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STABILITY OF LOCALIZED STRUCTURES IN NON-LOCAL 
REACTION-DIFFUSION EQUATIONS 

Amitabha Bose and Gregory A. Kriegsmann 

ABSTRACT. The stability of non-homogeneous, steady state solutions of a scalar, 
non-local reaction-diffusion equation is considered. Sufficient conditions are pro- 
vided that guarantee that the relevant linear operator possesses a countable in- 
finity of discrete eigenvalues. These eigenvalues are shown to interlace the eigen- 
values of a related local Sturm-Liouville operator. An oscillation theorem for the 
corresponding non-local eigenfunctions also is established. These results are ap- 
plied to assess the stability of n-pulse solutions of a model which describes hot 
spot formation in a microwave heated ceramic fiber. Each n-pulse solution con- 
tains n spatially localized regions of elevated temperature. It is shown that the 
1-pulse solution is metastable in that the principal eigenvalue of the corresponding 
linear operator is exponentially small. For n > 2, all solutions are unstable with 
corresponding principal eigenvalues bounded away from the origin. 

1. Introduction 

Spatially non-trivial solutions arise in a variety of contexts. An important property for 
any physically realizable solution is that it be asymptotically stable to perturbations in 
the initial data. In this paper, we consider the stability problem for non-homogeneous 
steady state solutions of non-local reaction-diffusion equations. We apply our results to 
spatially localized solutions that arise in a model for hot spot formation in a microwave 
heated ceramic fiber. 

The equation of interest is 

ut = D2uxx + G(u, /   f(u) dx\ (1.1a) 

ux(0,t) = ux(l,t) = 0 (1.1b) 

where G and / are assumed to be sufficiently smooth, 0 < x < 1, and D is the diffusion 
coefficient. A steady state solution, Uo(x), of (1.1) satisfies 

0 = D2Uoxx+G(UoJo), (1.2a) 

Db.(0) = Db.(l) = 0J (1.2b) 

lo f f(Uo)dx. (1.2c) 
./o 

For (1.1), Chafee [3] has shown that linear stability of solutions implies asymp- 
totic stability with respect to the underlying partial differential equation (1.1) in an 
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appropriate function space. The linear stability of the solution UQ is determined in 
the usual manner by inserting u = Uo(x) + e~Xt(f)(x) into (1.1) and linearizing about 
Uo(x). This yields 

D2<f>" + (^(J7o(x)lJo) + A)0 = -^(UO(X)JO)I  j£(Uo(x))<l>dx9        (1.3a) 

^(0) = ^(1) = 0. (1.3b) 

We rewrite this as 

D24>" + (A(x) + X)4> = B(x) f C(x)4> dx, (1.4a) 
Jo 

<f>'(0) = 4>'(l) = 0 (1.4b) 

where A(x) = ^(Uo(x),Io), B(x) = -$(U0(x),Io), and C(x) - |^(^o(*)). The 
stability of UQ is assured if solutions of (1.4) satisfy Re A > 0. 

The non-local eigenvalue problem defined in (1.4) is non-standard due to the pres- 
ence of the integral operator on the right-hand side. However, its spectrum is inti- 
mately linked with the eigenvalues of the related local Sturm-Liouville problem 

D V + (A(x) + i/)V> = 0, (1.5a) 

<//(0) = ^(1) = 0. (1.5b) 

It is well known that there exists a countable infinity of discrete and simple local eigen- 
values {vn} of (1.5) with corresponding eigenfunctions {tpn}, n = 0,1,2...; see e.g., 
[4]. Furthermore, there exists an oscillation theorem for the local eigenpair (ipn,Vn), 
which states that the number of interior zeros of the eigenfunction equals n. For the 
generic non-local problem (1.4), an eigenvalue A may be complex-valued. Motivated 
by the application to microwaves, we provide a condition which assures that the non- 
local eigenvalue A will be real. This condition will allow us to show that there exists a 
countable infinity of discrete and simple non-local eigenvalues {A^} of (1.4). Moreover, 
the analysis establishes the novel result that the non-local eigenvalues interlace the 
local ones, i.e., between any two local eigenvalues, there is a non-local eigenvalue. The 
structure of the non-homogeneous solutions being studied provides a second condition 
which guarantees that the non-local eigenfunctions obey an oscillation theorem which 
is analogous to the local oscillation theorem. However, there exists a fundamental 
difference between the local and non-local cases. Depending on the context, the non- 
local problem may not possess an eigenfunction of strictly one sign. In the local case, 
there necessarily exists such an eigenfunction. Thus the non-local sequence {A^} need 
not start with j = 0. 

These two results are applied to an example involving formation of spatially local- 
ized hot spots in a microwave heated ceramic fiber. This phenomenon occurs when a 
thin fiber is heated in a highly resonant, single mode cavity. The spot forms along the 
axis of the sample and begins to propagate outward elevating the temperature of the 
ceramic sample [10, 12, 13]. In most instances, the spot eventually becomes stationary, 
thus leaving a localized region of the fiber at a dramatically higher temperature than 
the rest. These interesting phenomena occur even though the cavity geometry and 
the polarization of the exciting electric field produce an electric field whose intensity 
is constant along the axis of the fiber. 
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In [11], Kriegsmann derives an equation to model this situation. He shows that for 
different values of the power, the model supports the existence of an S shaped curve 
of spatially homogeneous, steady state solutions. Analysis on this curve shows that 
the upper and middle branches lose stability as the value of the diffusion constant 
is lowered. It is natural to ask, therefore, if non-homogeneous steady state solutions 
exist and, if so, are they stable? For D sufficiently small, using an asymptotic anal- 
ysis, Kriegsmann shows that a highly localized, symmetric, pulse-like solution can 
be formally constructed. He also obtains numerical results from a time-dependent 
code which suggest that this 1-pulse solution is, in fact, stable in parameter regimes 
where the spatially homogeneous solution is unstable. In a companion paper, Bose 
[1] shows how to construct an actual symmetric 1-pulse solution using geometric sin- 
gular perturbation theory for a variant of the model in [11]. This solution lies in a 
neighborhood of the asymptotic one and is realized as the transverse intersection of 
relevant invariant manifolds. It also is proved that n-pulse solutions exist [1]. These 
solutions are time independent and contain n localized hot spots. 

In this paper, we conduct a detailed stability analysis of the n-pulse solutions. We 
find that for n > 2, the n-pulse solution is unstable, with principal eigenvalue bounded 
away from the origin as D —> 0. The situation for the 1-pulse solution is much more 
delicate. Our analysis shows that the 1-pulse solution also is unstable, but that its 
principal eigenvalue is exponentially small in the diffusion constant D. Thus it, and 
its translates, persist for exponentially long amounts of time. The unstable 1-pulse 
and its translates fall into a class of solutions known as 'metastable'. Establishing 
that the 1-pulse is metastable follows directly from results of Ward [14]. Metastable 
behavior also has been studied in [2, 9] for scalar, local problems. It is interesting 
to note that the type of metastability found here is qualitatively different than in 
those works. For the local problem, pulse solutions are O(l) unstable, and solutions 
that are constructed by piecing together reduced versions of front and back solutions 
are metastable. Arbitrarily high numbers of such reduced solutions can be suitably 
concatenated to form a metastable solution, with each piece contributing an exponen- 
tially small eigenvalue [2, 9]. In our case, for the non-local problem, the 1-pulse alone 
is metastable and the n-pulses are simply unstable, i.e., additional pulses contribute 
0(1) unstable eigenvalues. While the non-local problem is capable of producing the 
metastability of a pulse, it cannot duplicate the diversity of patterns available in the 
local case. 

Establishing the oscillation theorem, below, does not specifically rely on the singular 
nature of the solutions under consideration. In fact, it is quite general. However, 
utilizing it to assess the stability of the 1-pulse relies on the singular structure of Uo 
in two key ways. First, the localized structure is needed to prove the existence of an 
exponentially small eigenvalue. Second, it is used to establish the non-existence of 
an eigenfunction of strictly one sign. The singular nature of the n-pulses is used to 
establish their instability. 

This paper is organized as follows. In Section 2, we discuss the non-local eigen- 
value problem (1.4). Sufficient conditions are provided to establish the existence and 
oscillatory behavior of solutions. The oscillation theorem is stated and proved. In 
Section 3, we analyze the non-local model for ceramic fibers that arises in [11]. We 
establish the existence of at most two exponentially small eigenvalues and show that 
the other eigenvalues are strictly positive. We provide arguments which indicate that 
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there is actually only one exponentially small eigenvalue. Section 4 contains numerical 
simulations and a discussion. 

2. The non-local eigenvalue problem 

The linear stability analysis for scalar non-local problems has previously been con- 
ducted by Preitas [5-7]. He establishes his results by viewing the linear operator of 
the non-local problem as a perturbation of a local operator and then showing that the 
perturbation can be continued to large values of the perturbation parameter. Informa- 
tion about the specific problem (1.4) then is obtained as a subcase of the more general 
results. Preitas proves a number of important and interesting results concerning so- 
lutions to generic non-local equations for the case of Dirichlet boundary conditions. 
In particular, in [6], he proves an oscillation theorem similar to, but less precise, than 
ours. For Neumann boundary conditions [7], he considers a specific equation in which 
the non-local term enters in a convenient fashion. For this case, he does not establish 
any analogous oscillation theorem. 

Our approach to the non-local eigenvalue equation will be similar to Freitas in that 
we will relate the spectra of the local and non-local operators. This will be achieved 
without using a perturbation argument, however. Rather, we shall directly compare 
the non-local equation (1.4) with the local equation (1.5). Our results will be less 
general but, as a result, more focused to the microwave application. 

In order to establish the existence of eigenvalues and the oscillation of eigenfunc- 
tions, we impose the following two conditions on the functions A(x), B(x), and C(x): 

(Cl)   B(x) = kC(x), where k G SR/{0}, and 

(C2)    A(x), S(x), and C(x) are symmetric about x = 1/2. 

Of these two conditions, (Cl) is definitely the more restrictive. First, (Cl) requires 
that whenever, and however, the non-local term enters the equation, it must be mul- 
tiplied by a factor of f(u). Second, f(u) must be equal to eClU where ci > 0. The 
exponential form of f(u) is widely used in ceramic applications [8], including the one 
of interest in this paper. Thus it is natural to exploit its properties. The major sim- 
plification (Cl) offers is that it implies that the eigenvalues of (1.4) must be real. This 
is easily demonstrated by showing that the linear operator associated with (1.4) then 
becomes self-adjoint in L2. The condition (C2) does not restrict the problem in any 
substantial way. Note that an n-pulse solution to (1.2) will necessarily be symmetric 
about the midpoint x = 1/2. This can be seen by phase plane arguments, since (1.2) 
defines a Hamiltonian system. Thus, for these solutions, A(x)i B(x), and C(x) are 
automatically symmetric about x = 1/2. (Cl) is needed to establish the existence of 
non-local eigenvalues. Once this is established, (C2) is used to obtain the oscillation 
result. 

2.1. Interspersing of local and non-local eigenvalues. Assume initially that 
only condition (Cl) holds. Let {^n} denote the complete set of orthonormal eigen- 
functions of (1.5) and {z/n} the corresponding eigenvalues. Then the solution of (1.4) 
can be expanded in terms of these functions as the series 

</>= X^mWm (2.1) 
m=0 
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where the unknown coefficients depend upon A. Multiplying (1.4a) by ^n, integrating 
the ensuing equation from x = 0 to x = 1, applying integration by parts twice, and 
using (1.5) and (2.1), we obtain 

an = J^- (2-2) 

where 

J= I C{x)(j)dx, (2.3a) 
Jo 

/?n= / C{x)ipndx. (2.3b) 
Jo 

Multiplying (2.1) by C(x), integrating the resulting expression from x = 0 to x = 1, 
and using condition (Cl) yields 

j = jkyT^-, (2.4) 
r^A - "* n=U 

For each A, the series converges since un behaves asymptotically like n2 [4], and f3n 

remains bounded as n —> oo since ipn is highly oscillatory in this limit. There are two 
possibilities to consider for equation (2.4). If J = 0, then the non-homogeneous term 
in (1.4) drops out and the eigenvalues of the non-local problem coincide with those of 
the local problem. If J ^ 0, then (2.4) reduces to 

82 

£*—. (2.5) 
1       ^ 
k = ^ 

With the proviso of J ^ 0, the eigenvalues of (1.4) are given by the solutions of 
(2.5). Assume for a moment that l3n^0 for all n. The solutions of (2.5) are real and 
can be estimated by a graphical analysis of the right-hand side of (2.5). Note that 
at a solution of (2.5), the right-hand side is decreasing in A. It is readily seen that 
since the eigenvalues un of the Sturm-Liouville problem (1.5) are real and distinct that 
there exist {An} with the property that if k > 0, 

^o < AQ < ^i < Ai < 1/2 ''' ; (2.6a) 

see Figure 1. Thus, the real non-local eigenvalues interlace the local eigenvalues. That 
there exists at most one non-local eigenvalue between any two local eigenvalues follows 
easily by using the monotonicity in A. If k < 0, then there exist {An} with the property 

AQ < VQ < Ai < vi < A2 < 1/2 ''' • (2.6b) 

If it happens that # = 0, /?<_! ^ 0, and $+1 ^ 0 for some i, then ^ is a non-local 
eigenvalue and the graphical analysis shows that there is another distinct non-local 
eigenvalue between i/i_i and i/i+i. A more thorough examination of this case occurs 
in the next section. 

2.2. Oscillations of the non-local eigenfunctions. The eigenfunctions of a 
Sturm-Liouville operator are subject to an oscillation theorem. The theorem states 
that if ifrn is an eigenfunction, then the number of interior zeros of ipn on (0,1) equals 
n. Similar to the ordering of the eigenvalues {i/n} = UQ < ui < 1/2 < • • •, the 
eigenfunctions are ordered by the number of interior zeros they possess.  These two 
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FIGURE 1. The right-hand side of equation (2.5) is plotted as a func- 
tion of the non-local eigenvalue parameter A. The cases k > 0 and 
k < 0 both are depicted. 

ordering results can be obtained simultaneously by using the Priifer transformation. 
Let tan0 = ^$-. Using (1.5), this implies 

/,^2 

= -{A(x) + v) cos2 6 - sin2 9 

(2.8a) 

(2.8b) 

Without loss of generality, the boundary condition ^'(0) = 0 transforms to 0(0) = 0. 
Denote the dependence of the variable 8 on v by 6v(x). An eigenvalue v is created if 
9U{1) = mr for some integer value of n. It can be shown [4] that the angular variable 
9v(x) has the following properties: 

(PI) 9ly(x) < 7r/2 for all x and i/, 

(P2) 9u(x) > 0 if v is sufficiently large and negative, 

(P3) 9l/(x) is monotone decreasing in u for each x, 

(P4) 9u(x) -» —oo as i/ —> oo. 

The existence and oscillation results are obtained by an appeal to continuous depen- 
dence of solutions on the parameter z/; see Figure 2. Note that an interior zero of an 
eigenfunction occurs when 8l/(x) = (2n + l)7r/2. 
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FIGURE 2. The angular variable ()„ evaluated at x = 1 is plotted as 
a function of the local eigenvalue parameter v. Local eigenvalues are 
created at those values of u where the graph crosses 0^(1) = nir. 

For the non-local problem, the Priifer transformation also is applicable.  Now let 
tan 6 = —+-. As before, we derive 

D9' 
02 + (£>0')2 

= -(A(x) + A) cos2 9 - sin2 6 + 
kC{x)J(j) 

02 + {pvy 

(2.9a) 

(2.9b) 

Here, the dependence of 6 on A is denoted 0\(x). As before, the left boundary condition 
transforms to 0A (0) = 0, and an eigenvalue is created when 6\ (1) = nir for an integer 
value of n. The property (PI) above also applies to the non-local angular variable 
6\{x). However, properties (P2)-(P4) cannot, in general, be established. This is 
because the non-local term kC(x)J(j)/(^2 + (Dcj)')2) can change signs not only as A is 
varied, but also for different values of x along a given trajectory of 0. In some sense, 
(2.8b) can be analyzed independently of (1.5), whereas (2.9b) cannot be disassociated 
from (1.4). Thus, it is not immediately clear how to use the angular variable to obtain 
an oscillation result. This difficulty is overcome by imposing condition (C2) and using 
it in conjunction with (2.6). 

Condition (C2) requires A(x), B(x)1 and C(x) to be symmetric, or even, about 
x = 1/2. By checking to see what equation -0(1 — x) satisfies, it is not difficult to show 
that if A(x) is even, then the local eigenfunctions break up into two subsets: {t/^n} 
which are even and {^n+i} which are odd about x = 1/2. The evenness requirement 
on C(x) has profound consequences. It implies that 

02, n+1 = f C{x)b 
JO 

'271+1 dx = 0 (2.10) 
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since C(x)ip2n+i is odd. Thus, the local eigenfunctions {^n+i} also must be non- 
local eigenfunctions and the local eigenvalues {j^n+i} also must be non-local eigen- 
values, i.e., <j>2n+i = V^n+i and A2n+i = ^2n+i- Investigating conditions under which 
<f)(l — x) satisfies (1.4) and using the evenness of C(x) implies that the set of non-local 
eigenfunctions <£n also consists of subsets of even and odd eigenfunctions. The odd, 
local eigenfunctions (and thus also non-local eigenfunctions), together with (2.6), serve 
as a backbone on which to build the following oscillation theorem. 

Oscillation Theorem. Let X be a non-local eigenvalue with corresponding eigenfunc- 
tion </>. Then, for n>l: 

(a) A = ^n-i if and only if (j) = ^n-i has 2n — 1 interior zeros. 
(b) ^2n-i < A < z^n+i if and only if (j) has 2n interior zeros. 
(c) There exists at most one interval (^n-ij^n+i) that contains two non-local 

eigenvalues. All other such intervals contain exactly one non-local eigenvalue. 

Proof. Part (a) of the proof is obvious. To prove (b), first consider k > 0. Since the 
odd local eigenfunctions drop out of the sequence, (2.6) now becomes 

^o < AGl < V2 < XG2 < v± < • • • (2.11) 

where we introduce the subscript Gi to denote the zth non-local eigenvalue obtained 
from the graphical argument. Next, observe from (2.9a) that <j>{x) = 0 implies 
cos0 = 0, DO' = —1, and 6 — (2n + l)7r/2. Thus, the angular variable is strictly 
decreasing at a zero of the eigenfunction. For n = 1,2,..., consider next 0v2n-i(

x) 
and 6U2n+1{x). Prom the local result, it follows that ^2n_1(l) = —(2n — l)7r and 
0V2nJrl{l) = — (2n + l)7r. Thus, by continuous dependence on parameters, there exists 
at least one value A in the open interval fan-i, V2n+i) such that 0\(1) = —2n7r. This 
value of A must be a non-local eigenvalue. See Figure 3. From (2.11), since there 
uniquely exists \Gn 6 (^271-2j^n), and AGfn+1 G (v2n,V2n+2), there can exist at most 
two graphical eigenvalues in the interval (z^n-ij^n+i)- Crucially, note that any as- 
sociated eigenfunction must have exactly 2n interior zeros. If the eigenfunction had 
either 2n — 1 or 2n + 1 interior zeros, then its associated eigenvalue also would need 
to be a local eigenvalue, which would violate (P3). If the eigenfunction had j interior 
zeros where j ^ 2n — 1, 2n, 2n + 1, this would imply the existence of yet another 
eigenvalue which would need to be a local one and thus violate (P3). 

To prove (c), we must show that if the interval (y21-11^21+1) contains two non-local 
eigenvalues for some 2, then for all j / 2, (^-i? V2j+i) contains exactly one non-local 
eigenvalue. To clarify this, consider first the intervals (^05^2) and (^1,1/3). Prom the 
graphical argument, we know there exists a unique non-local eigenvalue in (Z/Q?^)- 

From the Priifer argument, there exists at least one, not necessarily unique, non-local 
eigenvalue in (^1,1/3). Suppose that there exists a non-local eigenvalue in (^0,^1), 
then this must be the one obtained from the graphical argument. Thus, the non-local 
eigenvalue obtained from the Priifer argument must lie in (z/2, ^3). But then this must 
be the unique non-local eigenvalue that lies in (z/2,^4). So (^1,^3) contains exactly 
one non-local eigenvalue. By repeating the argument, we now see that (^3,^5) also 
contains exactly one non-local eigenvalue and so on. Next, suppose that there does 
not exist a non-local eigenvalue in (VQ, UI). Then the graphical argument necessitates 
that there be non-local eigenvalue in (^1,^2). A second (Priifer) eigenvalue now may 
lie in the interval (z^j^s)- Thus (^1,^3) may contain two non-local eigenvalues. If it 
does, then the argument presented directly above shows that every subsequent interval 
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FIGURE 3. A non-local eigenvalue is shown to exist in the interval 
(z'lj^s)- The corresponding eigenfunction has exactly two interior 
zeros. 

(^n+i? z^n+s) for n = 1,2,... contains exactly one non-local eigenvalue. If (^1,^3) 
does not contain two non-local eigenvalues, then check (1/3,1/5) and proceed as above. 

Our argument does not guarantee that an interval of the form faj-i, ^+1) exists 
which contains two-non local eigenvalues. Nor does it say exactly where this interval is, 
should it exist. It does show, however, that there exists at most one pair of non-local 
eigenfunctions that have the same number of interior zeros. □ 

Remark 1. The oscillation theorem gives a nearly complete description of the location 
of the non-local eigenvalues in terms of the local ones. It also states that the non-local 
eigenvalues can be ordered by comparison to the number of interior zeros of their 
corresponding eigenfunctions. Statement (c) relates information obtained from the 
graphical argument to that obtained from the Priifer argument. 

Remark 2. Although the theorem does not make explicit mention of the case n = 0, 
information about this case is implicitly present. For example, if a non-local eigenfunc- 
tion of strictly one sign were to exist, then its associated eigenvalue would necessarily 
be less than 1/1. What the oscillation theorem does not say is whether such an eigen- 
function exists. In fact, this must be resolved on a case-by-case basis. 

Remark 3. For k > 0, the non-local eigenvalue problem (1.4) need not have a solution 
of strictly one sign. In the microwave problem, we show that the lack of existence of an 
eigenfunction of one sign is the precise reason that the 1-pulse solution is metastable, 
and not 0(1) unstable. 

Remark 4. For k < 0, (1.4) must have a solution of strictly one sign. This is because 
XG1 < vo, which in this case implies 0\Gi (1) = 0 and that fid has no interior zeros. 
Establishing the oscillation theorem for k < 0 then proceeds as above. 



360 BOSE AND KRIEGSMANN 

Remark 5. If condition (Cl) were not enforced, then a modified version of the oscil- 
lation theorem would still hold. Points (a) and (b) would continue to hold, but (c) 
would not necessarily. In this case, the exact count of eigenvalues in (z^n-i^n+i) 
cannot be determined by our methods. Without (Cl), complex eigenvalues also may 
exist. If (Cl) were retained, but (C2) were discarded, then relationship (2.6) would 
continue to hold. However, the oscillation theorem would not follow by our methods. 
It is entirely likely that an oscillation theorem for this case exists. We, however, do 
not pursue it here. See [1] for further details. 

Remark 6. The oscillation theorem is not directly tied to the fact that we have im- 
posed Neumann boundary conditions. Suitable modifications of the theorem hold for 
Dirichlet and mixed boundary conditions as well. Thus, our results also can be used 
to sharpen those in Preitas [6]. 

3. Stability of hot spots 

We now apply our results to the equation derived by Kriegsmann [11] which models 
hot spot formation in a ceramic fiber. The equation of interest is 

ut = D2uxx - L{u) + f^ (3.1a) 
i + X^/o f{v)dx)2 

L(u) = 2(i* + P[(u + I)4 - 1]),    f(u) = eClU,    ci > 0, (3.1b) 

ux(0,t)=ux(l,t) = 0 (3.1c) 

where u denotes a dimensionless temperature along the axis, L(u) models heat loss at 
the surface of the fiber due to convection and radiation, and the exponential function 
f(u) represents the effective electrical conductivity of a low-loss ceramic, such as 
alumina [8]. The parameters D, (3, and x are assumed to be sufficiently small, which 
is true for fibers, and p is the dimensionless power which is proportional to the square 
of the amplitude of the mode which excites the cavity. The nonlocal term in (3.1a) 
models the detuning effect the heated fiber has upon the cavity. There exists a curve 
of homogeneous solutions which is determined by the solutions of 

pf(u) = L(u)[l + x2f2(u)}. (3.2) 

The graph of this curve is S shaped when p is plotted on the horizontal axis, and 
u is plotted on the vertical axis. Kriegsmann [11] shows that the lower and middle 
branches of this curve lose stability as D is lowered. Naturally, one would like to know 
what other types of steady state solutions exist. Kriegsmann constructs a locally 
unique 1-pulse using the method of matched asymptotic expansions. Locally unique 
n-pulse solutions of (3.1) also exist [1]. These solutions are symmetric about x = 1/2 
and have n interior layers on which a hot spot forms. We show that for n > 2, the 
n-pulse solutions are unstable with 0(ln(l/Z))) instabilities. The 1-pulse solution, 
however, is metastable. That is, its principal eigenvalue is 0(e~a/D) where a > 0. 
Perturbations of the 1-pulse in the translational direction persist for exponentially 
long amounts of time. Other perturbations decay quickly to the original 1-pulse or 
to one of its translates. In Section 4, we discuss the implications for asymmetric hot 
spot formation. 



NON-LOCAL REACTION-DIFFUSION EQUATION 361 

15.0 r 

10.0 

5.0 

0.0 
0.0 0.2 0.4 0.6 0.8 

X 
1.0 

FIGURE 4. The 1-pulse solution Uo(x) is depicted. 

3.1. Metastability of the 1-pulse solution. We use much of the notation de- 
veloped earlier in the paper. Let UQ(X) denote the 1-pulse steady state solution of 
(3.1) pictured in Figure 4. Let IQ = J0 f(Uo)dx. The non-local eigenvalue problem 
associated with (3.1) satisfies conditions (Cl) and (C2). It can be written as follows: 

L>y' + (A(Uo) + \)<f> = kfiUt b) / Wo)* 
Jo 

dx, (3.3a) 
/o 

y(0) = ^(1) = 0. (3.3b) 

Here we have explicitly included the dependence of the potential A on the underlying 
1-pulse solution and suppressed dependence on x. Now A(Uo) and k are given by 

PClWo) 
A(Uo) = -2(1 + 4/?([/o + in + 

l + X2/o2' 
2px2IoCi 

(3.3c) 

k=fm?' (3-3d) 

Note that k > 0, thus Z/Q will serve as a lower bound for the principal non-local 
eigenvalue. Also, note that this implies that there need not be an eigenfunction of 
strictly one sign. 

As before, the symmetry of UQ(X) is crucial as it implies 

#271+1 =   /    /(^o)V;2n+l = 0, 
JO 

(3.4) 

from which it follows that the odd subscripted eigenvalues and eigenfunctions also will 
be non-local ones. Thus, a necessary first step in assessing the stability of Uo(x) is to 
locate i/i, which is the first local eigenvalue that coincides with a non-local one, and 
AG^, which is the first eigenvalue obtained from the graphical analysis. Apriori, we 
know that the eigenfunction associated with ui has one interior zero. We do not know 
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the structure of the eigenfunction associated with A^. After normalization, it will 
be either strictly positive, or it will contain two interior zeros. Using the oscillation 
theorem, this will determine the location of A^ relative to 1/1. 

We first derive an estimate for vi since, as we show below, it turns out to be the 
principal non-local eigenvalue. Let £ = UQ and note that ( satisfies 

I}2C" + ^(W = 0, (3.5a) 

C(0) = C(1) = 0. (3.5b) 

Also C(l/2) = 0 since J70(l/2) is a maximum for the 1-pulse. Note that (3.5) is the 
equation satisfied by the eigenfunction associated with a zero eigenvalue of the local 
Dirichlet problem. Prom the ordering property of Dirichlet and Neumann eigenvalues, 
we can immediately conclude that ui < 0. To estimate the magnitude of z^i, consider 
(3.3) for the eigenfunction ipi and the eigenvalue ui (keep in mind that J = 0 in this 
case). Using a standard trick, multiply (3.3a) by £ and (3.5a) by ^i, and subtract the 
two ensuing equations to obtain 

D2bP'{C-^iC"} + MiC = 0. (3.6) 
Integrating (3.6) on the interval [1/2,1], using integration by parts where necessary, 
and inserting the appropriate boundary conditions, we obtain 

£>2[Vi(l)C(l) - Vi(l/2)C(l/2) - iMl)C(l) + Vi(l/2)C(l/2)] + ^i f   tfiC dx = 0. 
Jl/2 

(3.7) 

The first, second, and fourth boundary terms are zero. Thus 

f1/21>iCdx 

Without loss of generality, the value of ipi(l) can be chosen negative, and thus the 
integral in the denominator is positive. The derivative £'(1) is also positive. All of 
these imply that ui is negative. Again, without loss of generality, the integral term 
and ^i(l) in (3.8) can be chosen as 0(1) terms. Thus, vi is 0(^(1)), which is the 
order of the second derivative of the solution UQ at the x = 1 boundary. Ward [14] 
shows that £'(1) is exponentially small. If (3.3) is rescaled by £ = (x — 1/2)/D, then 
the derivative of the 1-pulse solution will be an eigenfunction of the ensuing equations. 
Due to translational invariance on 5ft, the corresponding eigenvalue is 0. Ward shows 
that when the domain then is rescaled back to [0,1], this 0 eigenvalue is perturbed 
by an exponentially small amount. Ward's results [14] apply directly to the present 
situation, and we obtain vi ~ 0{e~a^D) and negative. The value of the positive 
constant a can be found by determining the eigenvalues of the critical points of the 
scaled version of (3.1). Thus, the non-local equation possesses an exponentially small, 
unstable eigenvalue. 

We next locate A^ • Since vi < 0, by Sturm-Liouville theory, VQ < 0 also. Using 
the above trick with ^2? it is easy to show that z/g > 0. The graphical argument 
implies the existence of X^ € (^o?^)- Since UQ < 0, we are not guaranteed that 
XG1 is actually a stable eigenvalue. We prove that the eigenfunction associated with 
Ac?! must have exactly two interior zeros. Thus, an appeal to the oscillation theorem 
implies that X^ > vi- This will finally show that the principal non-local eigenvalue 
is the exponentially small i/i. 
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Integrating (3.3) from x = 0 to x = 1 with F = pci/(l + x2^o) yields 

(A - 2) / (/) dx - 8/3 / (Uo + l)3^ dx + TJ = fc/o J. (3.10) 
Jo Jo 

Assume that there exists a strictly positive eigenfunction 0. Then J > 0. Since /3, UQ, 

and 0 are all positive, after rearrangement, we obtain the following estimate: 

(A - 2) / <f> dx > J[kIo - T] 
Jo 

In [11], Kriegsmann derives a relationship between the parameters D, /?, x? P> and 
ci and the value of JQ. He shows that x^o > 1 for D sufficiently small. Since p and 
ci are positive by definition and J > 0 by assumption, the right-hand side of (3.11) 
is strictly positive. This implies A - 2 > 0 since /0 </> dx > 0. Thus, A > 2. This 
result violates the oscillation theorem as i>i < A contradicts <f) having no interior zeros. 
Thus, there cannot exist a strictly positive eigenfunction. 

In summary, we have shown that ui ~ 0(e~a/D) is the principal non-local eigen- 
value. This eigenvalue governs the metastability of the 1-pulse solution in the trans- 
lational direction along the x-axis. The first graphical eigenvalue AG1 > ui. We have 
not ruled out that Ad may itself be exponentially small. Heuristically, if A^x were 
exponentially small, though, then there would exist another nearly invariant trans- 
lational direction. The physical setup of the problem precludes this possibility. We 
further discuss these and related issues below in Section 4. 

3.2. Instability of the n-pulse solutions. We have just shown that the 1-pulse 
solution is metastable. We show that if n > 2, then the n-pulse solution is unstable 
with principal eigenvalue bounded away from the origin as D —> 0. 

We present the argument for a 2-pulse solution. Denote the 2-pulse solution by 
$2(20 and its derivative by Y(x). By symmetry considerations, the interior zeros of 
Y(#) occur at x = 1/4, 1/2, and 3/4. The relevant equations for T(x) and for the 
related Sturm-Liouville problem are 

D2r" + A($2)T = 0, (3.12a) 

T(0) = T(l) = 0, (3.12b) 

and 

DV7 + (A(*a) + "W = 0, (3.13a) 

^(0) = ^(1) = 0. (3.13b) 

Let ^1 be the eigenfunction of (3.13) with exactly one interior zero. Using the same 
procedure as the previous section, since fc = /0 f($2)i>i dx = 0, it is not hard to 
show that Ai = 1/1 and 

^.EZgmm. (,14) 
Jl/2 ^T dx 

Note that 1/1 is again negative. However, the value of 1/1 is now 0(D
2
UQ(1/2)), 

instead of 0(D
2
UQ(1)) for the 1-pulse. Using Kriegsmann's asymptotic analysis [11], 

it is straightforward to show that \D2
UQ (1/2)) | grows like ln(l/i?) as D -* 0. Thus, 1/1 
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remains bounded away from the origin in this limit. This implies that perturbations 
of the 2-pulse solution grow quickly in time. Finally, using estimates as above, it is 
not hard to show that z/3 is negative and 0(e~a/D). 

The stability analysis of n-pulse solutions for n > 3 is identical to that just pre- 
sented, so we omit it. 

4. Numerical experiments and discussion 

In this section, we present a few numerical simulations to support our work. We used 
an implicit Crank-Nicholson scheme as in Kriegsmann [11]. The following parameter 
values were used for all simulations: p = 1.0, D = 0.001, ci = 1, /? = .01, x — -01. 
All simulations were run for the same number of time steps, which is equivalent to six 
seconds, clearly an O(l) amount of time. Figure 5a shows the evolution of a symmetric 
perturbation of the homogeneous steady state solution with several local maxima, one 
of which occurs at x = 1/2. Three time snapshots are superimposed. The one with 
nine equal local maxima corresponds to the initial condition. The snapshot with nine 
unequal local maxima occurs next. Finally, a snapshot of the final attracting steady 
state 1-pulse is provided. Notice that this 1-pulse solution is centered at x = 1/2. 

Figure 5b shows the evolution of an initial condition that does not have a local 
maximum at x = 1/2. Four snapshots are provided. The one with twelve roughly 
equal local maxima corresponds to the initial condition. The next snapshot has four 
local maxima at about U = 12. The third snapshot shows that the spot centers at 
x = 0.125 and decays at the other three spatial locations. The final snapshot shows 
the spot centered at x = 0.125 and nothing else. This spot is a translate of the 1-pulse 
solution. We do not yet fully understand why the spot forms at x = 0.125 as opposed 
to some other value of x. By taking non-symmetric perturbations, one can shift the 
position of this attracting 1-pulse to seemingly any point in the domain (simulations 
not shown). However, when a perturbation with a sufficiently large local maximum 
at x = 1/2 is evolved, then the symmetric 1-pulse solution is the attracting solution. 
The asymmetric 1-pulses that are not centered at 1/2 do not represent steady state 
solutions. Instead they are moving exponentially slowly towards one of the boundaries. 
They are manifestations of the metastability afforded by the equation. 

Finally, we address the possibility of there existing two exponentially small eigen- 
values. The numerical simulations above do not suggest the existence of a second 
exponentially small eigenvalue. A second exponentially small eigenvalue would imply 
that a 2-pulse solution is, in fact, metastable. Numerically, we would then expect to 
see this. That we did not find such a solution gives strong support to the instability 
of the n-pulse solutions and the metastability of the 1-pulse solution. 

In conclusion, using the sufficient conditions (Cl) and (C2), we have shown how to 
locate the spectrum of a non-local linear operator. These results then were employed 
to assess the stability of solutions of Kriegsmann's model [11]. In microwave heating 
experiments on ceramic fibers, the hot spot forms in the middle of the sample. The 
experimental apparatus is such that there is a symmetry about the midpoint of the 
fiber. Thus, any thermal perturbations to the spatially homogeneous temperature 
distribution will have this symmetry, too. It is evident, from the above discussions, 
that the hot spot corresponds to a metastable 1-pulse. 
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