depressing map Πdyn given in Eq. (26) obtained
from Eqs. (33)–(35). The dashed horizontal line at gB→A = 5.35 intersects h(ḡB→A) at three points (inside circles). Two of these are points that correspond to bistability in
the presence of synaptic depression.

Fig. 5. Fixed points of the 2-DmapΠdyn given in Eq. (26) and their equivalencewith the fixed points of themapΠ given in Eq. (22). A. Steady-state intrinsic phase of neuron
A obtained from Πdyn as a function of gB→A . Dashed vertical line at gB→A = 5.35 lies within the region of bistablity which is also shown in the inset. B. The steady-state value
of the depression variable obtained from Πdyn as a function of gA→B . C. The steady-state intrinsic phase of neuron A obtained from the depressing map Πdyn is equivalent to
the phase obtained from the static map Π (compare with Fig. 4A) when plotted as a function of ḡB→A = gB→Ar∗ . D. The steady state activity phase φ̃∗ of neuron A obtained
from Πdyn . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

are shown in black and the unstable solutions are shown in red
in the figure. For gB→A small, there are three fixed points, two of
which are stable. Therefore, the network has bistability for this
range of synaptic strength and is capable of exhibiting hysteresis.
Weplot the results of the 2-Dmapas a function of the total synaptic
conductance ḡB→A = gB→Ar∗ in Fig. 5C. The fixed points agree with
the ones obtained from the 1-DmapΠ which are shown in Fig. 4A.
Solutions corresponding to an interval of gB→A values obtained
from the 2-Dmap are unstable (red)while others are stable (black).
In contrast, all the solutions obtained from the 1-D map are stable.
Finally,we show the activity phases φ̃∗ of neuronA in Fig. 5D. These
are the actual phases (13) of neuron A at the steady state.

The bistability occurs in this model due to saddle–node bifur-
cations occurring as gB→A varies. To understand the origin of these

saddle–node bifurcations, consider first the stability condition for
fixed points of the 1-D map as derived in [7]. If φ∗ is a fixed
point of Π , with a corresponding θ∗ value, then the fixed point is
(asymptotically) stable if |(Z ′

A(φ
∗, ḡB→A)+1)(Z ′

B(θ
∗)+1)| < 1. For a

large range of values of ḡB→A, this condition is met and fixed points
of the 1-D map are stable.

To determine whether the corresponding fixed point x∗
=

(φ∗, r∗) of the 2-D map (26) is stable, we compute the eigenvalues
µ1 andµ2 of the Jacobianmatrix, A, obtained by linearizing about a
fixed point. These eigenvalues depend continuously on parameters
and, in particular, on gB→A. If none of the eigenvalues lie on the unit
circle, i.e., {µ ∈ C : |µ| = 1} = ∅, then the point x∗ is hyperbolic.
The hyperbolicity condition can be violated in three ways leading
to different bifurcations. If one of the eigenvalues, say µ1, passes
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Fig. 6. The dependence of the eigenvalues µ1 and µ2 of the depressing map (26)
on the parameter gB→A . The absolute values of µ1 and µ2 are shown in orange and
purple, respectively. These values overlap for complex eigenvalues. The fixed points
are stable when both eigenvalues are less than 1 in absolute value. The fixed points
lose (regain) stability via saddle–node bifurcation when µ1 is greater (less) than 1.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

through 1, then a saddle–node bifurcation occurs. If µ1 passes
through −1, then a flip bifurcation occurs. If both eigenvalues µ1
and µ2 are complex and pass through |µ1| = |µ2| = 1, then a
Neimark–Sacker bifurcation occurs.

The Jacobian matrix is given by

A =

⎛⎜⎜⎝
∂Π

dyn
1

∂φ

∂Π
dyn
1

∂r
∂Π

dyn
2

∂φ

∂Π
dyn
2

∂r

⎞⎟⎟⎠ .

The partial derivatives are

∂Π
dyn
1

∂φ
=

[
Z ′

B(θ ) + 1
] [

∂ZA
∂φ

(φ, gB→Ar) + 1
]

∂Π
dyn
1

∂r
= [Z ′

B(θ ) + 1]
∂ZA
∂r

(φ, gB→Ar) (39)

∂Π
dyn
2

∂φ
=

P0
τr

Z ′

B(θ )[1 − fr]
[
1 +

∂ZA
∂φ

(φ, gB→Ar)
]

× exp
(
Q0

τr
[1 − ZB(θ )]

)
∂Π

dyn
2

∂r
=

[
f +

P0
τr

Z ′

B(θ )[1 − fr]
∂ZA
∂r

(φ, gB→Ar)
]

× exp
(
Q0

τr
[1 − ZB(θ )]

)
where θ =

P0
Q0

[1 − φ − ZA(φ, gB→Ar)] and Z ′

B denotes derivative
with respect to φ. The PRC of the QIF model neuron is given in Eq.
(4). Taking derivatives of the PRCs of neurons A and B yields

Z ′

B(θ ) =
sec2(Q0θ + arctan VrB )

1 + [tan(Q0θ + arctan VrB ) + ḡA→B]
2 − 1,

∂ZA
∂φ

(φ, gB→Ar) =
sec2(P0φ + gB→A tan VrA )

1 + [tan(P0φ + arctan VrA ) + gB→A]
2 − 1, (40)

∂ZA
∂r

(φ, gB→Ar) =
ḡB→A

P0[1 + [tan(P0φ + arctan VrA ) + gB→Ar]2]
.

Fig. 7. The dependence of bistability in QIF neurons on the parameters that govern
synaptic depression (5). The unstable region increases and the region of bistability
changes as f is decreased from left to right. A similar change is observed as τr is
increased.

We numerically evaluate the Jacobian matrix A at the fixed point
x∗

= (φ∗, r∗) of the map. The absolute values of the two eigen-
values µ1 (orange) and µ2 (purple) corresponding to each fixed
point are shown in Fig. 6. When the eigenvalues are both complex,
their absolute values are equal. We see that the absolute value of
one of the eigenvalues (µ1) exceeds 1 when gB→A is small. We find
that as gB→A varies, two distinct saddle–node bifurcations occur as
µ1 passes through the value 1 when gB→A equals 5.06 and 5.47.
Thuswhen gB→A lies between these values, there aremultiple fixed
points some of which are stable and others unstable. It is in this
region in parameter space that bistability of solutions occurs.

We also note that for fixed gB→A, stability depends on the
depression parameters f and τr as can be seen in Eqs. (39) and
(40). Fig. 7 demonstrates the change in the bistability region for
QIF neurons as the parameter f that controls the extent of synaptic
depression is varied. Using the same approach as above, we first
obtain the fixed points of the map Π and use the equivalence
relations given by Eqs. (33)–(35) to obtain the fixed points of the
map Πdyn. We keep the parameters that govern the neuronal and
synaptic dynamics same except the parameter f is varied from 0.5
to 1.

When f = 1, there is no depression and only one stable fixed
point exists for each value of gB→A. As f decreases, the extent of the
depression becomes larger and a region of bistability emerges. The
region of unstable solutions occurs over a larger interval of gB→A
values as f decreases. But the range of stable phases covered on
the upper branch for each value of f does not change much. The
region of bistability along the lower branch does shift to smaller
phases. Therefore, as the synapse fromB to A getsmore depressing,
the smaller stable phase of neuron A gets smaller in the bistability
region. An effect similar to the one observed when f is decreased
existswhen τr gets larger since this also results in stronger synaptic
depression.

3.5. Bistability with depression in ML neurons

We now show howML neurons can exhibit bistability. We first
couple two ML neurons with static synapses. We let ḡA→B be fixed
at 0.1 and find the steady state network phase for a set of ḡB→A
varying between 0.001 and 0.25. The steady state phase φ∗ of
neuron A changes between 0.5 and 0.9 for this range of synaptic
strengths and is shown in Fig. 8A.
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Fig. 8. Existence of bistability in ML neurons depending on the steady state plasticity profile. A. The steady-state intrinsic phase of neuron A obtained from the static map
Π given in Eq. (22) as a function of the synaptic conductance ḡB→A . B. Different steady state plasticity profiles rss used in the depressing map Π ss given in Eq. (31). C. The
relationship between the synaptic conductances of the static mapΠ and the depressingmapΠ ss for different rss . D. The steady-state intrinsic phase φ∗ of neuron A obtained
from the map Π ss for different rss as a function of the synaptic conductance gB→A . Notice that the bistability region exists only when a sharp steady state profile is used. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Since the increasing branch of theML PRC is not as steep as that
of the QIF, in order to obtain bistability, we need to rely on the
synaptic plasticity profile changing quickly enough. To show the
dependency on the derivative of the plasticity profile, we use three
different steady state synaptic plasticity profiles rss. To change the
synaptic plasticity profile rss, we will change the function r∞ in Eq.
(9). Based on the approximation rss ≈ r∞, we will assume that the
changes are made directly to the function rss itself.

The first synaptic plasticity profile we use is constant, rss(P) =

0.5 (black line in Fig. 8B). It gives results equivalent to the case
when there is no depression at all and is shown for comparison
purposes with the other profiles. As the second plasticity profile,
we choose a quadratic function (blue curve in Fig. 8B) that com-
pares with the plasticity profile used for the QIF model (Fig. 2A).
The minimum and maximum values of the depression variables
are denoted by rmin and rmax and are chosen to have the values 0.2
and 0.8, respectively. It is given by the function rss(P) = (rmax −

rmin)((P −Pmax)/(Pmin −Pmax))2 + rmax, where Pmin and Pmax are the
minimum and maximum values the period of the neuron B takes
at the steady state when coupled with static synapses. The third
plasticity profile ismodeled by a hyperbolic tangent function given
in Eq. (9) (green curve in Fig. 8B). We shall refer to the plasticity
profilesmodeled by the constant, quadratic andhyperbolic tangent
functions as the constant, shallow and sharp plasticity profiles,
respectively.

Although Eqs. (33)–(35) are derived for the map Πdyn, we can
adjust them for the map Π ss given by Eq. (31) and find the value
of the synaptic conductance value gB→A of the depressing map
Π ss corresponding to the solution of the static map Π for each
conductance ḡB→A. The relations between the two conductances
for each plasticity profile are shown in Fig. 8C. We see that for
the constant rss function, the relation between the conductances
(black line) is simply linear (gB→A = ḡB→A/2) and always increasing
as expected. For the shallow rss function, the relation between the
conductances (blue curve) is nonlinear but still increasing. On the
other hand, for the sharp rss function, the curve that shows the
relation between the conductances (green curve) first increases,
then decreases for a region of small conductance values and then

increases again. We expect to get bistability for conductances that
fall in this range of nonmonotonicity as there are three ḡB→A values
for a given gB→A.

We next compute the steady state phase φ∗ of neuron A using
the map Π ss for each gB→A as shown in Fig. 8D. We do this by
plotting the phases found from the 1-D map Π on the gB→A axis.
For the constant rss function, the phase φ∗ is the same with the
phase obtained from the map Π (compare with Fig. 8A). When the
shallow rss function is used, the curve defining the relation between
the phase φ∗ and the synaptic conductance gB→A slightly bends
for small synaptic conductances but no bistability is observed.
However, when the sharp rss function is used, we can see that there
are three steady states for a range of small synaptic conductances.
We find that the middle phase is unstable, therefore there are two
stable steady states for this range of synaptic conductances.

Nextwe show this bistability in a simulation of the coupled net-
work. We numerically solved (12) using XPPAUT [25]. Fig. 9 shows
an example of bistability exhibited by this network. Panel A shows
the voltage traces of the two neurons, while panel C shows the
evolution of the r variable. At the start of the simulation, the two
neurons are oscillating out of phase with one another. Cell A (black
trace) sends a fixed synaptic conductance gA→B = 0.1 to B (green
trace), while the conductance from B to A has a maximum given
by rssgB→A = 0.212 ∗ 0.125 = 0.0265. Thus the maximal synaptic
conductance from A to B is stronger than B to A and thus A delays
the firing of B more than vice versa. At t = 900, we transiently
hyperpolarized neuron B for a duration of t = 200 ms. During
this time, the r variable is being primed to grow because the cycle
period of B will become much longer. Indeed, when B is released
from the hyperpolarization, r is seen to grow very rapidly as the
cycle period Pc has been updated yielding a new target r∞(Pc) for
r to approach. The steady state configuration that the cells settle
into is nearly anti-phasewhere the time between successive spikes
is almost identical. This is reflected in the synaptic conductance
rssgB→A = 0.767 ∗ 0.125 = 0.0959 being almost equal to ḡA→B =

0.1. Panel B shows a graph of the actual phase (13) of neuron A and
panel D shows a graph of network period versus gB→A. The Z- and S-
shaped curves in these panels indicate the existence of bistability.
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Fig. 9. Simulation of coupled ML neurons compared with fixed points of the map Π ss (31). A. Membrane voltages of two ML neurons coupled with inhibitory synapses
when the B to A synapse is depressing. The network locks at two different phases. From t = 900 to 1100, neuron B is hyperpolarized, causing the network to switch to the
other phase-locked solution. B. Activity phase versus synaptic conductance obtained from the map Π ss . C. The evolution of the synaptic variables from neuron B to A. D.
Period of neuron A (also neuron B) versus synaptic conductance obtained from the map Π ss . The Z-shaped (S-shaped) curve in panel B (panel D) shows the different phases
(periods) that exist over a range of conductance values of gB→A . The lower and upper branches represent stable solutions, while the dottedmiddle branch represents unstable
solutions. The simulations in the left two panels occur for gB→A = 0.125, where for t < 900, the phase-locked solution corresponds to a point on the upper (lower) branch,
and for t > 1100, the solution converges to a phase-locked solution on the lower (upper) branch. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

The simulation shown in panel A was conducted at gB→A = 0.125
which is within the region of bistability. The lower (upper) parts of
the curve in panel D (B) correspond to the early part of the time
traces in panels A and C. Here the synapse from B to A is weak
because the period of the network is small and vice versa, namely,
the period is small because the synapse from B to A is weak. The
upper (lower) portion of the curve in panel D (B) corresponds to
the latter part of the time traces after the network again reaches
a steady state. Now the period is long giving the chance for the
synapse from B to A to strengthen and because the synapse is
strong, the period is long.

3.6. Geometric approach to finding fixed points

In the previous section, we found fixed points of the 2-D map
Π ss by utilizing information obtained from the 1-D map. We now
describe an alternate, geometric way to find fixed points of 2-D
maps that we had developed in a separate paper [20]. To briefly
describe the idea consider first a generic 1-D map, xn+1 = f (xn).
The geometric method that one would use to find fixed points
would be to look for intersections of the graph of y = f (x) with the
diagonal y = x. The generalization of this idea to a generic 2-Dmap
xn+1 = F (xn, yn), yn+1 = G(xn, yn) is to view the graphs of F (x, y)
and G(x, y) as surfaces in appropriate spaces and look for their
intersection with relevant planes. By then projecting the resulting
curves onto a commonplane,we can identify intersections of those
two curves as fixed points of the 2-D map.

A fixed point (φ∗, P∗) of the map Π ss given in Eq. (31) occurs
when φ∗

= Π ss
1 (φ∗, P∗) and P∗

= Π ss
2 (φ∗, P∗). The two functions

z1 = Π ss
1 (φ, P) and z2 = Π ss

2 (φ, P) each define 2-D surfaces. Both
functions have the same domain, but have different ranges; the
former lies in the φ direction and the other in the P direction. We
can visualize how the fixed points are obtained by plotting these
surfaces in an augmented R3 space. We plot the surfaces Π ss

1 (φ, P)

and Π ss
2 (φ, P) on the same coordinate axis, above and below the

z = 0 plane, respectively in Fig. 10A–C. The first condition for
fixed points, φ∗

= Π ss(φ∗, P∗) lies along the curve obtained at the
intersection of the surface z1 = Π ss

1 (φ, P) and the plane z1 = φ.
Similarly, the condition P∗

= Π ss
2 (φ∗, P∗) is satisfied along the

curve obtained at the intersection of the surface z2 = Π ss
2 (φ, P)

and the plane z2 = P . In each case, we are intersecting two, 2-D
surfaces which results in a 1-D curve. These intersection curves are
shown in black above and below the z = 0 plane. Their projections
on the z = 0 plane are also shown which are denoted by C1 and
C2, respectively. The fixed points must lie on both curves, hence at
their intersection as shown on the z = 0 plane.

The graphs of the surfaces z1 = Π ss
1 (φ, P) and z2 = Π ss

2 (φ, P)
clearly depend on the choice of steady state synaptic plasticity
profile and associated parameters. For this section we use the
sharp plasticity profile as defined in Eq. (9). The parameters are
the same in all subfigures and are given in Section 3.5 except the
conductance gB→A.We choose gB→A to equal 0.075, 0.125 and 0.225
in A, B and C, respectively. We expect to get one fixed point when
gB→A equals 0.075 or 0.225 as these values lie to the left and right
of the bistability region, respectively, and three fixed points when
gB→A equals 0.125, as shown in Fig. 8D.

The curve C1 is common to all three cases. The reason that C1
is fixed for all three cases is that when the value gB→A changes,
only the PRC ZA changes. So, the only term that differs in the map
Π ss for the three cases is ZA. The term ZA only appears in the Π ss

2
equation and it does not appear in the Π ss

1 equation. Therefore,
when gB→A changes, only the curve C2 moves and C1 stays constant.
The curve CA

2 lies mostly below the curve C1 and they intersect
at only one point in Fig. 10A. Hence there is only one fixed point
when gB→A = 0.075, as expected.When gB→A is increased to 0.125,
the curve CB

2 bends and is pushed more in the P direction (y axis),
creating three intersections with C1 in Fig. 10B. The intersections,
hence the fixed points occur at smaller phase and larger period
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Fig. 10. Fixed points of the map Π ss (31). A-C. The creation of fixed points of the map for different sets of parameters. The surfaces Π ss
1 (φ, P) and Π ss

2 (φ, P) are drawn above
and below the z = 0 plane denoted by the axes z1 = φ and z2 = P , respectively. The intersection of the surface z1 = Π ss

1 (φ, P) with the plane z1 = φ and the intersection
of the surface z2 = Π ss

2 (φ, P) with the plane z2 = P yield the two black curves above and below the z = 0 plane. The fixed points of the maps lay on the intersection of the
two fixed point curves whose projections C1 and C2 on the z = 0 plane are shown. There is one fixed point in A and C while there are three fixed points in B, depending on
the value of the gB→A . D. The projections of the fixed point curves, C1 and C2 are drawn on the same coordinate axes for three parameter sets. The curve C1 is the same for all
parameter sets while C2 changes. Creation and annihilation of multiple fixed points with changing parameters are observed. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

values compared to case A. When gB→A is increased to 0.225, the
curve CC

2 is pushed more in the P direction, and lies mostly above
C1 and only one fixed point remains. This fixed point has a smaller
phase and a larger period value compared to the cases A and B.

The projections of the fixed point curves, C1 and C2, are drawn
on the same coordinate axes for three parameter sets in Fig. 10D.
The black curve is C1, the intersection of the surface z1 = Π ss

1 (φ, P)
and the plane z1 = φ and, as discussed above, is the same for the
three parameter sets. The colored curves are C2, the intersections of
the surfaces z2 = Π ss

2 (φ, P) and the planes z2 = P . As C2 moves and
its intersection with C1 changes, the number of fixed points and
their values change. It is easier to see in this figure that as the value
of gB→A increases, the curve C2 moves up causing fixed points with
smaller phase and larger period values. It is also easy to see that
fixed points are gained and lost through saddle–node bifurcations
of fixed points, similarly to the QIF model.

4. Discussion

Numerous theoretical and computational studies have uti-
lized PRCs to explore phase-locking in oscillatory neuronal net-
works [7,18,20,26–30]; see [31] for a review. Some studies assume
short or weak perturbations and use iPRCs [27,28], while others
use more general PRCs [29,32] obtained from inputs that are not
necessarily weak. In the case of strong inputs, PRCs do not neces-
sarily scale linearlywith input strength. Additionally, experimental
work has shown that PRCs computedusing realistic synaptic inputs
can differ significantly from those computed with either weak or
strong current pulse injections [33]. In turn, these differences can
lead to qualitative and quantitative differences in phase-locking
properties of coupled neurons.

An additional level of complexity arises when dealing with
realistic neuronal networks. Namely, the amplitude of the synaptic
current may change with the short-term history of activity. This
property, known as short-term synaptic plasticity, is observed in
most synaptic connections and, in oscillatory networks, results
in gain modulation, or a modification of synaptic strength as
a function of presynaptic firing rate. If the presynaptic activity
approaches a periodic state, the synaptic strength approaches a
steady state. In models of synaptic transmission, this leads to a
maximum and a minimum value of the variables governing the
synaptic dynamics along the periodic solution [34,35]. In [20], we
defined the steady-state plasticity profile to correspond to the
maximum value of the synaptic strength as a function of presy-
naptic frequency. We further showed how to use this function, to-
gether with PRCs, to determine phase locking in a pair of inhibitory
cells in which the underlying equations governing the activities of
the cells and synapses need not be known.

Bistability of periodic firing patterns in the presence of synaptic
plasticity has been studied by us [9,34,36] and others [11,37]. In
most of these cases, some sort of model equations were utilized
to conduct the analysis. Here, using the methods developed in [17]
and [20], we show how synaptic depression gives rise to bistability
of periodic solutions in reciprocally connected networks when
the only cellular information that is available is the PRCs of the
neurons. For neurons that display Type I PRCs [8], we derived two
distinct but related 2-D maps whose fixed points correspond to
phase-locked solutions of the coupled network. As the maximal
strength of the depressing synapse is changed, the fixed points
of these map undergo two distinct saddle–node bifurcations that
bookend a region of bistability and hysteresis.

Through our analysis, we obtained a condition in the form of an
inequality that dictates when bistability can occur. This condition
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depends on both neuronal and synaptic dynamics and requires a
strong postsynaptic response that is either phase or period depen-
dent. This strong effect can either be achieved if the neuron has a
steep PRC (phase dependency) or a steep steady state depression
profile (period dependency). We showed each of these situations,
respectively, in the context of QIF and ML model neurons.

In the case of QIF neurons, the amplitude of the PRC is relatively
large and the increasing branch of the PRC is very steep (Fig. 1A).
This steepness implies that the delay caused by a synaptic pertur-
bation depends heavily on the phase of the perturbation received,
i.e., the neuron is phase-sensitive to perturbations even for small
synaptic strengths. In networks of suchneurons, aweak short-term
synaptic depression property (as in Fig. 2A) is enough to create
bistable phase locking modes of the network.

In the case of ML neurons, the PRC changes significantly as
synaptic strength is changed (Fig. 1B). However, the PRC has a
small derivative for small synaptic conductances, which are of
interest here. In this case, a weak short-term synaptic depression
property is not enough to create bistable phase locking modes.
This was demonstrated by choosing different forms of the steady
state depression profile and showing that only those profiles that
exhibit sharp changes (as in Fig. 2B) lead to bistability, either in
numerical simulations (Section 3.5) or via the geometric method
of intersecting surfaces (Section 3.6).

The techniques derived in this paper build on the work of many
other researchers who have usedmaps, based on inter-spike inter-
vals, to derive conditions for phase locking (see, e.g., [7,27,29,38]).
As in the present study, in most of these studies, qualitative as
well as quantitative properties of the PRC are used to conduct
the analysis. Oprisan [39] developed similar geometric methods
that depended on the shape of the PRC in order to assess phase
locking, but synaptic plasticity was not considered. Very recently,
Oprisan and Austin [40] have introduced a method to incorporate
the response of two stimuliwithin a single cycle of oscillation. They
develop a two-stimulus response surface which shares similarities
in approach to our geometric method involving surfaces of PRCs.
From a methodological viewpoint, our approach in the current
study demonstrates the usefulness of developingmaps that simul-
taneously track the dynamics of short-term synaptic plasticity and
the PRC effects in order to explore the stable states of recurrent
networks.

Our analysis of bistability involves a small network of two
neurons connected with inhibitory synapses. While it would be
difficult to generalize the analysis to larger networks, it is still
possible to understand the possible roles of synaptic depression
in such cases. For example, we previously showed that a large,
globally inhibitory network interacting with depressing synapses
could producemultiple stable network states, where each state in-
volves distinct clusters of synchronously active neurons [36]. Such
states may be important for the formation of multiple memory
states in the cortex [41]. In contrast, large networks connectedwith
excitatory synapses which have short-term depression can exhibit
mono or bistable network level activity if the synaptic weights
are, respectively, small or large [42]. Such networks have been
suggested to underlie the up and down cortical states as dynamic
transitions between the two stable network attractors, triggered
by noise [43,44].

Few experimental studies have definitively demonstrated the
functional roles of short-term synaptic plasticity at the network
and behavior levels. However, the role of synaptic dynamics in
network output is a rapidly growing area of research [45]. Short-
term depression plays a prominent role in the activity of several
oscillatory networks, including the thalamocortical system [46],
electrosensory processing in weakly electric fish [47], olfactory
processing [48], auditory processing [49], cortical up and down
states [43] and central pattern generation [16]. The proposed

mechanism in our study, that the shape of the PRC and depression
profiles may result in the existence of bistability, indicates a form
of short-term memory that can arise in such oscillatory networks,
similar to those proposed forworkingmemory [41]. Additionally, a
simple modification of the PRC or depression profiles, for example
by neuromodulation, may lead to transitions of the network in
or out of states that allow for such activity-dependent short-term
memory states. The existence and modulation of these bistable
states may allow for gating information flow, especially in the
context of sensory processing.
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