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 Stability of
 the In-phase Travelling Wave Solution in

 a Pair of Coupled Nerve Fibers

 Amitabha Bose & Christopher K. R. T. Jones

 Abstract. We consider the travelling wave that represents
 the simultaneous propagation of a voltage pulse along the
 length of two coupled nerve fibers. Conditions are given which

 guarantee the existence and stability of the wave. Two ad
 vances in the geometric techniques in the stability analysis of
 travelling waves are given: the first involves the Maslov Index,

 and the other the Exchange Lemma.

 1. Introduction. Since the pioneering work of Hodgkin and Huxley, see

 [25], the propagation of impulses along nerve fibers has been modeled by a diffu
 sion equation coupled with subsidiary ordinary differential equations. The nerve
 impulse itself is manifested as a solution of these equations that evolves by trans

 lating in the one-dimensional variable that represents distance along the nerve
 fiber. Such a solution is generally called a travelling wave and the application to
 neurophysiology has lent considerable motivation to the building of an extensive
 literature on travelling waves. Since the outside world is a ready supplier of im
 perfections, we can only expect travelling waves that are stable to perturbations
 in initial data to be physically observable. The stability of waves purporting to
 model physiological processes is thus of paramount importance. In this paper,
 we give conditions for the stability of a travelling wave that represents the in
 phase nerve impulse propagating along a pair of coupled, parallel nerve fibers.
 The problem is mathematically non-trivial on account of the relatively high di
 mensional equations resulting from having more than one fiber present. This
 mathematical challenge is met by invoking a few different approaches, including

 the use of the Maslov Index in locating eigenvalues of gradient systems, that
 oceur on the fast time scale, and the Exchange Lemma which is used to gain
 accurate information on the transversality in the construction of the underlying

 189
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 190 A. Bose & C. K. R. T. Jones

 wave in its ambient phase space; information which, since the work of Evans [13
 16], is known to be intimately related to stability. Part of the point of this work
 is then the development of techniques that are capable of extracting stability
 information about travelling waves in such a setting.

 Various models of coupled nerve fibers have been proposed. The models due
 to Scott and Luzader [36] and Keener [30] are both based on the modeling of
 a single fiber by the FitzHugh-Nagumo system. In a certain popular limit, see
 Casten, Cohen and Lagerstrom [10], the variables evolve on different time scales.
 The fast variable represents the voltage difference across the membrane, while
 the slow variable, which has only an indirect physical interpretation even in the
 original Hodgkin-Huxley system, governs the recovery of the nerve fiber. We
 develop here a model which, in a natural way, generalizes both that of Keener
 and that of Scott and Luzader. The key feature of each of these models is that
 the coupling is reciprocal; in other words, the potential on the second fiber affects
 that on the first fiber in exactly the same way as it is itself affected by the first
 fiber. The nonlinear coupling then leads to a gradient nonlinearity for the system
 of partial differential equations governing the potentials.

 The voltage on fiber i is denoted by it, (i — 1,2), and the recovery variable
 for fiber i is denoted by Uj. We put the variables together to form a system
 governing U = (ui,U2) and V = (v\,V2) as

 m eUt = e2DUxx + f(U)-V
 [i) vt = £(u--rV)

 o

 where D is a diagonal, constant matrix, / = VF where F : R —> R is a smooth
 function and 7 is a small, but fixed, parameter. The parameter e is assumed to
 be as small as needed. If we write out the nonlinear term in the first equation
 in coordinates, it can be seen how the coupling works. Indeed, in terms of u\,
 U'2 and / = (/1, /2) the coupling of fiber 1 to fiber 2 is determined by the partial
 derivative dfi/duz = d2F/du^dui, which, by the equality of mixed partials, is
 identical to Ô/2/du\ — d2F/duidu2, which determines the coupling of fiber 2 to
 fiber 1.

 The model due to Keener [30] has exactly the form of (1) where

 f(V) =
 g(ui) + d(u2 - ui)

 g(u2) + d(ui - u2)

 and the function g(u) =u(l-u)(u-a),0<a< 1/2 being the usual cubic found
 in the FitzHugh-Nagumo model. The parameter d is thought of as a coupling
 coefficient between the fibers. The condition of mixed partials is clearly satisfied,

 thus guaranteeing that the nonlinear term f(U) = VF(U) for some function
 F(U), which can easily be written down. To reduce the Scott-Luzader model
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 Stability of the In-phase TYavelling Wave Solution 191

 [36] to equation (1) requires a little more work. The equations have the form

 eUt = e2VUxx + G(U) - V
 ( ' Vt = U-jV

 where G{U) = (g(ui),g(u2)), with g(u) being the same cubic as used by Keener,
 and

 T =
 1 — a a

 a 1 — a

 so that the coupling on the diffusion is also reciprocal. Since the matrix T
 is symmetric, it can be diagonalized by an orthogonal transformation B, i.e.
 D = BtYB is diagonal. If we then change variables by setting U — BP and
 V = BQ and multiply both equations in (2) on the left by BT, the resulting
 equations for (P, Q) have the form of (1).

 The travelling wave we shall study in this paper is one in which both fibers
 fire simultaneously. In both the Keener and Scott-Luzader models this wave is
 identical on each fiber, i.e. U\ = U2 and V\ — v^, but in our more general model
 such a symmetric solution may not exist. The small parameter e, however, allows
 us to separate the activation and recovery phases of the nerve pulses from each
 other. We thus force the two fibers to be firing simultaneously without requiring
 their being identical. Introducing a scaled time and space via t = er and x — ey,
 the equations (1) become

 ^ UT = DUyy+f{U)-V
 [ } VT = e(U- jV).

 Both the activation and recovery phases are governed by the e — 0 limit. In the
 activation phase U will jump from 0 to U+ (0), which is a steady state that has
 both components positive, so that both fibers have fired. This jump is achieved
 along a travelling wave (heteroclinic orbit) for the reduced fast system—see the
 next section for the details. The fast activation is then followed by a latent phase
 in which both U and V vary slowly, V varying to a value V* and U to U+(V*).
 There is then a recovery phase in which U jumps on a fast time scale to an
 unactivated state U-(V*), after which both variables slowly return to rest.

 This paper is organized as follows. In Section 2.1, we state conditions which
 will ensure existence of an in-phase travelling wave. Existence will be established
 by an appeal to a theorem due to Jones and Kopell [28]. In Section 2.2, we state
 additional conditions which will guarantee the stability of this wave. Stability
 of the wave is determined by locating the spectrum of an appropriate linear
 operator L. Other geometric constructs and theorems are discussed in Section
 2 as well. Sections 3 and 4 are the main parts of the paper. In Section 3,
 we show how to use the Maslov Index to locate the eigenvalues of gradient
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 192 A. Bose & C. K. R. T. Jones

 systems. The Maslov Index is the generalization of Sturm-Liouville theory to
 such systems. It is an important fact that the eigenvalue equations of gradient
 systems preserve Lagrangian Planes. This fact allows us to restrict attention to
 the space of two-dimensional Lagrangian Planes, A(2), which is a submanifold
 of the Grassmannian G2,a• Our main result in this section is Lemma 3.7 which
 relates the index to the number of real eigenvalues of the linear operator. In
 Section 3.3, we apply the general theory to the fast travelling waves of our model
 as well as those of Keener's model. In Section 4, we use the Exchange Lemma in
 conjunction with the fact that L has only two eigenvalues in some neighborhood
 of the origin (see Theorem 2.5 below) to finally determine stability of the wave.
 By translational invariance of travelling waves, one of the two eigenvalues must
 actually lie at the origin. The Exchange Lemma will then be used to compute
 the derivative of a certain analytic function which will locate the other.

 2. Hypotheses and Theorems. We shall make various hypotheses con
 cerning the system (1). These will guarantee that it possesses an appropriate
 travelling wave (U(£),V(£)), where £ = (x + êt)/e. This travelling wave will
 satisfy the system

 V = W

 (4) W = W-f(U) + V
 V = ~(U- 7V),

 where ' = d/d£. We seek then a trajectory of this latter system that is asymp
 totic to the rest state U = V — 0, the existence of which is guaranteed by the
 hypotheses below.

 2.1 Existence. Because of the smallness of s, there are fast and slow time
 scales. The equations which govern the fast flow are obtained by analyzing (4)
 when s = 0 and are given by

 15) U' = W [) W' = dW-f(U) + V.

 The variable V acts as a parameter in (5). The equation for the slow flow, which
 is obtained by introducing the rescaling rj — into (4) and setting e = 0 is given
 by

 0 = -f(U) + V

 (6) ^ -yV),

 where ' = and U(V) is determined by solving the first equation of (6) for the
 ar]

 variable U. The hypotheses required for existence of the wave are the following.
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 Stability of the In-phase Travelling Wave Solution 193

 (HI) There is a set C R2 so that for every V G tt, V = f(U) has exactly
 three solutions, two of which, denoted U±(V), are strict local maxima of
 G(U, V) = F(U) — (V, U), with V fixed. In other words, det d2F(U±(V)) >
 0 and tr d2F(U±{V)) <0.

 (H2) The point (0,0) e fl and U-(0) = 0, i.e. 0 is a rest state that is one of the
 strict local maxima.

 (H3) The only solution of V = f(U) and U = 7V with V efl is U — V — 0.

 Motivated by neurophysiological considerations, we are interested in two par
 ticular critical manifolds of (4). The first corresponds to the situation where
 both fibers are at rest and the second where both fibers are excited. Let

 U- = (wi_,«2_), um = (uim,U2m) and U+ - {ui+,u2+) be the three solu
 tions of V = f(U) as described in (HI). For « = 1,2, these can be ordered where

 < uim < ui+• We define manifold (R) — {(U,V) : V = f(U), U = U-{V)}
 and manifold (E) = {(U,V):V = f(U), U = U+(V)}.

 (H4) When e = 0 there is a travelling wave (front) from (f/_ (0), 0,0) = (0,0,0)
 on manifold (E) to (f7+(0),0,0) on manifold (R) at speed d* > 0. More
 over, with ■&' = 0 appended to (4), the travelling wave exists as the
 transverse intersection of the center-unstable manifold of (0,0, $*) and the
 center-stable manifold of (f7+(0),0, $*) in (U, W, Û) space.

 (H5) There is a one-dimensional curve C C so that for every V* € C there
 is a travelling wave (back), when e = 0, from (f7+(V*),0, V*) on manifold
 (E) to (U-(V*), 0, V*) on manifold (R) at speed ■&*. In addition, this two
 dimensional family of travelling waves exists as the transverse intersection
 of the center-unstable manifold of (U+(V*), 0, V*) and the center-stable
 manifold of (£/_(V*), 0, V*) in (U, W, V) space.

 (H6) For = ■&*, there exist two solutions to (6); the first connects (U+(0),0)
 to (U+(V*),V*) with U(V) — U+(V) in (6), and the second connects
 (U-(V*), V*) to (0,0) with U(V) = U-{V) in (6) for some V* € C.

 Using the hypotheses above, we form a singular homoclinic orbit, rsjng, which
 consists of the travelling wave described in (H4), one of the waves of (H5), inter
 spersed by the two solutions of the slow flow described in (H6). The hypotheses
 (H1)-(H6) are sufficient to allow us to apply the theorem due to Jones and Kopell
 [28] to establish the following theorem concerning existence and uniqueness of a

 real homoclinic orbit close to rs;ng.

 Theorem 2.1. There exists a locally unique travelling wave homoclinic
 solution [/(£) of (4) which lies 0(e) close to the singular homoclinic orbit rsjng.

 Local uniqueness means that it is the only wave within some neighborhood
 (in phase space) of itself. The goal of this paper is to give conditions under which
 this travelling wave is stable to perturbations in initial data.
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 194 A. Bose & C. K. R. T. Jones

 2.2 Stability. For the sake of completeness, we give a precise definition
 of stability. For this definition we recast (1) in a moving frame, i.e., in terms of
 the variables £ and t.

 Deßnition 2.1. A travelling wave U(£) is asymptotically stable if there
 is a neighborhood N of U(f) in BU(R, R4) (the space of bounded, uniformly
 continuous functions from R to R4,) so that, if Ü(£, 0) G N and Ü(£, t) satisfies
 (1), in a moving frame, then there is a k for which ||{7(£,£) — U(f + fc)lloo ~* 0
 as t —> oo.

 In order to determine stability, we use the linearization of the PDE at 17(0,
 again in a moving frame.

 (7)

 / Pi \

 P2

 r i

 \r2 )

 ( a 32F rfiF \
 Pl«-^" + â^Pl + 9^K-Tl

 if F if F
 K« ~+ Ä" + 02 " r2

 +e{pi — 77*1)

 -■dr2( + e(p2 - 7^2)

 The following proposition gives sufficient conditions for stability and can be
 concluded from results of Henry [24], or Bates and Jones [5].

 Proposition 2.2. If the spectrum of L, denoted cr(L), satisfies

 (1) There is a ß < 0 so that <r(L)\{0} C {A : ReA < /3}.
 (2) 0 is a simple eigenvalue.

 Then U(f) is asymptotically stable.
 rv a. l • l J i.„ a.

 i 1W Uü Oil Cl U \J XUUOU UV/ Uill Ul^V/iiVCllUV/ UUV/ VJ\J> UlUUUlUViVll 1UVUI11U<1J.VV< xuv jl*j

 potheses of Proposition 2.2 guarantee that the only neutral direction is that as
 sociated with translation. To assess the stability of f/(0> we need to determine
 the relevant properties of cr(L) as prescribed by Proposition 2.2. The spectrum
 of L splits into two parts: the point spectrum crp(L), which is here defined to be
 the isolated eigenvalues of finite multiplicity, and the essential spectrum ae(L),
 which is the rest. As in [26], the essential spectrum lies in the left half-plane
 bounded away from the imaginary axis, so it will cause no instabilities.

 Lemma 2.3. (Jones [26]) If e > 0, there exists ana < 0 such that ae(L) C
 {A : Re A < o}.

 To locate aP(L), we need two additional requirements which are tied to the
 gradient non-linearity. The condition (H7) guarantees that the slow trajectory
 on manifold (E) transversely crosses the jump off set C in the correct direction.
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 Stability of the In-phase Travelling Wave Solution 195

 d2F
 (HI) The mixed partial derivative ——-— > 0.

 ou^oui

 (H2) The travelling wave front and back described in (H4) and (H5) each have
 Maslov Index 1.

 The Maslov Index is the natural measure for stability of the travelling wave
 of the reduced system, i.e. for the front and the back. It will be seen in Section
 3.2 that it is a property intrinsic to the phase space, and its use will be illustrated
 on the Keener model in Section 3.3.

 Were we considering the problem of a single nerve fiber, the reduced system
 would be a scalar equation. Relative to this equation, the stability of the front
 solution could be resolved bv an application of Sturm-Liouville theory, which

 would imply that the stability could be read off from the number of nodes of
 the wave. In the present context, however, the reduced equations are already
 a system and Sturm-Liouville theory is not applicable. This reduced system
 does, nevertheless, enjoy some specific structure which affords an application of
 a natural generalization of Sturm-Liouville theory. The structure comes from the
 fact that the nonlinear term is the gradient of a function. Such a situation occurs
 for variational problems and Morse, in his celebrated Index Theorem, see Milnor
 [32], proved that there is a connection between a certain index, which is related
 to the geometry of the solution in its ambient space, and the number of unstable

 directions for the variational problem. This index was shown by Arnol'd [3] to
 be the Maslov Index.

 In our case, there is no direct variational structure. Nevertheless, as will be
 seen below, the Maslov Index can still be defined and bears a natural relationship
 to stability. In the variational context, (H8) means that the solution is minimum
 of the energy. If (4) is converted to a Hamiltonian system, using an integrating
 factor as done in Section 3.1 below, this interpretation of the Maslov Index can
 also be used in the current context.

 Together, Proposition 2.2 and (H1)-(H8) will be used to establish the fol
 lowing theorem on the stability of the travelling wave Ü(£).

 Theorem 2.4. If e > 0 is sufficiently small, then t/(£) is stable relative
 to (1) in the sense of Definition 2.1.

 For a scalar parabolic equation with a cubic non-linearity, which in Keener's
 model corresponds to one fiber with no recovery mechanism, Fife and McLeod
 [18] were the first to prove the stability of the travelling front. Evans [13-16]
 developed general techniques to study the spectrum of systems consisting of
 one scalar parabolic equation and a number of subsidiary ordinary differential
 equations, a class of equations he called "of nerve impulse type." He defined
 an analytic function D(X) whose zeroes correspond to the eigenvalues of the
 relevant linear operator. Jones [26] proved the stability of the "fast" travelling
 wave in the FitzHugh-Nagumo system, and a key technique in the proof involved
 using the Evans function. Yanagida [37] gave a later proof that used the Evans
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 196 A. Bose & C. K. R. T. Jones

 function even more extensively. Alexander, Gardner and Jones [1] generalized
 the construction of Evans' analytic function to systems of parabolic equations in
 their work which relates Chern numbers to eigenvalues. Dockery [12] has proved
 stability results for some travelling waves of Keener's 2-fiber model.

 Denote by Z' — AZ the eigenvalue equation (L - XI)P = 0, which when
 written as a first order system is

 Pi = Qi

 P2 = <72

 d2F d2F

 dulPl du2du1 l'i = 1?9i-^TPi-^-nr-P2+ri + AP1

 d2F 82F
 q2 = êq2 - pi - 2"P2 + r2 + Xp2

 duidu2 du2

 r[ = (-An+£:(pi-yri))/??

 r'2 = (-Ar2 + e(p2 - ir2))/d.

 For (8) at ±00, the critical point (0,0,0,0,0,0) has a two-dimensional unstable
 manifold and a four-dimensional stable manifold. From this, it follows that
 there exists solutions to (8), Xi~(A, £), (A,£) which decay to 0 as £ —> —00
 and Xj~(A,£), Xf (A,£), X^~(A,£), X^~(A,^) which decay to 0 as £ —► +00. Let
 O D {A : Re A > —b} for some b > 0.

 Definition 2.2. The Evans function D(A) is defined by

 (9) D(A) = e-foTRA(^)di X+(A,0AX2+(A,0
 A Xf (A, 0 A X2" (A, 0 A X3- (A, 0 A X4" (A, 0

 6 ß
 for A G fi with values in /\ (C ).

 Using Abel's formula, it can be shown that D(A) is in fact independent of £. The
 Evans function enjoys the following properties:

 (1) D{A) is analytic in A G fi.
 (2) D(A) = 0 if and only if A is an eigenvalue of L.
 (3) The algebraic multiplicity of an eigenvalue equals the order of the zero of

 D( A).

 Properties (1) and (2) follow directly from [1]. The third follows from an argu
 ment similar to one found in [20].
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 Stability of the In-phase Travelling Wave Solution 197

 In Sections 2.3 and 3 below, we prove that the front and back are stable rela
 tive to their partial differential equations. Using this information, together with
 arguments similar to those in Jones [26] and Alexander, Gardner and Jones [1],
 it can be shown that the eigenvalues of the linearization at the full wave are ap
 proximated by those associated with the fast reduced systems, which establishes
 the following theorem.

 Theorem 2.5. There exists a simple closed curve K which encloses the
 origin and all of the eigenvalues of L in the right half-plane. Moreover if (Hl)
 (H8) are satisfied, then L possesses exactly two eigenvalues within K.

 The idea of Theorem 2.5 is that each stable fast jump provides exactly one
 eigenvalue near to the origin. One of these, by translational invariance, lies at the
 origin. We will locate the second eigenvalue by using the Exchange Lemma to
 find the sign of the derivative of D(A) at A = 0, and from this conclude Theorem
 2.4.

 2.3 Stability of the singular in-phase front. Setting e — 0, the singu
 lar limit of the travelling wave decomposes into two fast heteroclinic jumps. The
 front solution connects manifolds R and E. Thus we call it the R-E travelling
 wave front. In this section we discuss the stability of this wave with respect
 to the relevant reduced partial differential equation. There are corresponding
 results for the E-R back wave.

 Consider the equations for the front recast in a moving frame where we have
 set v\ — V2 = 0.

 uit = uiu -duu +fi{u1,u2),
 (10)

 U2t = "2{ï - + f2{ui,U2) ■

 Linearize these equations around the front solution Up(£), which exists at some
 wave speed •& = û*,

 / n, , d F , d2F \
 I Pi

 (11) Lf
 P 2

 Phi - rPh + -5-2PI + Q- Q- P2 ôtij du^dui
 d2F d2F

 P2« ~ r"2' + ä" + à?"2

 where LF : Rf/(R,R2) -» RC/(R,R2).

 Theorem 2.6. If (H8) is satisfied, then Uf{£) is stable relative to (10) in
 the sense of Definition 2.1.

 The essential spectrum of Lp lies in the left half-plane bounded away from
 the imaginary axis. The Evans function associated with Lp, which we call
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 198 A. Bose & C. K. R. T. Jones

 Dp{A), is defined similarly to D{A). To prove the stability of the front we
 need the following properties for Dp(X) to hold.

 (1) Df(0) = 0.
 (2) Df(X) -f- 0 for A £ {A : Re A > 6} for some b < 0 except at A = 0.
 (3) 0 is a simple eigenvalue of Dp(X).

 By translational properties of travelling waves, A = 0 is an eigenvalue, which
 implies (1) is true. We next show statement (3).

 Consider equation (5) with v\ = v2 — 0 and the equation i)' = 0 appended.

 u\ = Wi

 w'l - -/i(ui,u2)
 (12) u'2 - w2

 w'2 = ÏÏW2 - f2(ui,u2)
 ê' = 0.

 It follows from hypothesis (HI) that the critical point (0,0,0,0, i)) has a three
 dimensional center-unstable manifold Wp"(0) and the critical point
 (ui+, 0, U2+, 0, â) also has a three-dimensional center-stable manifold Wps(U+ (0)).
 Using hypothesis (H4), the solution Uf(£) exists as the transverse intersection of
 Wpu(0) and Wp(U+(0)). Alexander and Jones [2] show that the transversality
 of the these manifolds is equivalent to simpleness of the translational eigenvalue,
 thus proving (3).

 To prove statement (2), we will use the Maslov Index to locate the possible
 eigenvalues of Lp in the right half-plane. The transversality of Uf(0 and an
 application of Corollary 3.8 below will then prove Theorem 2.6.

 3. Eigenvalues of a gradient system. In this section we will prove that
 Lp has no eigenvalues in the open right half-plane if Uf has Maslov Index 1.
 The Maslov Index provides a means for finding real eigenvalues of operators
 associated with gradient systems. The index counts the number of winds that a
 certain curve of Lagrangian Planes makes in a sub-manifold of projective space.
 In this section we develop a general theory for finding eigenvalues of gradient
 systems.

 In the Sturm-Liouville theory, the presence of eigenvalues can be deter
 mined by studying an angular variable. The Sturm-Liouville theory applies only
 to scalar second order differential equations, for which there exists a natural
 definition of the angular variable. Converting the second order equation to a
 system of two first order equations, the angular variable is defined as the arc
 tangent of the ratio of the two ensuing variables. In the present situation, we
 have two second order equations and thus a system of four first order equations.
 As a result, it is not immediately clear how to define a useful angular variable
 and also whether it will have any relevance to the existence of eigenvalues. The
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 Stability of the In-phase Travelling Wave Solution 199

 appropriate way to formulate such is to define the variable as a projection from
 the set of Lagrangian planes to the circle S1.

 We consider systems of the form

 (13) ut = uxx + f(u),

 where u £ R2 and x, t £ R. We require that f(u) be conservative. Thus
 there exists some scalar valued function F{u) G C2 such that VF(u) — f(u),
 i.e. if f(u) = (fi(ui,u2), h{ui,u2)), then dF/dui = fi and dF/du2 = f2.
 Introducing the change of variable £ = x + flt into (13), and writing the resulting
 equations as a first order system, we obtain

 u\ = W\

 w'l = tiwi - fi(uuu2)

 = W2

 = -&W]

 w'2 = tfw2 - f2(ui,u2).

 We make the following three assumptions on the reaction term f(u) and on (14).

 (a) There exist values (ui±,ii2±) such that fl{ui±, u2±) = 0 for i — 1,2.
 (b) The critical points (ui±, «2±, 0,0) are both hyperbolic for (14) and have

 two-dimensional stable and unstable manifolds.

 (c) There exists a travelling wave solution, Ug(£), to (14) which tends to
 (ui±, U2±, 0,0) exponentially fast as £ —» ±oo at some known wave speed
 "d.

 As before, we recast (13) into a moving frame, linearize the equations in question
 about the travelling wave solution Ug{£) , and obtain the resulting operator

 (15) LgP =

 ( // o / , dfi , dh \
 ~ + 9^"'+

 \ >% ~ m++1
 Writing the eigenvalue equation (LG - XI)P = 0 as a first order system, we
 obtain

 P'l = P3

 P2 = Pa

 <16> Pi = +
 Ulli Ull2

 , <, 0/2 df2 Pa = vpa - -^—Pi - ~^—P2 + Xp2 ■
 OU\ UU2
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 200 A. Bose & C. K. R. T. Jones

 Mote that the assumptions above imply (lb) is asymptotically autonomous, and
 that the unstable and stable subspaces of the origin at ±00, denoted W± and WIr
 respectively, are also two-dimensional. The parameter A will be an eigenvalue
 if W" PI Wf ^ {0} x (—00, +00), i.e. if the intersection of these two subspaces
 is at least one-dimensional, for then there is a bounded solution of (16) at that
 value of A.

 3.1 Gradient systems have real eigenvalues. We show here that for
 gradient systems, the point spectrum of Lq must be real.

 Lemma 3.1. The point spectrum (jp{Lg) C R

 Proof. It is a standard fact that when $ = 0, Lq is self-adjoint in L2, since
 then Lq has no first derivative term. Using a transformation as in Sattinger
 [35] to eliminate the first derivative for i9 0, define a new operator M by
 M = ■ It is not difficult to show that

 MP =

 ( „ V2 dh d/i
 - TPl + + d^V2

 „ tf2 ^ dh M df2
 V P2 ~ TP2 + d^Pl + d^P2 )

 from which it easily follows that M is self-adjoint in L2. Finally, it is not difficult
 to prove that A is an eigenvalue of M if and only if it is an eigenvalue of Lq,
 in L2. Furthermore, the eigenvalues of Lq in L2 coincide with those of Lc in
 BU(R, R2). □

 3.2 The Maslov Index. In this section, we show how to use the Maslov
 Index to count the number of real eigenvalues in the interval [0, oo) for gradient
 systems. Arnol'd [3] gives an expression for this index in terms of the Cayley
 transform. We will give a new representation for the index in terms of Pliicker
 coordinates.

 The Maslov Index is an index of a curve of Lagrangian planes.

 Definition 3.2. A Lagrangian plane T is a two-dimensional subspace of
 R4 that satisfies (yi, Jyfi) = 0 for all y\, y-2 € where

 J=f° ~r
 7 0

 is the symplectic matrix and I is the 2x2 identity matrix.
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 Let yi - (0,1,0,2,0,3,0,4), y2 = (61,02,63,64), then (yi,Jy2) = (oi63-6ia3) +
 (0264 — 62«4). The Plücker coordinate Pl3, of the plane spanned by y\ and y2, is
 defined to be the 2x2 subdeterminant of the ith and jth column of the 2x4
 matrix formed by taking y\ and y2 as the rows. The set of numbers Pij are the
 Plücker coordinates if the following Grassmannian condition is satisfied.

 (17) Grassmannian: P12 ■ P34 ~ Pi 3 • -P24 + Pu ■ P23 = 0.

 Also, Pi3 = ai63 - 6ia3, and P24 = a264 - a462. Thus (y\,Jy2) = P3 + p24
 This proves A(2) C G2)4 is given by

 (18) Lagrangian Plane: P13 + P24 = 0.

 A convenient representation of A(2) is based on matrix groups. It turns out
 that A(2) = [/(2)/0(2), where U(2) is the group of 2 x 2 unitary matrices and
 0{2) is the subgroup of real orthogonal 2x2 matrices. Since the determinant
 of an orthogonal transformation is either ±1, the map Det2 acts as a projection
 onto S1, i.e. Det2 : A(2) —» S1. Both Arnol'd and Jones show that A(2) is
 a fiber bundle over the base space S1 with fiber S2 and clutching function the
 antipodal map. The space of Lagrangian planes has fundamental group Z. Thus
 the mapping Det2, which can be used to count the number of times the image
 of A(2) circles S1, provides a mechanism to determine how many winds certain
 Lagrangian planes undergo in a sub-manifold of projective phase space. This
 winding number is the Maslov Index.

 For every w e A(2), spanned by y\ and y2 which has P\2 A 0, there exists a
 transformation 0 e GL(2) such that (j)w = (I \ S), where I is the 2x2 identity
 matrix and S is a 2 x 2 symmetric matrix. The identification above is

 (19) U T T T ah') = (1 0 31 V V 2 &3 b4 J ^ 0 1 s s4 J
 This identification serves to define local coordinates on the set P\2 ^ 0. Arnol'd
 [3] shows that

 I — iS
 Det2u> = det —■ = det(I - iS)(I + iS)_1,

 1 T" Id

 which is the Cayley transform.

 We now give a new representation of the Cayley transform using Plücker
 coordinates. This will be done in the local patch Py2 / 0. But the final formula
 (22) will hold on all of A(2). The map Det2w = det I — iS/I + iS can be written
 as

 i _ (1 + S4)2(l + Si)2 + + 2s2(1 — S1S4)
 (1 - S1S4 + s2 + i(si + s4))2 (20) det(I -iS^I + iS)-1 = M 2 -7 A2
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 To determine how many times a trajectory winds around S1, we calculate the
 angular equation associated with the map Det2, using the arctangent.

 k = tan-1 Im Det2/Re Det2,

 Since the numerator of (20) is strictly real, it is not hard to show that

 (21) « = tan-'
 (1 - S1S4 + S2)2 - (si + S4)2

 The 2x4 matrix of (19) from which we defined Det2 is already in normalized
 form. Thus, we have P12 = 1, A3 = s, P24 = s, Pu = s4, P23 = -si, P34 =
 S1.S4 — s2. The " connotes a normalized form. In this case the 2-form P\2 has
 been used to normalize, i.e. Pij = Pj/Pi2- In these coordinates, we see that

 _ P13 _ -P23
 ^ P ' P ' H2 "l2

 _ P14 2 _ -P34
 S4 — , S1S4 s — D •

 -T12 P\2

 Substituting into (21) and rearranging terms, we obtain

 (22) K = tan"1 "2 ht  2 '
 (Pl2 - P34) - (Pl4 ~ -P23)

 This is the expression for the angular variable in terms of Plücker coordinates.
 We note that k is a function of £ and of all the parameters of the problem, in
 particular of A.

 Evolution equations for the Pl} 's are obtained using the product rule, P'3 =
 Pi Ap'j + p\ Apj and (16). It is an important fact that such equations preserve
 (17) and (18) for the trajectories of interest. The evolution equations for the six
 independent 2-forms are

 P'\2 = P\A - P23

 ^ = "p« + ^p"
 PU = flP„ + (A-g)p12 + P3.
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 Pk =

 f* = 2W.+ (A-g)p14-(A-g]p23

 OUI OU2

 It is not obvious that (23) preserves Lagrangian planes due to the presence
 of $. We next verify this. Using the gradient condition df\ /du,2 = 0/2/dui,
 we obtain (P13 + P24)' = d(PvA + Pm)- Since Pi 3 + P24 = 0 for a Lagrangian
 plane, and in particular at —00, it follows that (Pi 3 + P24)' — 0, which implies
 P13 + P24 = 0. Thus (18) holds.

 We are interested in determining the number of winds around S11 of a given
 Lagrangian plane. This is achieved by computing an evolution equation for the
 angular variable k(£) by differentiating (22) with respect to £. That is,

 mi k ' = ~2 ((pi2 - ^34)^4 - ^3) - (Pj2 - PL)(Pu - p23))
 (P2 - P34)2 + (P14 - P23)2

 There are two important facts about gradient systems. First, k is monotone
 decreasing in the eigenvalue parameter A for each £. Second, as A tends to +00,
 (<9/i9£)re(A, £) tends to zero. We state these two facts precisely in the following
 lemmas. In what follows, let k(A, £) = ka(0

 Lemma 3.3. For each if Ai < A2, then k\1(£) > k\2 (£).

 Proof. For convenience denote p (£) = k\1 (Ç) — k\2 (f). We will show that,
 whenever p(f ) — 0, p'if) > 0. Suppress dependence on £ and assume that
 p = 0. Then, a rather tedious calculation involving the arctangent, arcsine
 and arccosine implies that Pijx = P%jX2, where the PtJ's correspond to the six
 2-forms of (23). We will drop the subscript Aj wherever PijXi = PijX2■ Call
 Q = (.Pi2 — P34)2 + (P\i - P2?,)2- Note that Q > 0. Using (24), we obtain

 P' = ^ ((Pl4Xl - Pl4X2 )'(Pl2 - P34) ~ (Pl4 - P23)(Pl2Xl ~ Pl2,2 )'

 -(P23Xl ~ P23J'(Pl2 - P34) + (Pl4 - P23)(P34xi - P34\2 )') •

 Now P14xi = PUX2, Pi2Xl = PnX2, P34Xl = P34X2 and P23xi = P23x2 implies
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 PUXl - P[aX2 = (Al - A2)p12 , P[2xx - P{2X2 = 0

 ^23\1 ~ P'23,2 = (A2 " A,)P12 , P^ - P^ = (A! - A2)(Pi4 - P23).

 With the help of the Grassmannian condition, (17), this implies

 p' = ~ê(Ai "A2) (2(Pi2 (Pi2 ~ Pm) + (Pu ~ P2s)2)

 = ^ (Ai - A2) (2P22 + 2P23 + P24 + P23).

 Since A4 < A2, we see that p' > 0. Thus, whenever p = 0, p' > 0.
 It is also true that kXi (-oc) > kX2(-00). This is shown by using the un

 stable eigenvectors. The calculations are straightforward, but long and tedious,
 so we omit them. This implies k is strictly decreasing in A. □

 Lemma 3.4. As A —» +00, (d/ô£)/t(À, £) —+ 0.

 Proof. Introduce the reseating \/X Ç = Ç into the eigenvalue problem
 LqP — A P. Using (24), it can be seen that (ô/ô£)k( A, £) has a limit as A —► +00.
 Passing to this limit, we obtain the following system of first order equations,
 where ' = d/d(:

 (25) Pl=qi h=q2 y ' Ql=Pl Q2=P2

 These equations are Hamiltonian so they preserve Lagrangian planes. The six
 2-forms associated with (25) are

 Pi 2 = Pl4 — -P23 A3 = 0
 (26) A4 = P34 + P12 A4 = 0

 A4 = Pi4 - P23 A3 = —^34 — Pl2

 Since Pi2 - P34 = 0,

 -4 (P22 - P324)
 K =

 (P12 - P34)2 + (Pi4 - p23)2

 At —00, 0 has a two-dimensional W". The vectors (1,1, —1, —1) and (1, —1,1, —1)
 span the tangent subspace of Wu at —00. Thus Pi 2 = —2 and P34 = 2. Therefore
 k = 0. Thus it can be seen that (cf/<9£)«;(A, £) —> 0. □
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 Let ip £ A(2). Arnol'd [4] introduces the notion of the train of ip. Jones [27]
 gives an equivalent definition.

 Deßnition 3.5. The train of ip £ A(2), denoted 3)(ip), is the set of all
 (p £ A(2) so that (as two-dimensional subspaces of R4) <pC\ip ^ {0}. I.e., it is
 the set of all subspaces that intersect the given one non-trivially. The point ip is
 called the vertex of the train.

 To understand more clearly the asymptotic behavior of certain solutions, it
 is helpful to compactify the £ variable with a new variable r via the relation

 ï = hi„I±I. s 26 1-T

 Using t as a dependent variable, (16) can now be rewritten as

 (t)n, y = A(A,t)Y,
 [27) t' = 6(1 -T2),

 where ' = d/d£. Now, r = ±1 carries the asymptotic flow at £ = ±00. If 8 is
 chosen small enough, then (27) is C1 on C4 x [—1,+1]; see [1],

 We now determine representatives in A(2) for W" and W+. Consider the
 restriction of W" to a particular slice of r. Let Zu(X,t) = W" fl {r}. Let
 <F(A,t) = ct(Z(\,t)) where a : R4 x [—1,+1] —> R4 is the natural projection. If
 Q(X,t) = P\ (A, t) A P2(A, t), where Pi and P2 are solutions that span $(A,r),
 then Q is a curve of one-dimensional subspaces in A2(R4). Let II : R6\{0} —»
 RP5. Then Lt(Q) = Q. Set </>(A,r) = Finally the curve C(^iT) —
 (0(A,t),t) is in G2,4 x [-1,+1].

 Similarly, Zs(X,t) = W+ fl {r}. Let Z1 — Zs(A, +1), the stable subspace of
 0 inside r = +1. The train of <j(Z1) is

 & (a(Z1)) = {ip G A(2) : the subspace Î» determined by tp satisfies
 ^n^)/{0}}.

 Now A is an eigenvalue if u(<p(\, To), To) CI 3(a(Z1)) x {+1} yf 0.
 We seek a relationship between the covering spaces of A(2) and S1. The

 covering space for the former is C(2) = S2 x R and R for the circle. Indicating a

 lift by * , given any ip G A(2), its train is covered by 3 (<p). This can be viewed as
 the union of infinitely many adjacent sideways hourglasses. Each vertical slice is
 a disc and the fiber S2 is obtained by identifying the entire boundary to a single

 point. Arnol'd shows that 3 (<p) divides C(2) into infinitely many components.
 Each component is assigned a value of the Maslov Index which differs by +1
 upon moving to an adjacent component. More precisely, the Maslov Index can
 be defined for a given path in C(2). Consider the lift of the train of some ß G A(2)

 in C(2), denoted 3(ß).
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 iDC  £

 Figure 1: The solid line depicts a path in C(2) of Maslov Index 2.
 The dashed line depicts a path of Maslov Index 4.

 Definition 3.6. The Maslov Index of the path starting at a point a and

 ending at ß', a $ & (ß) is, by definition, either

 (1) the index of intersection of this path with 3 (/?) if ß ^ ß', or

 (2) 1 + the index of intersection of this path with 3 (ß) if ß — ß'.

 The reason we need to discriminate between a path ending at ß and one not
 ending there is that the intersection of a path with the vertex is two-dimensional,
 whereas the intersection of a path with other parts of the train is one-dimensional.
 (See Figure 1)

 Each hourglass is identical modulo a given period. The relation between
 C(2) and R is given by the horizontal distance traveled in C{2) projected onto
 R, the covering space of Sl. Thus a path connecting the vertices of two ad
 jacent hourglasses can be viewed in R as having traversed a distance of 2tt.
 Alternatively, it can be viewed on S1 as completing one full revolution on the
 circle.

 Unfortunately, some information will be lost during the projection. For
 instance, should the right end point ß' of a particular path lie at the vertex of a
 particular hourglass, then it will have the same projected distance onto R as a
 path whose right endpoint lies in the vertical disc containing that vertex. The
 Maslov Index of these two curves will in general differ by +1. It appears that
 this difficulty will have to be addressed on a case by case basis.

 Fix A and note that </>(A, -1), the representative of W", is a point in A(2).
 As the flow is applied to 0(A, r) , it defines a path in A(2). This path can be
 lifted to C(2) modulo a choice of left end point. The left end point will therefore
 define some point on S1 modulo 27T.

 Eigenvalues are created by a shooting argument in C(2). Fix Ai < A2 and
 obtain the parameterized flow on C(2) x [—1, +1] x [Aj, A2]- Let $([Ai, A2], To) —

 (J[Ai x2] ^(-V7")- Suppose that w(0(Ai,to)) lies inside a particular component. If

 u)(cp(X2, To)) lies outside of this component, then by the fact that w(#([Ai, A2], r0))

 is connected, there must be a Aq G [Ai, A2] for which a;(0(Ao,ro)) intersects
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 ® (<j(Z+1)). A similar result is established in Jones [27]. Because of the mono
 tonicity in A, we will be able to get an exact count of eigenvalues in the interval
 [Ai, A2].

 Denote by 5+ (A) the stable subspace at +00. Also by U±(A) denote the un
 stable subspaces at ±00. These subspaces can easily be characterized as elements
 of A(2) using the stable and unstable eigenvectors at ±00. Choose continuous

 lifts Û±, S+, (it) (S+(A)). By /(A) denote the Maslov Index of the path in C(2)

 with left endpoint U- and right endpoint tq)).

 Lemma 3.7. If \\ < then the number of eigenvalues A G [Ai, A2)
 equals I{\\) — I(A2).

 Proof. First it is important to note that in projective or Grassmannian
 space the unstable subspace of a saddle point becomes a stable critical point and
 the stable subspace becomes an unstable critical point! In this case U+(A) is a
 stable critical point and S+(A) is a repelling critical point for the flow in C(2).
 In C(2), f/+(A) can be visualized as lying in the interior of the disc that forms
 the left face of any hourglass. This choice is arbitrary modulo 27r. The critical

 point (A) can be visualized as the vertex of an hourglass, and 3) (<S+(A)) is
 the boundary of the hourglass minus the right and left faces. Similarly U-(A)
 lies in C(2). We fix a particular lift t/_(A).

 There are three possibilities for w(</>(A,to)):

 (1) To)) fi Û+ ± 0, or
 (2) r0)) Fl S+ ± 0, or
 (3) u}(4>(A, t0)) n Ù) (5+(A)) ^ 0 and tq)) fl S+ = 0.

 Depending on A, any one of these three intersections can occur in one of infinitely
 many components. Independent of the component in which the intersection
 occurs, the Maslov Index of the path in question is well defined and computable.

 In order to actually create an eigenvalue, either condition (2) or (3) would
 need to be satisfied. However, if, say, for Ai and A2, condition (1) is satisfied such

 that I(Ai) = a, /(A2) = b and a > b, then u(<j>(\i,To)) and w(<^A2,7o)) lie in
 different components of C(2). Therefore, by connectedness of w($([Ai, A2], To),

 the path connecting w(0(A2, To)) and To)) must have intersected the train
 °fU[Aa,A2]S+ (A) at least a — b times. We need to establish that o>($([Ai, A2], to)

 intersects the train of (J[Ai S+(A) exactly a—b times. For the sake of argument,
 it suffices to show this for b = a — 1. Thus, we claim that the number of
 eigenvalues in [Ai, A2] is exactly 1. Suppose w($([Ai, A2],to) intersects the train

 of U[Al a2] S+(X) more than once. This implies, by connectedness of w-limit sets,
 that there exist at least two eigenvalues A3 and A4, with Ai < A3 < A4 < A2,

 such that w(<j>(\3,T0))Tl ®(5+(A3)) ^ 0 and u($(X4,r0)) fl ®(5+(A4)) ^ 0.
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 Again, by the connectedness of cn-limit sets, the path connecting oj(0(A2, t0)) and

 A3, t0)) intersects <3) ((J[a2 a3] ^+W) just once at A = A3. However, the path

 connecting cu(<^(A2, t0)) and w(0(A4,to)) will intersect 3) (IJ[a2 a4] $+W) twice.
 Since /(A2) = a — 1, this implies that /(A4) = a + 1. Thus, /(A4) > /(Ai). But
 A4 > Ai, so by Lemma 3.3 this contradicts the fact that k, and therefore /(A), is
 monotone decreasing in A. It is easy to extend this argument to the more general
 case as needed. Thus, we conclude that the path connecting u>(<^(A2, To)) and

 cu(çi(Ai, To)) intersects 3) (U[Ai a2] ^+(^)) exactly a — b times. Similar reasoning
 holds for the other possible cases of Ai and A2. The lemma holds on the closed
 interval [Aj, A2] if A2 is not an eigenvalue. If A2 is an eigenvalue, then the number
 of eigenvalues in the closed interval [Ai, A2] is 1 + /(Ai) - /(A2). □

 An immediate consequence of Lemmas 3.4 and 3.7 is the following corollary.

 Corollary 3.8. The number of eigenvalues A G [Ai, +00) equals /(Ai).

 Proof. We establish that if A2 1, then /(A2) = 0. It was shown in
 Lemma 3.4 that as A2 ► 00, —> 0. In fact, as A2 —> 00, U-^X?) —>

 U+(\'2,). Therefore, (j){\2,t) stays near to I/+(A2) for all r. Thus, it stays in
 the same component of C(2). Call this component -vi. Therefore, if A2 1,

 w(0(A2,to)) nlJ+C^ and is non-empty. Thus /(A2) = 0. This is to say that
 there are no eigenvalues for A large. □

 3.3 Analysis for the singular in-phase front and Keener's model.
 We are now in a position to apply this general theory to the specific equations
 under consideration in this paper. We first conclude the proof of Theorem 2.6,
 and we then present a detailed application of the theory to Keener's model.

 Proof of Theorem 2.6. It follows from the transversality hypothesis in
 (H4) and from the work of Alexander and Jones [2] that 0 is a simple eigenvalue
 of the origin. Also, in (H8) we assumed that the travelling wave has Maslov
 Index 1. The Maslov Index is assigned to the wave at the value A = 0. Thus
 Corollary 3.8 implies that there exists only one eigenvalue of the linear operator
 Lp in the right half-plane. This eigenvalue must then be the simple one at the
 origin, thus proving Theorem 2.6. □

 Recall that in Keener's model the non-linearity f(U) was given by

 f(TT\ - ( 9(ui) + d(u2 - Ui)
 I g(u2) +d(ui -u2)
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 where <7 (it) = u(l — u)(u ~ a) and d is the coupling coefficient. When d > 0,
 the coupling is excitatory, and when d < 0, it is inhibitory. Bose [7] shows that
 for d sufficiently small, the symmetric in-phase front travelling wave solution
 can be constructed as the transverse intersection of relevant manifolds. In the

 following, we adopt the notation of the previous section and apply it to the
 equations and solution at hand. Thus, denote the in-phase solution Uf(£) with
 associated linear operator Lp. The eigenvalue equation (Lp — XI) P = 0 is given
 by

 p'l = Qi
 P2 = <12

 (28) q[ = i9*qi + ^A - ) px - d(p2 - Pi)

 q'2 = ß*q2 + ) p2 - d(jpi - p2).

 Note that, at A = 0, (28) is exactly the equation of variations for the front.
 Evolution equations for the six 2-forms associated with (28) are

 P'i2 = Pu ~ P23

 P[3 = rp13 - dPn

 PU = rp24+dp12

 (29) pu = rpu-p-p12+dp12 + p34 + \p12
 0U2

 Pi 3 = rp23 + ^-p12 - dp12 - p34 - ap12

 H,_ g)«,
 + d(P]13 — P24) + A(P14 — P2 3).

 We will now consider the dependence on the parameter d as well as A by
 noting k = k(X,£,d), U± — U±(X,d) and S+ = S+(X,d). There are two more
 pieces of information which are specific to the singular front of Keener's model
 which are contained in Lemmas 3.9 and 3.10. For d = 0, A = 0, IT" fl W1 is
 two-dimensional since these subspaces coincide. Moreover, the following is true:

 Lemma 3.9. For the in-phase singular front solution, when d — 0,
 7(0) = 2.
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 Proof. For d = 0, the systems uncouple and we recover two copies of the
 FitzHugh-Nagumo front, each of which is known to be stable. By Corollary 3.8,
 7(0) < 2. Since dim (W" n VF£) = 2, ta(</>(0, To)) fl S+(0,0) ^ 0, i.e. ca(0(O,ro))

 must be the vertex of 3) (S+(, 0,0)). Thus, it follows that 7(0) = 2. □

 As in Lemma 3.3, denote the dependence of /t on d by a subscript.

 Lemma 3.10. For fixed A and for eachÇ, if d\ < then Kdi(£) > Kd2{0

 We omit the proof of Lemma 3.10, since it is nearly identical to that of
 Lemma 3.3.

 Theorem 3.11. For d > 0 and sufficiently small, there exist no eigenval
 ues of Lp in the open right half-plane. For d < 0 and sufficiently small, there
 exists one eigenvalue in the open right half-plane.

 Notice that the sign of the coupling coefficient d is the determining factor
 for stability.

 Proof. For d = 0, 0 is an eigenvalue of multiplicity 2. Using the transver
 sality result of Bose [7], for d sufficiently small, 0 is a simple eigenvalue of Lp.
 We need to determine the behavior of the second eigenvalue as d is perturbed
 from 0.

 The theorem will be proved by applying Corollary 3.8 with Ai = 0 and d
 sufficiently small. For d = 0, by Lemma 3.9, 1(0) = 2. Now choose d\ < 0 < d2
 sufficiently small. Using the stable eigenvectors, it can be shown that if d2 — d\
 is sufficiently small, then 5+(0,d\) < S+(0,d2). By this we mean that the
 projection of 5+(0, di) onto the real line lies to the left of the projection of
 S+(0,d2). Thus, a component of the train of 5+(0,di) lies to the left of an
 analogous component of the train of S+(0,d2). Figure 2 shows the relative
 positions of one component of each train and the relevant paths for d\ and
 d2. Now, by Lemma 3.10, since k is monotone decreasing in d, for d2 > 0,
 w((/>(0,7o)) gets pushed to the left into the same component as U~ (0. d-p- Since
 0 is an eigenvalue, Ai = 0 satisfies condition (3) in the proof of Lemma 3.7.

 That is w((/>(0, r0)) fl 3) (S+(0,d2)) ^ 0. This is to say that dim(lT" fl W|) =
 1. Therefore 7(0) = 1. For d \ < 0 the opposite happens. Since k increases,

 u>(</>(0, To)) gets pushed to the right into a different component than 17-(0, d\).

 Again 0 is an eigenvalue, so condition (3) is satisfied. However, since w(0(O,To))
 lies in the component to the right of the one in which t/_(0, d\) lies, 7(0) = 2.

 Thus, for d > 0, 7(0) — 7(oo) = 1, which corresponds to the eigenvalue at
 the origin. Therefore, there exist no eigenvalues in the right half-plane and the
 in-phase front solution is stable. For d < 0, 7(0) — 7(oo) = 2, one of which
 corresponds to the zero eigenvalue which is simple. Therefore, the other must lie
 in the right half-plane. Thus, in this case the in-phase front solution is unstable.

This content downloaded from 128.235.83.137 on Wed, 13 Jun 2018 18:43:02 UTC
All use subject to http://about.jstor.org/terms



 Stability of the In-phase Travelling Wave Solution 211

 U_(0,d2) UJO,^)

 S+( 0, dt) S+( 0, d^

 Figure 2: The solid line depicts the path of a trajectory associated with
 c?2 > 0 and has Maslov Index 1. The dashed line depicts a trajectory associated with

 di < 0 and has Maslov Index 2.
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 The fact that the direction of transversality of the in-phase solution changes as
 d passes through 0 (as shown in [7]) is the cause for this change in stability of
 the solution. □

 4. Stability for the full e ^ 0 wave. In this section we conclude the proof
 of stability for the full £^0 system. In order to finish the proof, two additional
 pieces of information axe required. First, for the linear operator L, it must be
 shown that 0 is a simple eigenvalue. Second, the other eigenvalue of L inside
 of K must be shown to lie in the left half-plane. These two requirements are
 intertwined and obtained by evaluating D'(0). This will be achieved using the
 Exchange Lemma to exploit information obtained from the singular solutions.

 We will show that 0 is simple by proving that D'(0) > 0. That 0 is
 simple forces the second eigenvalue to be real, since eigenvalues come in com
 plex conjugate pairs. Using our orientation conventions, it can be shown that
 D{A 1) > 0. Since D(A) is analytic in A, by establishing that L>'(0) > 0, we
 will also have shown that the other eigenvalue lies in the left half-plane.

 We will establish that D'(0) > 0 as a direct consequence of the Exchange
 Lemma. The idea is the following. As noted earlier, the eigenvalue equations at
 A = 0 are exactly the equations of variation, which are the equations that govern
 the evolution of tangent vectors under the flow. Thus, at A = 0, information
 about D(A) can be obtained from tangent vectors. The Exchange Lemma allows
 us to obtain the C1 closeness of certain tangent planes of the e = 0 and £ / 0
 systems, lhis will, m turn, enable us to prove the closeness ot certain objects
 associated with D'(0) and with the e = 0 reduced systems that are determined
 by these tangent planes. Obtaining the sign of D'(0) amounts to checking the
 orientation of a certain tangent hyperplane after it has evolved under the flow
 to a point near manifold (R) close to the singular back. There is no easy way
 of directly determining this orientation. However, the Exchange Lemma picks
 out a tangent hyperplane associated with the singular back, whose orientation
 is known, which is 0(e) close to the unknown one.

 At this time, we also note that using the Exchange Lemma is crucial. It can
 happen that although both jumps are stable relative to their reduced systems,
 together they may produce an unstable wave. By using the Exchange Lemma,
 we guarantee that information about the slow flow is utilized in determining
 stability of the full solution.

 Theorem 4.1. If £ is sufficiently small, the derivative D'(0) > 0.
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 Stability of the In-phase Travelling Wave Solution 213

 Proof. Appending •&' = 0 to the travelling wave equations (4), we obtain

 (30)

 u[ — W\
 u'2 = W2
 w[ = ■dwi —  fi(ui,u2) + V\

 w'2 — flW2 —  f2{ui,u2) +u2

 v'l = l(«l - qui)

 v[ = |(«2 ~1V2)

 ■d' = 0.

 The origin has a three-dimensional Wcu(0) and a five-dimensional Wcs(0). Let
 re be the homoclinic solution. Let r+ (T-) be a component of Wcu(0) (Wcs(0))
 which contains Te. The derivative of the Evans function can be related to the
 manner in which W"(0) crosses WS(0) as'd varies. To this end, let X^(X, £) =
 Y, where Y is the vector field of (30). Suppressing dependence on (A,£) for
 notational convenience, as in [2], we can establish

 (31) D\0) = e""/o£™A(W j^(r+-r_) I?=i9(e)

 A X+ ATAXIA X3 A X4"

 We must evaluate -D'(O) somewhere near the singular back in order to ac
 count for the slow flow. The following lemma allows us to understand the passage
 of r£ near to manifold (E). □

 Lemma 4.2. (Jones, Kopell [28]) Let B1 be a box around manifold (E) in
 which we have Fenichel coordinates. Let q\ be a point on the singular orbit on
 the entrance |6| = A to B1 and let q\ be the point on {|a[ = A} at which the
 singular orbit exits B1. Then, for any point pi G {|a| = A, 6 = 0, yi = 0, i > 1}
 sufficiently close to q\, there is a point q near q\ such that the trajectory through
 q reaches {|a| = A} at a point q having the same a and y\ coordinates as p\ and
 nearby b, y, coordinates , i > 1. The time from q to q is 0( 1/e).

 Choose B1 such that W\ and W2 are 0(6) inside B1, where 6 is the length
 of the shortest side of B1 and is fixed small independent of e. Let Tq be
 the value of £ at which enters Bl and Tf the value at which it leaves.
 Define To and T\ similarly for the singular orbit. Let qe £ T£ be a point
 somewhere near manifold (R) close to the singular back. Furthermore, let
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 r£ be parameterized such that £ = t£ at qe. Near gE, Wcu(0) and W/rc,s(0)
 can locally be written as the graphs of functions. Let kLcu(0) be given by
 («1, u2, m+ (ui, u2, ti), n+ (ui, u2, tf), a+ (ui, u2, t?), bj (ui, u2, &), &), and VLCS (0) by
 (Mi,U2,m7(ui,W2)^i)Tangent vectors to
 the various manifolds can be found by taking derivatives of these graphs with
 respect to different variables. Let

 0,0.£*<*). i) ,
 1,0,^<(«.), ^b'(,'>'0) '

 Ö Ö

 °'0' Ô0ne (fc)'0'0,1

 11 °' ^"n^^E)'0'0'0 ) '

 °' °' iLi™* ^Ue x' °' °)

 0'°'^mr(9£)'^ne_(9£)'0'1'0)

 be such that

 X+(0,t£) = Vu1 , X3~(0 ,t£) = Vs2

 = , |r.(r.) = v?
 Xf(o,T,) = v; , x;(0,T,) = v,>.

 Note that, at £ = t£,

 (32) sgn D'(0) = sgn (Vf - V?) A Vj A Y A V,1 A V,2 A Vs3.

 Below, we use differential 3-forms to make certain calculations. These forms are
 found in the same way as in previous sections by using the product rule together
 with the equation of variations of (30). Let H£ be the hyperplane spanned by
 (Vu ~ Vf), (V^ — V,1) and V. Next observe that (1/f - Vf) A Vf A V f\ V* A Vf A
 Vf = -(i^2^iw2M(Te)) + 0(e). That the error is only 0(e) will be justified
 by the estimates below. Therefore

 (33) sgn D'(0) = -sgn (P^2WlU,2[ne](re)).
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 As a result of (33), we need to find the sign of Pu2WlW2[IIe](r£).

 Lemma 4.3. The 3-form Pu2WlW2 [ne](re) < 0.

 Proof. In the following, any term with the super/subscript '/' or '6' refers
 to the object associated with the e = 0 singular front or back, respectively.

 For the singular front, at £ = To, let the three-dimensional tangent hyper
 plane, Hf, be spanned by

 o a

 °' °' dë^9f^ dtfAhf(qiî>0> °'1
 o r\

 1. o, —Agf(qi), —Ahf(qi), 0,0,0

 (wi ,W2,w'1,w'2,0, 0,0),

 where hF£™(0), W£s(£/+(0)) are locally the graphs of (ui,U2,gJ(ui,U2,'d),

 hf (ui, U2,'â), 0, 0,t?) and (ui, U2,gj{ui, U2,'ô),hJ (ui,U2,^), 0,0,1?) respectively,

 and A gj = g^ — g J etc. For £ ^ 0 and sufficiently small, these graphs can be
 smoothly perturbed such that near £ = Tß, for fixed e, Wcu{0) is the graph of
 (■ui,iL2,gt(ui,u2,'â),hf(u1,U2,'â),r+(u1,U2,'d), s+(ui,u2,i?),i?) and Ws{Ee) is
 the graph of {u1,u2,g~(u1,u2,'d),hj(ui,u2,'&),r-(ui,u2, ■â),s~(u1,u2,
 As a result of the Exchange Lemma, Wcu(0) transversely intersects Ws(Ee).
 Now let Hç be the three-dimensional hyperplane spanned by

 (l,0, 9c(,), AaMs), ~Ar»(,). A Asi(î)io
 (Wl,W2,tui,W2,ui,U2,0).

 Notice that by construction (d/ch?)Age = (d / dß)&g f + 0(e) and similarly for
 all other appropriate terms. Thus, sgn P,%WlW2 [tf°](T0e) = sgn P[2WlW2 [Hf](T0),
 provided that the latter is not 0(e). We later show that it is not. Moreover,
 notice that H® is constructed using the vector field, and vectors in the ß and U\
 directions, which is consistent with (V£ — Vf) A (Ej — V^) A Y at £ = re.
 Denote by H\ the evolution of the hyperplane H® under the flow to the
 time Tf. The Exchange Lemma implies that Pu2WlW2\H}](Tf) is 0(e) close to
 Pu2WlW2[Hb\(Ti) up to normalization and sign for an appropriate hyperplane Hb
 which is determined by the transversality of the back travelling wave. That is,
 for some ki,

 (34) P^WlWM}(Ti) = ki PlWlW2\Hb](Ti) + 0(e).
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 The sign, and thus orientation, of Pu2WlW2 [Hf,}(Ti) is determined by the e = 0
 transversality result of the back. Without loss of generality, we take

 Pu2WlW2[Hb}(Ti) > 0.

 Since sgn Pu2Wlw2lHeKTo) = sgn P£2WlW2[Hf]{T0), the sign of k1 is determined
 by the behavior of Pu2WlW2 as it passes by manifold (E). As we show below,
 Pu2wiw2 fl°es n°t change sign as it passes by manifold (E). An important ob
 servation is then that P£2WlW2 maintains its sign as it tracks along the singular
 back. Using Gronwall's Inequality, Pu2WlW2 also will not change sign along the
 back, so we will be able to obtain the sign of P„21Ul W2[ne](re).

 For convenience, suppress the dependence on the hyperplanes in question.
 We first determine the magnitude of P/12WiW2(Tq). Note that Pl2WlW2{To) ^ 0
 by the transversality of the front.

 (35) Pl2Wlw2(To) = w2
 d d d 9

 MAg'ä^Ah> -

 Using 2-forms and calculations similar to those in [7], it is not hard to show that
 (■d/dui)Agf = —(d/dui)Ahf and both (d/d^Agj and (9/<9$)Ahf are 0{edT°)
 and positive. By comparison, the magnitudes of (d/dui)Agf and (d/du\)Ahf,
 which are independent of e, can be taken without loss of generality to be at least
 0(1).

 The sign of Pl2WlW2(To) is determined by the transversality and stability

 of the front. Let Dp(X) — C ■ Y^~ A F2+ A Yf A Y^ be the Evans function
 associated with the singular front. The constant C is chosen by Abel's for
 mula so as to make A) independent of £. Similar to what was done for the
 Evans function for the full system, choose the vectors Y2 to agree with tan
 gent vectors in the u\ direction at the point q\. Then the derivative D'F(0) =
 C(<9/ch?)(T^ — TJ) A vju A V A vjs where and vjs are the tangent vectors

 to Wfu(Q>) and W§?(U+ (0)) mentioned above, and Vj and are the smoothly
 extended components of the singular front in each of these manifolds. It then
 follows that D'F{0) = —P/2U)iW2(To). It can be shown that, by construction,
 Dp(A » 1) > 0. Since the front is stable, this implies D'F(0) > 0, from which
 it follows that P{2WlW2{T0) < 0. Thus P£2WlW2{T0) = -ce'dT° for c > 0, and
 therefore P£2WlW2(T,q) = 0{edT°) and is negative.

 At i = T0, P£2UlWl (To) = -w2(d/dö)Agf = 0(eêTa) and is negative.
 From this it follows Pu2Ulwi(^o) = 0{e9T°) and is negative. Similarly both

 PZ2UlW2(n) and PZlWlWam areO(e^) andnegative. At Ç = T0, P^^To) =
 -w2{d/dui)Ahf = 0(1). Therefore Pu2W2q(To) — 0(1)- In f&ct anY 3-form

 PabATo) with a> or v2 is O(l). Lastly, at £ = T0, Pl2V2#{T0) = 0. Thus
 Pu2v2ATo) = °(£)- Similarly, any 3-form T^(To) with vi = vi or v2 is O(e).
 We summarize below.
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 (36)

 Pu2w2#(To)  = 0(1) : , Pu2V1w2 (To) = 0(e)  , Pu2Wlw2(To) = 0(eeT°)

 Pu2W!Û (To)  = o( 1) ; ) Pu2w1v2(T§)  = 0(e)  > Pu1wiw2(Pq)  = 0(e',To)

 = 0(1) . , Pï2v2ATZ) = 0(e)  i P^2uiwx(P<o)  = 0(eÖTo)

 Pw 2iui^(^o)  = 0(1) : , Pu2vMT0)  = 0(e)  , Pl2u1W2(To)  = 0(e1?To)

 One of the central aspects of the Exchange Lemma is that certain forms
 that are initially small remain small as they pass by a slow manifold. In [28], the
 smallness required is exponential. This can be achieved here by normalizing by
 Pu2wlW2 ) using the rule Pabc = Pabc/ \Pu2w\w21 * Thus. forms previously of 0(e)
 and O(l) are now exponentially small at Tq and the other relevant forms are
 0(1). The evolution equation of interest is

 (371 pi — 9i9 P£ Pe 4.—— Pe
 V > U2WlW2 "u-LU2WlW2 n a., SU2UlWi

 d2F ~£ d2F
 du2 l u2ulW2 + duidu2

 ZViPu2w2t9 T ^2Pu2Wi'd Pu2viw2 ~f Pu2w\v2'

 Using the Exchange Lemma, or by computing evolution equations for and using

 the estimates above, ^2Wl*, H2Vlw2 and P^WlVa are exponentially
 small on [Tg, Tf], Thus, (38) reduces to

 ffi P rfi F
 P/£ = 9i9Pe pe _i_ _____ pe -L nCp-^^o/E^

 \°°J r U2WlW2 U2Wi»)2 Qu2 2UiW2 OUidU2 2UlWl

 The evolution equations for P^WlW2, P^UlW2 and P*2ttlU)1 are

 <92P ôe <92F p'£ = fip£ - - p£ -I—5!— pe
 1 uiwiw-2 u± UIW\W2 qu2 * U2U1W1 ' dll2dui 2UlW2 WUj 2 vw^u'1

 -f" ^2-F>Uluji/â ^>UiW\V2 ^>UiV\W2'>
 ß p£ _i_ pe -I-?/) Pe 4- P£ UrU2U1W2 ' 1/2LU1LÜ2 ^ U2Ui'd ' rU2U1V2 ' p/e = ßpe , pe I ? . pe 4_ p

 ■* U2U1W2 U2U1W2 ' U2W1W2 ' * 142^1$ ' 1

 p/e _ ?Q pe 4_ pe . pe . pe -1 142141^1 U2Î4l14;i ' 141 lü 11412 1 142141$ ' 142l4ll/l

 which, as above, reduce to
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 - £ - d2F - d2F -
 P> = fiP£ - —— Pe H ——— P£ 7il 77J1 7/Jo 7Zl 77Jl 77)o ^ 0 7/17/1 7111 I o ("7 7

 ^1 Ul«Jl«J2 U1W1W2 gu2 J «2«!™! 1 QU2QUl U2ulW2

 (39) + 0(e-'?To/£),
 = üPZ2UlW2 +Pu2Wlw2 +0(e-»To/£),

 P'£ = tfpe + Pe +n(e-0To/e) U2U1W1 U2U1W1 1 U11Ü11Ü2 1 V J'

 Note that on manifold (E) because of hypothesis (HI), (d2F/du2) < 0
 and (d2F/du2) < 0. Also, by hypothesis (H7), (d2F/du2 diiy) > 0. There

 fore at £ — Tjj, P'£U2WiW2(T§) < 0, P'£UlWlW2(T§) < 0, P'l2UlW2(T§) < 0 and

 P,U2u1w1 (^0) < 0. Moreover, the 3-form Pu2WlW2 will continue to remain nega

 tive as long as P£lWlW2, Pt2Ulw2 and H2ulWl stay negative. At T§ all of these
 forms are negative. So renormalize the forms again such that at Tq the largest
 of the forms is less than —1. Let

 M = UPe Pe P£ P£ ) ■ P£ <-1 P£ <-1 IV"1 U2W1W2 1 U\W\W2 1 U2U1ÎV2 ' li2^11^1 / ' U2W1W2 — ' U1W1W2 — '

 pe < _1 pe < _l\
 U2U1W2 — ' U2U\W\ — J '

 Using (38) and (39), it can be seen that M is positively invariant . Moreover
 at T§, (Pl2wlW2, Pu,WiW2, Pu2UlW^h2UlWl) e M. Therefore, these forms remain

 negative until at least Tf. In particular Pu2WjW2 (Tf) < 0 and, equivalently,
 p£u2W1W2m) < o.

 As mentioned earlier, P^2WlW2 > 0 along the back. So ki < 0. Thus using
 equation (34), an application of Gronwall's Inequality and a possible renormal
 ization of forms, we obtain

 (40) P^W1W2(P) = -Pu2WlW2(r) + 0(e).

 In particular, sgn PFU2WlW,2{Te) = -sgn Pu2WiW2(t) < 0. This concludes the proof
 of Lemma 4.3. □

 Using (33) and Lemma 4.3, we obtain -D'(O) > 0 as desired, concluding the
 proof of Theorem 4.1. □
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