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LARGE AMPLITUDE SOLUTIONS OF 
SPATIALLY NON-HOMOGENEOUS NON-LOCAL 

REACTION DIFFUSION EQUATIONS* 

AMITABHA BOSEt AND GREGORY A. KRIEGSMANNt 

Abstract. Existence and stability of a pulse solution of a spatially non-homogeneous non- 
local reaction diffusion equation are considered. Geometric singular perturbation theory is used to 
construct a large amplitude solution which lies in the transverse intersection of relevant invariant 
manifolds. The transverse intersection encodes a consistency condition of the non-local equation 
which determines the height of the pulse solution. An oscillation theorem for non-local eigenfunctions 
is used to prove the stability of the pulse. The results show that the spatial non-homogeneity in the 
non-linear and non-local terms is essential for stability of the pulse. Two different applications are 
considered, both of which are related to the microwave heating of ceramic materials. 

1. Introduction. Non-local reaction diffusion equations arise in a variety of 
physical applications [4,6,11,18,19]. In the past few years, several analytic and nu- 
meric techniques have been developed for non-local equations to help determine the 
possible types of solutions and their ensuing stability properties [1,2,4,6,7,9-13,18-21]. 
There have been two standard approaches to these problems. One is to find a spa- 
tially homogeneous solution and determine whether any solutions bifurcate from it 
[4,9,10,20]. The second approach is to find a solution to a related local equation, and 
determine what impact the non-local term has on it [6,7,10-13,15,21]. A crucial obser- 
vation that has been noted by various researchers is that non-local equations possess a 
number of asymptotically stable solutions that local equations do not. For example, it 
is well known that the only stable solution of a local scalar reaction diffusion equation, 
on a bounded domain, with Neumann boundary conditions, is spatially homogeneous. 
Using bifurcation arguments, Chafee [4] was the first to show that a non-local reaction 
diffusion equation with Neumann boundary conditions can support an asymptotically 
stable non-homogeneous solution. Fiedler and Polacik [9] later showed that solutions 
of certain scalar non-local equations could have stable time periodic solutions with 
a;-limit sets of arbitrarily high dimension. Extensive work on the stability of solutions 
for non-local equations has been performed by Freitas [10-13]. Freitas notes that a 
major difficulty in determining the existence and stability of solutions to non-local 
equations is that the non-local equations rarely obey a maximum principle. Thus 
certain classical monotone methods are of no use. 

With these restrictions in mind, we recently developed a number of techniques to 
analyze the existence and stability of large amplitude, non-homogeneous solutions of a 
non-local equation that arises in microwave heating applications [1,2,18]. The general 
form of the equation considered in those papers is 

(1.1a) ut = D2uxx + G(u, /   k(u) dx) 
Jo 

(1.1b) ux(QJt) = ux(l,t) = 0, 
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where G and k are assumed to be sufficiently smooth, D > 0 is the diffusion constant 
and 0 < x < 1. In [18], Kriegsmann employed asymptotic and numerical methods 
which suggested that (1.1) can support spatially localized, steady state, pulse or spike 
solutions for D sufficiently small. In [2], we proved that for certain choices of the 
non-linearities G and k, the 1-pulse solution is metastable and the n-pulse solutions 
are unstable. We also proved an Oscillation Theorem for the non-local eigenfunctions 
that is very much in the spirit of the oscillation results for standard Sturm-Liouville 
operators. In [1], Bose showed how to use geometric singular perturbation theory to 
construct steady-state pulse solutions to non-local equations and how to extend the 
stability results of [2]. The approach taken in these papers was to deal directly with 
the non-local equation as opposed to using bifurcation methods. 

Note that in (1.1), there is no explicit dependence on the spatial variable x in the 
nonlinearities G or k. This has to to with the underlying geometry of the microwave 
heating apparatus. In the application discussed in [18], a thin ceramic cylinder is 
placed in a single mode cavity and is subjected to a uniform incident electrical field 
whose intensity is constant along the axis of the cylinder. 

In this paper, we are motivated by a heating problem in which two ceramic 
cylinders are to be joined by heating the place at which these two cylinders meet. 
This problem is related to that considered in [1,2,18] by taking the cylinder in that 
application, and rotating it by ninety degrees. By doing so, the intensity of the 
incident electric field now has a spatial preference which is centered at the joining 
point. Kriegsmann [19] has recently modeled this situation and his work shows that 
the governing equation is still a non-local equation, but now one in which G and k 
explicitly depend on space. The form of the equation obtained in [19] is 

G(u,x, /   k(u: 
Jo 

(1.2a) ut=Duxx + G(u,x,       k(u,x)dx) 
Jo 

(1.2b) tix(0,*)=wa.(l,*) = 0. 

For the applications we consider, existing monotone methods and bifurcation theory 
are again not suited to analyze (1.2). Thus it is of interest to determine whether any 
of the newer techniques can shed light on behavior of solutions of (1.2). In this paper, 
we show how the results described in [1,2,18] can be extended to analyze solutions of 
(1.2). In particular, we show that (1.2) supports an asymptotically stable, symmetric, 
spatially localized hot spot or 1-pulse solution. In contrast the 1-pulse solution of 
(1.1) is metastable. The main difference between the two is that the linearization of 
(1.1) about the 1-pulse yields an operator whose principle eigenvalue is exponentially 
small in D, whereas the operator obtained from (1.2) has an (9(1) stable principal 
eigenvalue. The hot spot forms at x — 1/2, which is the joining point of the two 
cylinders, and is thus symmetric about the midpoint of the computational domain 

[0,1]- 
A property that characterizes solutions of (1.1) and (1.2) is that they must satisfy 

a consistency condition. In particular, a solution ll*{x) of (1.2) satisfies 

(1.3a) l!t = D2Uxx + G{lJ,x,r) 

(1.3b) C/X(0,i) = i7x(l,i) = 0, 
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where 

(1.3c) /* = [  k{U,x)dx. 
Jo 

Note that U = U(x,t,I*), where the value of /* is determined by the consistency 
condition (1.3c). In section 2, we show how to construct a non-homogeneous, large 
amplitude steady state solution of (1.3) using geometric singular perturbation theory. 
In particular, we show that the symmetric 1-pulse solution lies in the transverse inter- 
section of relevant invariant manifolds. These manifolds are constructed in a way that 
naturally incorporates the consistency condition (1.3c). In section 3, we discuss sta- 
bility of solutions of non-local equations. Here we provide sufficient conditions under 
which eigenpairs of relevant non-local linear operators obey an Oscillation Theorem 
[1,2]. In section 4, the Oscillation Theorem is applied to assess the stability of the 
1-pulse solution. Numerical results for the full time dependent problem are also pre- 
sented which show that the basin of attraction of the 1-pulse solution is quite large. 
We also consider a second problem of joining two thin slabs in a microwave cavity. 
The solution of interest is a spatially localized hot stripe. We prove that this solu- 
tion is unstable. These results are provided in section 5, along with more numerical 
simulations. A brief Discussion concludes the paper. 

2. The Joining Problem. In this section, we consider the specific problem of 
joining two ceramic cylinders by microwave heating their interface as modeled in [19]. 
The equation of interest is of the form (1.2) and is given by 

(2.1a) ut = D2uxx + 
P       \r 

)J\ - h(u). 
(l + XJo sin {nx)f{u) dx)2 

(2.1b) ux(Q,t)=ux{l,t)=0,0<x<l 

The interface between the two cylinders is assumed to be at x = 1/2. The variable 
u denotes the temperature distribution along the axis of the cylinders, p is the non- 
dimensional power of the mode which excites the cylinders, x is proportional to the 
product of the aspect ratio of the cylinders and the Q of the cavity and D <^ 1 is 
proportional to the aspect ratio of the cylinders. The functions f(u) and h(u) are 
assumed to be sufficiently smooth and satisfy the following properties. 

a) /(0) = 1, 7i(0) = 0. 
b) /(u), h(u) -> oo as u ->• oo and are strictly increasing for u > 0. 
The function f(u) represents the electrical conductivity of the cylinder, while h(u) 

models the heat loss at the surface of the boundaries due to convection and radiation. 
We take 

h(u) = 2{u + (3[{u + l)4-l}), 

as is the case in [1,2,18,19]. The parameter (3 <C 1 is the ratio of radiative to convective 
heat loss at the ambient temperature. For f(u) there are a few different choices. A 
commonly used form is f(u) = eClU, ci > 0, which is a good choice for low loss ceramic 
materials such as alumina [14]. Another choice is f(u) = 1 + u2 which yields solutions 
of (2.1) with the same qualitative properties as f(u) — eClU. We first develop our 
theory with f(u) = 1 + u2 and then discuss how it applies to f(u) = eClU. 
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REMARK. The equations considered in [1] are the same as (2.1) except that there 
is neither a sin2 TTX factor in the numerator of the second term, nor in the integrand 
of the denominator. See (4.4) below. 

2.1 Existence of a spatially localized hot spot. We now prove the existence 
of a steady state pulse solution to (2.1). The main idea is to recast the right hand 
side of (2.1) into an autonomous system of first order equations in such a way as to 
obtain a local boundary value problem. To this end, introduce the auxiliary variable 
v(x) = f*sin2(7nc)(l + u2)dx, and let / = /0 sin2(7nz;)(l + u2)dx. Thus a steady 
state solution of (2.1) will satisfy the following first order system of equations, where 
' = d/dz. 

Du' — w 

^   i     w x     psin2(7r#)(l + u2) 
g"=ftW-       (i + xff 

(2.2a) ?;' = sin2(7ra)(l + u2) 

/' = 0 

x' = l 

The boundary conditions that need to be satisfied are 

(«, w, v, I, x) = MO), 0,0, /*, 0) 
( '    ) («,«;,«,7,a:) = («(l),0>r,7*,l). 

By phase plane considerations, it is easy to see that any pulse solution of (2.2) must 
be symmetric about the midpoint x = 1/2. This forces ^(0) = ^(1). Equation (2.2) 
is a local boundary value problem in which the consistency condition (1.3c) has been 
embedded. A symmetric pulse solution of (2.2) with D sufficiently small will be close 
to u = 0 on most of [0,1], except in a small neighborhood of x = 1/2 where the 
solution will make a large excursion in phase space away from and back to near u = 0. 
The large amplitude excursion corresponds to a homoclinic orbit of an appropriately 
scaled version of (2.2). More precisely, at x = 1/2, the maximum value of u and the 
value of /* goes to infinity with D, so we need to rescale the independent variables. 
Let u = Dau, w = Daw, v = Dbv, I = DbI and f = (z - 1/2)/D. Introducing these 
scalings into (2.2), letting' = d/d£ and noting that sin2 7r/2 = 1, we obtain 

u = w 

(2.3) 

w = 2(u + l3Da[(D-u + I)4 - 1]) - M    ,   ,        .     U) 

i = Db+1 + Db+l-2au2 

1 = 0 

x = D. 

To guarantee the existence of a homoclinic solution of (2.3), we require that the linear 
(2u) and quadratic {u2) terms are 0(1) with respect to D and that all others are 
0(D7), 7 > 0 or higher. This can be achieved by choosing a = 2/3, b = 1/3 and 
enforcing that /? = 0(J92+Q:), for a > 0.  Making these substitutions and rescaling 
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back to the z variable we obtain 

Du' = w 

Dv' = JD
4/3 +sin2(7ra;)u2 

J' = 0 

x' = 1. 

(2.4) 

The equations (2.3), with a = 2/3 and 6 = 1/3, are called the 'fast' equations whereas 
(2.4) are called the 'slow' equations. 

The construction of a 1-pulse solution of (2.2) follows by showing that it lies 
in the transverse intersection of relevant invariant manifolds. In order to do this, the 
smallness of the parameter D is exploited to allow the use of techniques from geometric 
singular perturbation theory [8,16]. Our analysis parallels the approach in [1] and we 
refer the reader there for complete details. 

We first construct a singular 1-pulse solution which is obtained by piecing together 
solutions of the 'reduced' fast and slow equations. The slow reduced equations, which 
are also referred to as the outer equations, are obtained by setting D = 0 in (2.4). 

0 = w 

(2.5) n-^2,^,2 
(xi)2 

0 = sm2(7rx)u2 

I' = 0 

x' = l 

Notice in (2.5) that u = w = 0, and that v and / act as free parameters. The fast 
reduced equations, also called the inner equations, which are valid in a neighborhood 
of x = 1/2, are obtained by setting D = 0 in (2.3). 

u = w 

w = 2u — 

,       ^ (*J)2 

(2.6) x      .2 V = u 

1 = 0 

A = 0. 

The equations (2.6) are the same set of inner equations that were obtained and an- 
alyzed in [1]. The u and w components of (2.6) form a Hamiltonian system which 
for each value of / > 0 possesses a homoclinic orbit connecting the origin to itself. 
This homoclinic surrounds a second critical point at u = 2(xl)2IP- The consistency 
condition (1.3c), which had been cast into the boundary condition (2.2b), can now be 
reformulated as v(l) = J*. Notice in (2.5) that the value of v does not change for the 
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slow reduced equations.  Thus in the singular limit, only the fast reduced equations 
are needed to check consistency. 

Let 
^o — {(u, w,v,I,x) :u = w = v = 0,x = 0}, 

and 
Bi = {(u, w,v,I,x) : u = w = 0, v = I, x = 1} 

denote the one-dimensional boundary manifolds associated with (2.2). Let MQ denote 
the two-dimensional manifold obtained by flowing BQ forward under (2.5). At z = 1/2, 
we define a jump off curve Jo, which is the one-dimensional restriction of MQ to 
z = 1/2. Similarly, let Mi denote the two-dimensional manifold obtained by flowing Bi 
backward under (2.5). Restricting Mi to z = 1/2 yields a one-dimensional consistency 
curve, Tc. 

Next consider the inner equations (2.6) together with Jo and Tc. We restrict to 
the (u,w,I) phase space. Since the origin is a saddle point for the (u,w) components 
of the vector field, the jump off curve has a two-dimensional center-unstable manifold, 
Wu( Jo). Similarly the consistency curve has a two-dimensional center-stable manifold 
WS(TC). 

PROPOSITION 2.1. The manifold Wu(Jo) transversely intersects WS(TC) in 
(u,w,I) space at some I = IQ. 

Proof. The u and w components of (2.6) form a version of Fischer's equation for 
which a closed form solution is available. It is easily checked that 

(2.7) «(0 = Ml8ech2{-^),   w(Q=ii 

satisfies the u-w components of (2.6). Define v(I) = J^^u2^, I) d£. A straightfor- 
ward integration yields 

(2.8) ^-^fi!. 

The manifolds Wu( JQ) and WS(TC) will intersect transversely in R3 if the curve v = 
v(I) transversely intersects v = I in R2. Since v(I) is a quartic in 7, it is easy to see 
that the curves are transverse. By solving v(I) = /, and using (2.8), we obtain the 
unique point of intersection as 

(2-9) Hi^f- 
We use the notation IQ with subscript 0 to remind the reader that this is a D = 
0 singular result. Substituting (2.9) into (2.7) and evaluating at £ = 0 yields the 
maximum height of the singular solution. 

REMARK. Because a closed from of the solution was available, we used it to 
obtain transversality. See [1] which describes a shooting method in J for obtaining 
transversality in the absence of a closed form solution. 

Using the results of Proposition 2.1 and the outer flows, we can now obtain a 
unique consistent, singular 1-pulse solution. Namely, let go denote the point obtained 
by restricting i?o to the value JQ (See Figure 1). Flowing qo forward under (2.5) defines 
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a one-dimensional trajectory, denoted by qo • z. At z = 1/2, qo • 1/2 intersects JQ. NOW 

using the inner equations (2.6), Proposition 2.1 shows that W/ti(Jro)L0.i/2 transversely 
intersects WS(TC) along a one-dimensional curve. Denote by qc the point on Tc which 
is connected to qo • 1/2. Finally, flow qc forward under (2.5) to z = 1, and define this 
point by qo'l. By construction, go • 1 intersects Bi. The trajectory which connects (/o 
to qo -1 is the unique, consistent singular 1-pulse. Note that the solution as depicted 
in Figure 1 does not look like a pulse. Indeed in the three-dimensional (u,w,v) phase 
space, the pulse is actually a heteroclinic orbit which connects (0,0,0) to (0,0, IQ) 

since the v values at ±£ are different. For this reason, the restriction of the inner 
pulse solution appears as a heteroclinic orbit in Figure 1. 

FIG 1. The (v, I, x) phase space. The bold curve represents the unique, consistent 
singular 1-pulse solution. Flows with single arrows represent solutions of the slow 
equations (2.5); double arrows represent solutions of the fast equations (2.6). 

We now show that the singular 1-pulse perturbs to an actual 1-pulse solution for 
D sufficiently small. To do this we invoke Fenichel's invariant manifold theory [8], 
together with the Exchange Lemma of Jones and Kopell [17]. See [16] for a complete 
description of these results and a number of applications. There are four criteria which 
need to be met in order to obtain a 1-pulse for D small. These criteria all have to do 
with the singular objects described above. 

1) The manifolds .Bo, -Bi, ^o, and Tc are all normally hyperbolic. 
2) The outer flow on Mo transversely intersects the jump off curve JQ. 

3) The outer flow on Mi transversely intersects the consistency curve Tc. 
4) The manifolds ^"(Jo) transversely intersects WS(TC). 
Consider the first criterion. The manifolds in question are all defined at the origin 

of the u — w subsystem. The origin is a saddle point, which guarantees the normally 
hyperbolicity. The second and third criteria are easily seen to hold since each of the 
manifolds JQ and Tc are simply the restrictions of MQ and Mi at a particular value of 
#, and x' 7^ 0 on these manifolds. The fourth criteria follows directly from Proposition 
2.1. 

Results of Fenichel guarantee that normally hyperbolic manifolds persist under 
perturbations. The perturbed manifolds are O(D) close to the singular manifolds, 
and retain their hyperbolic structure with distinct attracting and repelling directions. 
Thus the manifolds discussed in the first criterion perturb to the one-dimensional 
manifolds B® ,B® ,JD and T^. Similarly, there exists perturbed manifolds WU(JD) 



302 A. BOSE AND G. A. KRIEGSMANN 

and PFS(TC
D), both of which are still two-dimensional. Moreover, the transversality 

result of Proposition 2.1 implies that WU(JD) and WS(T^) intersect transversely 
0(D) close to IQ. 

The four criteria stated above are enough to guarantee the existence of an actual 
1-pulse for D sufficiently small. To see this, note that BQ -Z flowed forward under (2.4) 
and J5f • z flowed backward under (2.4) are 0(D) close to MQ and Mi respectively. A 
consequence of the Exchange Lemma of Jones and Kopell is that when these manifolds 
veer away from MQ and M1 they are C1 - 0(D) close to WU(JD) and WS(T^), 
respectively. Since these latter two manifolds intersect transversely, independently of 
D, BQ - z and B® • z also intersect transversely at some 1 = 1*, where /* is 0(D) 
close to /Q- 

3. The Eigenvalue Problem. Denote the 1-pulse solution obtained above by 
U*(x). To determine asymptotic stability of U*, proving linear stability suffices as 
Chafee [4] has shown that linear stability of solutions implies asymptotic stability 
for solutions of (1.2), in an appropriate function space. Linear stability of U* is 
determined by inserting u = U*(x)+ e~xt<fi(x) into (1.2) and linearizing about U*(x). 
This yields the following non-local eigenvalue problem 

(3.1a)    D2r + (\+^-(U*(x),x,I*))cl>=-^(U*(x),x,nf ^(ir(x))4>dx, 

(3.1b) 4>'(0) = 4>'(1) = 0. 

We rewrite this as 

(3.2a) D2<p" + (A + A(x))<t> = B(x) f C(x)4>dx, 
Jo 

(3.2b) ^'(0) = <P'(1) = 0, 

where A(x) = ^(U*(x),x,I*), B{x) = -^{U*{x),x,I*) and C{x) = ^(U*(x)). 

Denote the linear operator associated with (3.2) by 

(3.3) Li0 = -D2(j)" - A(x)(t) + B(x) [ C(x)<f)dx, 
Jo 

and the spectrum of Li by a(Li). Since we work on the bounded interval x G [0,1], 
cr(Li) consists only of discrete eigenvalues of finite multiplicity [5]. Thus U* will be 
an asymptotically stable solution of (1.2) if Re cr(Li) > 0. 

In general, Li is not a self-adjoint operator, thus its spectrum need not be strictly 
real. There are several circumstances, however, where (T(LI) C R. Using results in [2] 
and of Freitas [11], Bose [1] showed that the symmetry of the underlying solution U* 
is sufficient to guarantee that cr(Li) C R. He also showed that an Oscillation Theorem 
that first appeared in [2], where the choice of nonlinearities G and k implied that Zq 
is self-adjoint, holds for general non-linearities G and k. 

We need to establish some notation. Let 

(3.4) Loip = -£ V " A(x)il>. 
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The operator LQ is a standard Sturm-Liouville operator associated to solutions of local 
reaction diffusion equations. The associated local eigenvalue problem is 

(3.5a) D2tl)" + (i/ + A(x))il) = 0 

(3.5b) T//(0) = V'(l) = 0. 

It is well known [5] that there exists a countable infinity of eigenpairs (^n(^)j^n) of 
(3.5), where the eigenvalues can be ordered ui < vi+i for i = 0,1,2,... Moreover, 
the eigenfunctions ipn(x) each possess exactly n interior zeros. In particular, the 
eigenfunction il)o(x) associated with the principal eigenvalue I/Q is strictly of one sign. 

Using the symmetry of £/*, it can be shown that A(x), B(x) and C(x) are all 
even about x = 1/2. This implies that the local eigenfunctions {t/Vi} break up into 
two subsets: {^n} which are even about x = 1/2, and {t/^n+i} which are odd about 
x = 1/2. This causes 

/     C(x)lp2n+l(x)dx = 0. 
Jo 

As a result, the odd local eigenpairs are also eigenpairs of the non-local eigenvalue 
problem (3.1). A further consequence of the symmetry is that the eigenvalues of Li 
are real. These results provide the basis for the following Oscillation Theorem. 

OSCILLATION THEOREM. Let X be a non-local eigenvalue with corresponding 
eigenfunction (p. For n>l, 

a) A = 1/271-1 if and only if (j) — ip2n-i has 2n — 1 interior zeroes. 
b) i/2n-i < A < V2n+i if and only if (j) has 2n interior zeroes. 
c) Every interval (^n-i? ^2n+i) contains exactly one non-local eigenvalue except 

possibly one such interval which may contain at most two non-local eigenvalues. 
REMARKS. 1. See [2] for a proof of the Oscillation Theorem in the case Li is 

self-adjoint and [1] in the case of general Li. 
2. The Oscillation Theorem makes no explicit comment about the case n = 0. 

However, the Theorem implies that A < ui if and only if the associated eigenfunction 
(j) is strictly of one sign. The theorem does not guarantee the existence of such an 
eigenpair, and this must be resolved on a case by case basis. 

3. The potential lack of existence of a non-local eigenfunction of strictly one sign 
is the precise reason why a spatially non-homogeneous solution may be stable. 

4. The eigenvalues {^2n+i} are said to be fixed, as they are eigenvalues of both 
the local and non-local operators. This definition is due to Freitas [11] who gives a 
thorough description of how the spectrum of a non-local operator can be obtained by 
considering the fixed and 'moving' spectra of a related local operator. 

4. Stability of hot spots. We now show that the 1-pulse is an asymptotically 
stable solution of (2.1). The stability of the 1-pulse follows by using our Oscillation 
Theorem, as well as the classical comparison results of Sturm-Liouville Theory. 

The non-local eigenvalue problem of interest is 

(4.1a) JDV + (A + A(x))<l> = B(x) [ C{x)(j) dx, 
Jo 

(4.1b) 0'(O) = <A'(1) = 0, 



304 A. BOSE AND G. A. KRIEGSMANN 

where 

A(«)=-2-^pr+i)'+^7:>r 
(4.1c) _ 2pxsm2(7rx)(l + (U*)2) 

B[x)- (1 + x/*)8 

C(a;) =2sm2(Trx)U* 

Prom the results of section 3, we know the eigenvalues are all real. The corresponding 
local eigenvalue problem is 

(4.2a) Z? V + (i/ + ^(ar))^ = 0 

(4.2b) V'(0)- = ^'(1) - 0 

The symmetry of the 1-pulse forces (^n+ij^n+i), the odd eigenpairs of the local 
problem, to be eigenpairs of the non-local equation. If there is a non-local eigenfunc- 
tion of one sign, then the corresponding eigenvalue AQ will be the principal eigenvalue 
of the non-local problem, and its sign will determine stability of the solution. If there 
is no such eigenfunction, then fj will be the principal eigenvalue and will determine 
stability. 

Let us assume that there exists an eigenfunction fo of strictly one sign. Let 
J = /0

12sin2(7ra;)[/*(a;)</>o(a;) dx and T = p/{l + xl*)2- Then by integrating (4.1) 
from zero to one, we obtain 

(4.3a) (Ac - 2) f <l>0 dx + 4/3 [ (U* + l)3<t>o dx + rj = 
Jo Jo 

Since /? > 0, we obtain the following estimate. 

2rxi*j 
(i + xi*)3' 

(4.3b) (Ao - 2) f ct>0dx> M  ;%^[xr - 1]. 
Jo 

TJ 
(i + x/*)3' 

By definition the integral on the left hand side of (4.3b) is positive, as are J and 
F. Recall that /* -> oo as D —>> 0. This implies that for D sufficiently small, the 
right hand side of (4.3b) is positive, which implies that AQ > 2. Thus from (4.3b), 
we see that if a strictly positive eigenfunction exists, then it corresponds to a stable 
eigenvalue. Moreover, in this case, the Oscillation Theorem guarantees that the other 
eigenvalues of (4.1) are such that A > AQ > 2 and are thus all stable eigenvalues. 

Alternatively, let us now assume that there does not exist a non-local eigenfunc- 
tion of one sign. This forces vi to be the principal eigenvalue of (4.1). We shall 
determine the sign of vi by comparing the spectrum of the operator associated with 
(4.2) with that of an operator whose spectrum we determined in [1]. In [1], we con- 
sidered the related heating problem 

(4.4a) ut = D2uxx + 
P(

fl^"2), JN9 - 2(« + /J[(u + I)4 - 1]) 
(1 + x/o l + u2dxY 

(4.4b) «*((), i) =«*(!,*) = 0. 



NON-LOCAL EQUATIONS 305 

We showed (4.4) has a stationary 1-pulse solution [/&, with I — h which is symmetric 
about x = 1/2. Upon linearizing (4.4) about UB, one again obtains a non-local 
eigenvalue problem. The associated local eigenvalue problem is 

(4.5a) D2^"+ (/i+ £(£))# = 0 

(4.5b) #'0 = #'(1) = 0, 

where E(x) = -2 + 4/?([/6 + l)3+ Q^^- In [1], Bose showed that/XI is exponentially 
small in D and negative. Recall from the existence proof in section 3.1, that the inner 
equations (2.6) are exactly the inner equations obtained for (4.4). Thus the values of 
U*{x) and /* obtained above are 0{D) close to [/& and /&, respectively. As a result, it 
is not hard to see that E{x) > A{x). Thus the comparison theorem for Sturm-Liouville 
operators implies that vn > /in for n > 0. In particular, vi > /xi, which shows that r/i 
is bounded below by an exponentially small term. To obtain a better idea on the size 
of i/i, we employed a shooting method described in [19] to numerically calculate vi. 
Relevant parameter values were chosen, and in all cases ui > 0. In particular, with 
the parameters D = 0.1, x — 0.01, (3 = 0 and p = 1.0, we find that i/i = 2.82. 
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FIG 2. T/ie stable 1-pulse solution. An initial condition with a small local maxima 
at x — 0.25 was evolved. The pulse initially forms near x = 0.35 at t = ti and moves 
to the right towards x = 0.5 as time proceeds. The times ti < tz < £3 < £4 < £5, where 
£5 represents infinity. 

While the above analysis shows that perturbations of the 1-pulse decay to the 1- 
pulse, it says little about the basin of attraction of this solution. To address this issue, 
we also solved the full time dependent problem (2.1), using a semi-implicit Crank- 
Nicholson scheme (see [19]), for various different initial conditions. In Figure 2, it is 
seen how the 1-pulse attracts a solution that initially has a small local maxima (not 
shown) at x — 0.25. Here D = 0.01, p = 1.0, /? = 0 and x — 0.01. By contrast, similar 
initial conditions when evolved under (4.4) yield a metastable spike that effectively 
remains fixed at x = 0.25 (see Figure 6 and Table 5.1 in [1]). Additional simulations 
using initial conditions that have a local maxima nearer to either of the x — 0 or 
x — 1 boundaries produce solutions that are also attracted to the 1-pulse.   These 
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results indicate that the basin of attraction for the 1-pulse is quite large. 
In closing this section, we note that in principle, the above stability analysis also 

carries over for the case where f(u) = eClU. The Oscillation Theorem holds as stated. 
What is more difficult for this choice of non-linearity is an analytic determination 
of the sign of ui. Above we used the Sturm Comparison Theorem to obtain this 
information for the case f(u) = l+w2, which inherently relied on knowing some explicit 
information about the underlying solutions U* and [/&. With the use of the exponential 
non-linearity, however, the existence results and in particular, the rescaling arguments 
for the inner equations are much more complicated due to the interplay of exponential 
and algebraic terms. As a result we are currently unable to make a similar comparison 
argument. Nonetheless, the eigenvalue problem can still be solved numerically, with 
the result that for D sufficiently small, the 1-pulse solution is asymptotically stable 
(see [19] for the details). 

5. Heating a ceramic slab. In this section, we consider the problem of heating 
a thin ceramic slab. In particular, we ask the question as to whether or not two 
ceramic slabs can be joined in the same manner as the ceramic cylinders. The slab 
in question can be obtained by extending the cylinder of section 2 in the y direction, 
which is assumed to be parallel to the incident electric field. Kriegsmann derived the 
underlying equation of interest in [19], which is 

/^ ^9/ x psm2(7rx)f(u) 7/ x (5.1a ut = D2(uxx + uyy) + „/,     \   JJy , h{u) 
(1 + # £ Jo sm2(irx)f(u) dx dy)* 

Here H denotes the height of the slab. Letting Vi — {{x, y) :0<^< 1,0<2/ < H], 
the boundary conditions are again of Neumann type 

(5.1b) — u = 0,(£,2/)e<9ft 

where n is the outward normal and dVt is the lateral boundary of the slab. We note 
that the incident electric field still has a spatial preference at x = 1/2, but is uniform 
in the y direction. Thus it is reasonable to expect that a spatially localized hot stripe 
extending from y = 0 to y — H and symmetric about x = 1/2 should exist. 

The microwave heating of a slab was consider by Brodwin and Johnson [3]. In 
their experiment, they did not observe a localized hot stripe. Instead, they observed an 
oval shaped hot spot which was centered about x = 1/2 and y = H/2. At first glance, 
this results seems somewhat surprising given that the stripe is nearly a superposition 
of the solution given above, which is stable, and the solution of (4.4) found in [1], 
which is metastable. We show here that (5.1) does indeed support a stripe solution, 
but that it is unstable for D sufficiently small. Furthermore, we show via simulation 
that the stripe decays to the aforementioned oval spot. 

5.1 Existence and instability of a localized hot stripe. It is quite easy to 
obtain the stripe solution. Note that U(x, y, t) — U*(x), where U*(x) is the solution of 
(3.1) obtained above also solves (5.1). To determine the stability of U*(x) relative to 
(5.1), we linearize about the stripe. Using the ansatz U(x, y, t) = U*(x) + e~AtV(x, y), 
we obtain the following eigenvalue problem, 

(5.2a) D2(VXX + Vyy) + (A + A(x))V = B(x)- /      /   C{x)V(x,y) dx dy ii£f.™ 
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(5.2b) ^V = Q,(x,y)edn, 

where A(x), B(x) and C(x) are defined in (4.1c).  The partial differential equation 
(5.2) can be recast as an infinite system of ordinary differential equations by letting 

(5.3) V(x,y) = 'E%=0Qn{x)coa(?jjL). 

Taking derivatives and substituting into (5.2), we obtain the following equation for 
each n 

(5.4a)   D2Qnxx (x) + (A - ^-g^- + A(x))Qn(x) = B(x)Sn0(x) J C(x)Qn(x) dx, 

(5.4b) QnB(0) = Qn.(l) = 0 

where 5no(x) if n = 0 and 0 otherwise. 
Consider (5.4) with n > 1, in which case the right hand side of the first equation 

vanishes. The equation then reduces to an infinite copy of the local Sturm-Liouville 
problem (4.2). Indexing the eigenvalues of (4.2) by the letter j, it follows that for 
n> 1, 

(5.5) Anj = UJ +     H2    . 

Note that i/j depends on the diffusion constant D, but not the height of the slab H. 
In section 4, we determined that i/i > 0. We now demonstrate that VQ < 0. 

Consider 

(5.6a). tfUZ, + ^'^^JIP^ - 2(U* + 0[{ir + I)4 - 1]) = 0, 

(5.6b) D'*omm + (vo + ^^r - W + WIT + l)3))^o = 0. 

The eigenvalue Z/Q depends continuously on /?, so we first restrict to /? = 0. Multiplying 
(5.6a) by ^o and (5.6b) by [/*, subtracting and integrating by parts, we obtain 

(5.7) vo (  U*il>o dx =      J [ sin2(7rx)(l - ([/*)2)^o dx. 
Jo U + X1 )   Jo 

The solution U* is positive, as by definition is I/JQ. Thus the sign of I/Q is the same as 
the sign of the right hand side of (5.7). Recall that /* —>• oo as D -t 0. Furthermore 
the integral on the right hand side of (5.7) can be rewritten as 1 — /*. Thus for D 
sufficiently small the right hand side of (5.7) is clearly negative, which implies that 
VQ < 0. By continuous dependence on parameters, the same must be true for 0 
sufficiently small. Therefore, for fixed H and for D sufficiently small, Ano < 0 for a 
finite number of n. This implies that the hot stripe is unstable. 

Note that for n — 0, (5.4) reduces to (4.1), the non-local problem of section 4. In 
this case, the eigenvalues of (5.4) and (4.1) share the relationship 

x       D
2n2K2 

Aoj = Xj +     H2     • 



308 A. BOSE AND G. A. KRIEGSMANN 

In section 4, we showed that if AQ exists, then AQ > 0, and if not then Ai > 0. 
either case XQJ > 0 and thus n = 0 modes do not cause instabilities for the slab. 

In 

FIG 3. The low amplitude stable hot stripe for large D. 

FlG 4.  The large amplitude stable hot spot for D small 

If D is large enough, Ano may be positive for n > 1. There are two terms on 
the right-hand side of (5.5) with the second term dominating the first if D is large. 
Indeed, we numerically solved (5.1) using the numerical scheme from [19] with D = 0.1, 
X = 0.01, /3 = 0, H = 0.8, and p = 1.6. A low amplitude stable hot stripe was observed 
(Figure 3). We then resolved the problem after decreasing D = 0.01. The stripe is 
no longer stable and the ensuing stable hot spot is shown in Figure 4. This hot spot 
corresponds to the oval shaped spot observed in experiments by Brodwin and Johnson 
[3]. 

6. Discussion. In this paper, we have shown that the techniques established in 
[1,2,18] also apply to cases where the non-linearity and non-local terms explicitly de- 
pend on the spatial variable. In particular, we presented techniques based on singular 
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perturbation theory to construct a pulse solution of (2.1). We also used the non-local 
Oscillation Theorem, developed in [1,2], to show that the pulse is an asymptotically 
stable solution of (2.1), while the stripe is an unstable solution of (5.1). 

The results presented here stand in contrast to those obtained for the cylinder 
problem considered in [1,2]. In those applications, the electric field has no spatial 
preference along the cylinder, and the ensuing 1-pulse is metastable; the lineariza- 
tion around the 1-pulse in those applications yielded an exponentially small principle 
eigenvalue. A consequence of the metastability is the 1-pulse could form at any point 
along the cylinder and move exponentially slowly towards one of the end points of 
the cylinder. In the present application, the electric field has a spatial preference at 
x = 1/2. This causes the 1-pulse to be asymptotically stable, with a large basin of 
attraction; the principle eigenvalue here is bounded away from the origin as D —> 0. 
In principle, symmetric n-pulse solutions for the current application may exist, but 
any such solution will necessarily be unstable [1,2,7]. 

The method with which we proved existence of solutions differs from much of 
the prior work in the area which often relies on bifurcation theory. Our approach is 
to recast the non-local problem into a higher dimensional local problem in order to 
construct pulse solutions. A primary advantage of this method is that it provides 
information about the structure of the solution in phase space, such as the ampli- 
tude and its dependence on various parameters in the equations. Our method also 
provides local uniqueness of solutions as a direct consequence of the transversality of 
intersections. 

The stability results presented here relied in a non-trivial way in information 
obtained from the existence proof. In particular, the value of J* as D -> oo was 
used to determine the sign of the principle eigenvalue of (4.1). It is this interplay 
between the existence and stability results which sets our work apart from some of 
the recent work on the Gray-Scott model and related problems [6,7] and on shadow 
systems [15,21]. In the former case, a system of two local reaction diffusion equations is 
considered. Existence of pulse solutions is obtained by geometric singular perturbation 
theory. Stability of these solutions is then analyzed by reducing the two second order 
linearized eigenvalue equations to a single, second order non-local eigenvalue problem. 
Thus the non-locality of the stability problem is an artifact of the method of solution 
as opposed to being inherent to the solution itself. Similarly, shadow systems which 
involve non-local terms arise as a method of solution for a higher dimensional system. 
These can be obtained again from a system of two local reaction diffusion equations 
in the limit where the diffusion constant of one of the equations goes to infinity. 
This yields a scalar non-local reaction diffusion equation. The existence and stability 
methods of the present work are well suited to address shadow systems. We note 
however, that the shadow system is used as a technical step to avoid the difficulties 
in dealing with a higher order system. As before, the actual equations of interest, are 
purely local. 

An importance in recognizing these differences is that they point to a gap in 
the techniques for handling bona-fide non-local equations in both higher dimensional 
spaces, and for systems of non-local equations. In particular, in this paper, we have 
numerically shown that the hot stripe solution for the slab decays to a two-dimensional 
hot spot. It would be of interest to develop techniques to prove the existence and 
stability of this spot, and of other possible solutions of (5.1). We note that many of 
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the techniques of Freitas and collaborators [10-13] are already suitable to address the 
stability of solutions in higher space dimensions. 

Non-local equations with spatially dependent non-local terms have also been 
shown to exhibit stable periodic solutions [8,20]. In the current context, we only 
studied the existence and stability of stationary solutions. Linearization about the 
symmetric 1-pulse solution yields an operator whose spectrum is strictly real. This 
would appear to preclude the possibility of any Hopf bifurcations and periodic mo- 
tion arising through this mechanism. Our analysis, however, in no way rules out the 
possibility of periodic solutions. Thus it would be of interest to develop a geometric 
method which does not rely on bifurcation arguments to construct periodic solutions 
of non-local equations. 

We worked primarily with the quadratic non-linearity for f(u) as opposed to the 
exponential non-linearity. The quadratic function yields qualitatively similar results 
to the physically more relevant exponential function. The main technical difference is 
that the quadratic yields maximum heating rates that are above the melting point of 
the ceramic. Also, the non-local equation with the quadratic terms is overly sensitive to 
/?, the ratio of radiative to convective heat loss. In practice, this quantity is small, but 
in our quadratic model it must be smaller than 0(D2). There is no such restriction 
when using the exponential function since as u —>■ oo, the exponential dominates 
the quartic polynomial multiplying /?. These technical details aside, the purpose 
of this paper was to provide a unified and systematic approach to analyzing non- 
homogeneous, non-local equations. 
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