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We consider repetitive activity patterns in which a pair of oscillators take turns becoming active,
motivated by anti-phase bursting activity in neuronal networks. In our framework, when one
unit is active, it inhibits the other, as occurs with inhibitory synaptic coupling of neurons; when
the inhibition is strong enough, the inhibited unit is prevented from activating. We assume
that the coupling resources available to each oscillator are constrained and allow each unit to
select the amount of input that it provides to the other each time that it activates. In this
setting, we investigate the strategies that each oscillator should utilize in order to maximize the
number of spikes it can fire (or equivalently the amount of time it is active), corresponding to a
burst of spikes in a neuron, before the other unit takes over. We derive a one-dimensional map
whose fixed points correspond to periodic anti-phase bursting solutions. We introduce a novel
numerical method to obtain the graph of this map and we extend the analysis to select solutions
that achieve consistency between coupling resource use and recovery. Our analysis shows that
corresponding to each fixed point of the map, there is actually an infinite number of related
strategies that yield the same number of spikes per burst.

Keywords : Periodic activity; central pattern generator; discontinuous map; synaptic coupling.

1. Introduction

In the study of dynamical systems x′ = f(x, α),
x ∈ R

n, α ∈ R
m, a fundamental problem is to prove

the existence of solutions with particular properties,
such as periodicity. Doing so commonly involves
reducing the size of the phase space by exploit-
ing differences in time scales or by deriving lower
dimensional maps to obtain systems that are more
tractable for analysis. Often, the dynamical system
arises as a model for a specific application, and the

application itself suggests a natural way to reduce
the phase space. In this paper, motivated by a prob-
lem in neuroscience, we show how to derive and
analyze a one-dimensional map that arises as a
reduction of a larger system of equations. Using the
map, we establish the existence of periodic solutions
corresponding to anti-phase bursting of two recip-
rocally coupled neurons. The definition of the map
arises naturally as a result of a specific modeling
question regarding the optimization of burst length
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that we shall describe below, and the approach
would generalize to other systems featuring anti-
phase oscillations, beyond the neuronal setting.

Neuronal networks are quite varied in the com-
putations they can perform and the types of activ-
ity patterns they can display [Buzsaki, 2010]. For
some networks, synchronization of the constituent
elements is important for proper function [Singer,
1999; Butera et al., 1999]. For others, the forma-
tion of distinct clusters of cells that oscillate out of
phase with one another is a goal of the network [Ter-
man & Wang, 1995; Chandrasekaran et al., 1999;
Huntsman et al., 1999; Rubin & Terman, 2000]. In
the case of winner-take-all networks, it is a group of
cells that ends up dominating the network activity,
while some other group of cells remains suppressed
[Ermentrout, 1992; Kaski & Kohonen, 1994]. In all
of these cases, the network structure and the prop-
erties of the interactions among its elements com-
bine to determine the particular forms of activity
that emerge. In this work, we study how certain
patterns of neuronal interactions can, in some sense,
optimize particular forms of anti-phase firing.

A variety of works have applied optimization
methods to consider the ideal form of external stim-
ulation to alter the activity of a neuronal network
in some particular way [Feng et al., 2007; Nabi
et al., 2013; Popovych & Tass, 2014]. Optimization
approaches to study the natural function of neu-
ronal networks have received less attention but offer
the potential to yield insights about why particular
properties are present in these systems [Forger &
Paydarfar, 2004; Moehlis et al., 2006; Wang et al.,
2011; Forger et al., 2011; Clay et al., 2012]. For
example, in recent work, we identified patterns of
synaptic inputs, subject to various constraints on
the total synaptic resources available, that would
maximize firing of a postsynaptic neuron, and we
showed how the optimal patterns depend on the
intrinsic dynamic properties of the postsynaptic tar-
get [Wang et al., 2011]. In that paper, however, we
assumed that the firing times of the presynaptic
neuron could be selected arbitrarily.

In this work, we move beyond that assumption
to consider optimization in a pair of model neurons
coupled reciprocally with synaptic inhibition that
take turns firing. Here, the firing times of each active
neuron can be easily computed from the dynamics
of the neuronal model, while the amount of synaptic
conductance imparted by the active neuron’s spikes
and the suppressed cell’s dynamics determine the

amount of time before the neurons switch roles.
We assume that the maximal synaptic conductance
induced by each spike is free to be optimized, sub-
ject to certain constraints including a finite limit on
the total resources available within an active period.
Because the total amount of synaptic resources is
finite, the active cell will ultimately use all of its
resources and the other cell can become active,
thereby switching their two roles. In this setting, we
analyze activity patterns in which the neurons take
turns firing one or more successive spikes, and we
determine patterns of synaptic conductance ampli-
tudes that maximize the number of spikes each neu-
ron fires when active. Because the time it takes a
neuron to fire each spike (after its first) is fixed in
our model, maximizing spike number corresponds
to maximizing the amount of time that each neu-
ron is active. We will show that there are an infinite
number of strategies that cells can employ to max-
imize the number of spikes they can fire, but that
these strategies are all related, leading to the same
number of spikes independent of the strategy.

Mathematically, the main focus of this paper is
the derivation, analysis and numerical computation
of a one-dimensional map, Π(r). This map, from
an interval into itself, characterizes how the last
synaptic input a cell receives at the end of its silent
period is related to the last synaptic input that it
will be able to provide at the end of its own active
period. Fixed points of the map correspond to peri-
odic anti-phase bursting solutions of the two cell
network. The map turns out to be piecewise differ-
entiable and offers the possibility for multistability
of periodic solutions. We also derive a novel numer-
ical method using XPPAUT [Ermentrout, 2002] to
numerically determine the graph of Π(r). The idea
of this method is to solve a boundary value problem
that simultaneously characterizes certain features of
the spiking periods both before and after a transi-
tion in which the silent and active neurons switch
roles.

Our line of analysis is motivated by several con-
siderations. Our approach may be useful for gain-
ing insights into the patterns of short-term synaptic
depression or facilitation that are observed exper-
imentally. Indeed, experiments have described a
wide variety of patterns of weakening or strength-
ening of synaptic currents or potentials over suc-
cessive spikes [Zucker & Regehr, 2002]. It is known
that these patterns result from probabilistic synap-
tic release and other molecular-level details of the
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synaptic transmission process, but why particular
synaptic connections exhibit corresponding release
properties is less well understood (but see [For-
tune & Rose, 2001; Rosenbaum et al., 2012, 2013]
and the references therein). Our work is also moti-
vated by the study of central pattern generating
(CPG) networks, which can oscillate without any
rhythmic sensory input. CPGs control vital motor
networks associated with critical functions, such
as heartbeat [Masino & Calabrese, 2001], breath-
ing [Smith et al., 2009] and digestion [Marder &
Bucher, 2007], and often include groups of neurons
that oscillate out of phase with one another. In
the case of just two cells or clusters, this can lead
to half-center oscillations where, at any moment
in time, one of the cells (clusters) is active, while
the other is silent [Skinner et al., 1994]. It is pos-
sible that short term synaptic properties constitute
an important part of CPG function, contributing
to the ability of CPGs to flexibly adjust frequen-
cies and relative phase durations in response to
different metabolic or top-down demands [Marder
et al., 2005; Mitchell & Johnson, 2003; Morris et al.,
2003]. In this context, our analysis is aimed at
broadening our understanding of how variations
in synaptic conductances across successive spikes
could contribute to the characteristics of CPG
activity patterns.

The paper is organized as follows. In Sec. 2,
we introduce the equations associated with the
integrate- and fire-model and coupling between cells
that we utilize throughout the paper; an Appendix
presents a more general framework to which the
ideas in this paper will generalize. In Secs. 3.1
and 3.2, we derive the map Π(r). In Sec. 3.3,
we present the boundary value problem that we
solved in XPPAUT to numerically compute the
map. Section 3.4 includes to the recovery of synaptic
resources, while Sec. 3.5 focuses on the dynamics of
Π(r) and on strategies for creating optimal periodic
solutions. Finally in Sec. 3.6, we present a different
direct proof of the existence of anti-phase spiking
solutions, which is of interest in its own right. We
conclude with a brief discussion in Sec. 4.

2. Model

Consider a pair of oscillators coupled through mutu-
ally inhibitory synapses. Assume that each oscilla-
tor is able to (i) fire a series of spikes (burst), and
(ii) determine the strength with which it inhibits
the other oscillator each time it fires a spike. Within

the inhibitory two-oscillator network, we refer to the
unit that most recently reached threshold as active
and the other as silent. We seek to analyze solutions
in which the oscillators take turns being active, with
each oscillator firing some number of consecutive
times before the other one takes over.

Although the analysis in this paper can be
cast in a quite general framework (see Appendix),
all results in this paper will be derived for the
integrate-and fire-neuron model. The model for an
isolated neuron is given by

v′ = I − v, (1)

where v denotes the voltage of the cell. When the
voltage v reaches a threshold, here set to v = 1, the
cell fires a spike. The voltage is then instantaneously
reset to v = 0. That is, the voltage reset condition
is

v(t) = 1 ⇒ v(t+) = 0. (2)

Note that in the absence of a threshold, v = I is a
stable fixed point for (1). Thus the neuron will fire
periodically if I > 1, otherwise it will not. We will
henceforth assume that I > 1, in which case it is
easy to calculate that the period of the neuron is
given by T = ln( I

I−1 ).
When two neurons are reciprocally coupled by

inhibition, the equations governing the dynamics of
each cell are given by

v′i = I − vi − gj(vi − E), g′i = −βgi, (3)

where i = 1, 2 and i �= j. Here gi refers to the
conductance of each synapse and E is the synap-
tic reversal potential with E < 0. We assume that
after spikes of cell j, Eq. (2) holds and the synap-
tic variable gj is reset to gj + kn, where kn > 0 for
spikes n = 1, 2, 3, . . . . Note that the term gj shows
up in the equation for vi, corresponding to the fact
that cell j inhibits cell i. For analytical tractabil-
ity, we make the additional assumption that when
cell i is active, after its first passage from reset
(v = 0) to threshold (v = 1), gj = 0, such that its
voltage equation reduces to (1). With this assump-
tion, the time between all spikes after a brief tran-
sient is fixed, such that maximizing the number of
spikes fired corresponds to maximizing active phase
duration.

Biologically, increases in synaptic conductance
result from neurotransmitter release by the spiking
cell, and individual cells have constrained neuro-
transmitter supplies to work with, although these
are gradually replenished. Suppose that when a
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neuron becomes active, it has synaptic resources
M > 0, meaning that it has enough neurotrans-
mitter available to cause the synaptic conductance
to rise within a specified time (to be determined
below) by an amount M . When an active cell j fires
its nth spike and gj is increased by kn, its remain-
ing available synaptic resources are decreased by
an amount kn correspondingly. To keep track of
the remaining amount of synaptic resources after
the nth spike, define Rn = M − Σn

l=1kl, with
R0 = M . In the later parts of the paper, start-
ing from Sec. 3.4, we add realism to the model by
assuming that a cell recovers its synaptic resources
when it is silent and that there are specific dynam-
ics associated with this process. Specifically, we
assume that the synaptic resources of cell are recov-
ered when it is in the silent phase according to the
equation

R′ = ρ(S − R) (4)

for some S > 0 and ρ > 0.
Assuming that two cells have identical synaptic

resource recovery dynamics, an anti-phase bursting
periodic orbit of the two cells c1 and c2 would con-
sist of c1 being active and firing N spikes while c2

is silent, followed by c2 firing N spikes while c1 is
active, and so on, with both cells giving the same
synaptic kicks (i.e. releasing the same amount of
synaptic resources) on their corresponding spikes.
For any N > 0, by choosing the synaptic kick sizes
appropriately, we can always arrange for RN = 0.
When this occurs, we say that the periodic orbit is
synaptically exhaustive. Further if N is maximized,
as described below, we say that the oscillation is
optimally periodic.

Let τ denote the period of one full cycle of
the anti-phase burst where each cell has completed
one active phase. For the sake of argument, let us
assume that c1 is active first, on (0, τ/2), while c2

is active second, on (τ/2, τ). For the existence of
a synaptically exhaustive, optimally periodic orbit
that uses synaptic resources M within each active
phase, the following must hold:

(a) for c1 there exists a set of spike times {ti} ∈ (0,
τ/2) and a synaptic strategy with kick sizes
{ki}, i = 1, . . . , N such that R0 = M , RN = 0
and N is maximized, and

(b) for c2, the period τ , which is determined by the
chosen synaptic strategy in (a), satisfies the
consistency condition R(0)= 0 and R(τ/2)=M .

f

g
min

E 0 I

d

e

v

g

1
b

a
c

Fig. 1. The v–g phase plane. The v-(blue) and g-(red) null-
clines are shown together with representative trajectories.
Single arrows denote the flow, while double arrows denote
the instantaneous reset due to synaptic input. The size of
the particular synaptic input determines the vertical distance
through which a trajectory is reset.

A similar set of statements applies over the inter-
val (τ/2, τ). We will show that there are an infinite
number of synaptic strategies that lead to a synap-
tically exhaustive, optimally periodic solution.

Much of the analysis will be done in the v–g
phase plane; see Fig. 1. The v-nullcline is the set
of points {(v, g) : g = (I − v)/(v − E)} which is
a concave up decreasing graph (blue curve) with a
vertical asymptote at v = E (black dashed line).
This nullcline intersects the threshold v = 1 (green
dashed line) at a value

gmin =
I − 1
1 − E

. (5)

The g-nullcline is simply the v-axis (red line). When
the threshold and synaptic kicks are ignored, the
intersection (I, 0) of the v- and g-nullclines is an
asymptotically stable fixed point for the flow given
by Eq. (3), for i = 1, 2. In Fig. 1, we show two typi-
cal trajectories and the effect of synaptic input. The
trajectory starting at point a initially lies below the
v-nullcline and thus flows to the right. At point b,
it receives a synaptic input and is reset vertically to
point c. Depending on the size of the input, the reset
point may be above the v-nullcline, as is the case
with the trajectory starting at point d. Initially, this
trajectory lies above the v-nullcline, so it flows left,
crosses below the v-nullcline and then flows right
to point e. There, it receives a large synaptic kick
placing it at point f above the v-nullcline.
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3. Results

3.1. Existence of a stable
suppressed solution

An anti-phase bursting solution will consist of the
active cell firing a number of times, while the other
is silent, followed by the two cells switching roles.
During the time when one cell is firing, the other
is suppressed. We first prove that if we ignore the
upper bound M on the total synaptic conductance,
then there exists a stable suppressed solution. This
is equivalent to finding conditions under which one
cell, say c1, fires periodically, while the second cell,
c2, lies below threshold for all time. This is also
equivalent to simply considering a feedforward net-
work in which c1 inhibits c2.

We begin by proving a set of results that ignores
the spiking threshold v = 1. Fix I > 1, E < 0 and
recall that T is the intrinsic period of an isolated
neuron. The following proposition proves the exis-
tence of a suppressed solution.

Proposition 1. For each k > 0, there exist v∗ and
g∗ such that (v∗, g∗) · T− = (v∗, g∗ − k).

Proof. Solve the equation g′(t) = −βg(t) to obtain
g(T−) = g(0)e−βT−

. We use the periodicity condi-
tion g(T−) = g(0) − k to find that g(0) = k/(1 −
e−βT−

) and set g∗ = g(0), so

g∗ =
k

1 − e−βT− . (6)

Now we ignore the v = 1 threshold in order to
determine v∗. First, we solve the equation v′ =
I − v − g(v − E) using the integrating factor
exp(t − (g(0)/β)e−βt), which we will denote as
h(t, g). We find that v(t)h(t, g) − v(0)h(t, 0) =∫ t
0 (I + g(s)E)h(s, g)ds. Now apply the periodic-

ity condition v(0) = v(T−) = v∗, and set g(0) =
g∗ to yield v∗(h(T−, g∗) − e−g∗/β) =

∫ T−
0 (I +

g∗e−βsE)h(s, g∗)ds. It follows that

v∗ =

∫ T−

0
(I + g∗e−βsE)h(s, g∗)ds

h(T−, g∗) − e−g∗/β
. (7)

We can see that g∗ and v∗ satisfy our requirements
and have been uniquely determined based on our
fixed value of k. �

Note that as k → 0, g∗ → 0 and v∗ → I > 1.
However, since v = 1 is the threshold, we are

interested in values where v∗ ≤ 1 and g∗ > gmin.
From (5) and (6), the latter inequality places a
restriction on the minimum value of the inhibitory
kick as

kmin > (1 − e−βT )
(

I − 1
1 − E

)
.

We let Λ(k) denote the trajectory found in
Proposition 1 with initial condition (v∗, g∗). When
k > kmin, Λ(k) is the trajectory of the suppressed
cell in the feed-forward network of c1 inhibiting c2.
In order to later find an optimally periodic solution,
we are interested in finding a suppressed trajectory
that minimizes the necessary kick size. It turns out
that this corresponds to the suppressed trajectory
that has v∗ = 1−.

Corollary 1. There exist k∗ > kmin and g∗k∗ > 0
such that (1−, g∗k∗) · T− = (1−, g∗k∗ − k∗).

Proof. Define a map f : [gmin,∞) → [0,∞) given
by f(g) = tg, where tg is the time it takes the tra-
jectory originating at the point (1−, g) in the phase
plane to reach threshold. Note that f(gmin) = 0.
Every trajectory starting at (1−, g) for g > gmin

has v′ < 0 and g′ < 0. Thus such a trajectory
moves down and into the region with v < 1. It
crosses the v-nullcline, after which v′ > 0, and even-
tually reaches the threshold at v = 1. All this while,
g′ = −βg < 0. Thus if we choose g1 = gmine

βT ,
then the trajectory starting at (1−, g1) will be more
than time T away from threshold. This is because
by uniqueness of solutions, at time T , the trajec-
tory will lie to the left of (1, gmin) on {g = gmin}.
Therefore by the intermediate value theorem, there
exists a value g∗k∗ ∈ (gmin, g1) such that f(g∗k∗) = T .
Using Proposition 1, we now define k∗ to satisfy
g∗k∗ · T = g∗k∗ − k∗. �

Using the notation defined above, the trajec-
tory identified in Corollary 1 can be labeled as
Λ(k∗). The maximum value along v = 1 for this
trajectory is g∗k∗ and the minimum value is g0 =
g∗k∗e−βT (Fig. 2). Using this notation, note that k∗
satisfies k∗ = g0(eβT − 1) or, alternatively, k∗ =
g∗k∗(1 − e−βT ).

We next prove that in the feed-forward network
of c1 inhibiting c2, the suppressed solution is sta-
ble. We define a map µ(v, g) which takes an ini-
tial iterate (v2, g2) = (v(0), g(0)) and returns a new
value (v2, g2) = (v(T+), g(T+)), where g(T+) =
g(T−)+ k∗. Each time the active cell fires, the map
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Ω

min

g
0

g*
k*Ω

Tmin

T
Ω

0

v

g

1

(k*)Λ
Tmax

g

Fig. 2. Objects within the v–g phase plane that are used
to construct an optimally periodic solution. The suppressed
trajectory Λ(k∗) that travels between g∗k∗ and g0 is shown in
black. The curves ΩT (green), ΩTmin (magenta) and ΩTmax

(cyan) represent points that lie at time T , Tmin and Tmax

respectively away from threshold.

µ marks the location of the suppressed trajectory
after it has been reset. Note that (v∗, g∗) is a fixed
point of µ.

Proposition 2. The value (v∗, g∗) is an asymptoti-
cally stable fixed point of the map µ.

Proof. We first determine that g∗ is attracting,
since it is independent of v. Recall that g∗ − k∗ =
g∗e−βT−

. Let g(0) = g∗ + δ. Then g(T−) =
g∗e−βT−

+ δe−βT−
= g∗ − k∗ + δe−βT−

. Since
0 < e−βT−

< 1, g(T−) < g∗ − k∗ + δ if δ > 0,
and g(T−) > g∗ − k∗ + δ if δ < 0. This implies that
g(T ) < g∗ + δ if δ > 0, and g(T ) > g∗ + δ if δ < 0.
Thus, after each kick, the solution is closer to g∗.
Hence, g∗ must be attracting.

Next for simplicity, let

F (t) =
∫ t

0
(I + g∗e−βsE)h(s, g∗)ds.

Then

v∗ =
F (T )

h(T, g∗) − h(0, g∗)
. (8)

Using this notation, we can write

v(T−) =
v(0)h(0, g∗)
h(T−, g∗)

+
F (T−)

h(T−, g∗)
.

It is clear that using v(0) = v∗ and (8), we obtain
v(T−) = v∗, as expected. Now let v(0) = v∗ + δ.

Then v(T−) = (v∗+δ)h(0,g∗)
h(T−,g∗)

+ F (T−)
h(T−,g∗)

. Using (8),
we can simplify this to

v(T−) = v∗ + δ

(
h(0, g∗)

h(T−, g∗)

)
.

We will now show that h(0, g∗) < h(T−, g∗), where
h(T−, g∗) = exp(T−− (g∗/β)e−βT−

) and h(0, g∗) =
e−g∗/β. eT−

> 1 since T > 0, and e−βT−
<

1 since β > 0. So g∗
β > g∗

β e−βT−
, and hence,

e−g∗/β < e−(g∗/β)e−βT−
. Thus, h(0, g∗) < h(T−, g∗),

as desired. It follows that if δ > 0, then v(T−) <
v∗ + δ, and if δ < 0, then v(T−) > v∗ + δ. Thus,
after time T , the solution has moved closer to v∗.
Hence, v∗ must be attracting, allowing us to con-
clude that the fixed point (v∗, g∗) is attracting. �

Remark 3.1

(1) It now follows that the trajectory Λ(k∗) must
be contained as part of an attracting periodic
orbit corresponding to the suppressed solution
of the two cell c1, c2 network.

(2) There are other suppressed solutions that can
exist. Suppose a suppressed cell starts along v =
1 with g̃ > gmin, a time 2T away from threshold.
Then the active cell would need to inhibit the
suppressed cell every other cycle to maintain
suppression. However, it is easy to see that the
needed kick size in this case is larger than 2k∗.
Thus this strategy would not lead to an optimal
periodic solution.

(3) Note that if the suppressed cell lies on Λ(k∗)
at (1−, g0), then k∗ is the minimum kick size
needed to maintain suppression.

3.2. The anti-phase bursting
solution

Consider now a mutually coupled network of two
cells, c1 and c2. The idea behind finding an anti-
phase bursting solution is that while one cell is firing
periodically, the other cell lies along the trajec-
tory Λ(k∗). Once the synaptic resources have been
sufficiently depleted, the silent cell will begin fir-
ing and the formerly active cell will now become
silent. Because µ has an attracting fixed point asso-
ciated with the trajectory Λ(k∗), the newly silent
cell will be attracted towards Λ(k∗), which it will
follow until resource depletion allows the process to
repeat. In fact, as we will show below, by choosing
appropriate synaptic kick sizes, we can place the
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newly suppressed trajectory directly onto Λ(k∗).
We assume for now that each cell has synaptic
resources M available, for some fixed M > 0, that
these are diminished by each synaptic release while
the cell is spiking, and these are fully replenished
while the cell is silent. We will return to the issue
of recovery of resources later, in Sec. 3.4.

We introduce some additional notation and def-
initions. Consider the line segment with v = 1 lying
between g = 0 and g0 = g∗k∗e−βT . Flow this line
segment backward for time τ . This yields a curve
that we denote Ωτ . Note that any initial condition
that lies to the left of Ωτ lies more than time τ away
from threshold, while those that lie to the right of it
are less than time τ away. The curve Ωτ is a mono-
tone increasing curve that shifts up with increasing
β. When τ = T , the value of the intrinsic period of
an uncoupled cell, then ΩT intersects the v-axis at
v = 0 and the threshold v = 1 at the point g = g∗k∗ .
Numerical examples of Ωτ for pairs of τ values are
shown for two different β values in Fig. 3.

The following two lemmas are general results
that essentially follow from uniqueness of solutions,
which prevents distinct trajectories from crossing.

Lemma 1. If v1(0) = v2(0) and g1(0) < g2(0), then
the trajectory with initial conditions (v1(0), g1(0))
reaches threshold before the trajectory with initial
conditions (v2(0), g2(0)).

Lemma 2. If v1(0) > v2(0) and g1(0) = g2(0), then
the trajectory with initial conditions (v1(0), g1(0))
reaches threshold before the trajectory with initial
conditions (v2(0), g2(0)).

Let Tmax and Tmin be the respective times it
takes trajectories with initial conditions (0, gmin)
and (0, g0) to reach threshold. Note that Tmax >
Tmin as a consequence of Lemma 1. Similarly to
ΩT , we define the curves ΩTmin

and ΩTmax such that
initial conditions lying on these curves are times
Tmin and Tmax away from threshold, respectively;
see Fig. 2. Denote by ĝ the value of g at which ΩTmax

intersects v = 1. Note that ĝ > g∗k∗ . Fix M > 2ĝ.
For reasons that will become clear below, this choice
guarantees that each cell in the anti-phase solu-
tion fires at least three spikes per burst. Assume
that the active cell delivers a sequence of synaptic
kicks {ki} to the silent cell. Recall the definition of
Rn = M − Σn

i=1ki, with R0 = M , which measures
the remaining amount of synaptic resources after
the nth spike. Observe that for any j, if Rj > k∗,
then the active cell has sufficient synaptic resources

0 0.2 0.4 0.6 0.8 1
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0.2

0.4

0.6

0.8

1

1.2

v

g

Ω
1.0

Ω
0.694

(a)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

v

g

Ω
1.0

Ω
0.694

(b)

Fig. 3. Numerical examples of Ω0.694 and Ω1.0 for (a) β =
0.2 and (b) β = 1.0. The intrinsic period of an uncoupled
neuron is T = 0.694 for the parameters chosen and corre-
spondingly the curve Ω0.694 passes through the origin. Note
that the two panels have different vertical scales. As β grows,
both between these values and above 1.0, g decays faster and
thus Ωτ increases for each fixed τ .

left to suppress the silent cell for at least one more
cycle, if the silent cell is on Λ(k∗).

For each r ∈ [0, k∗] we will determine unique
values k1(r), k2(r) and m ≥ 0 such that M =
k1(r) + k2(r) + mk∗ + r. The idea is the follow-
ing. Assume that the silent cell has v = 1− when
the active cell fires what will be its final spike of
the cycle, providing the silent cell with a synaptic
input of size r = rlast, such that the input pat-
tern is synaptically exhaustive. As a result, the cur-
rently silent cell jumps to (1−, g0 + rlast) while the
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currently active cell is reset to (0, 0). Let δr be the
time it takes the trajectory from (1−, g0 + rlast) to
reach threshold. Note that if rlast ∈ (0, gmin − g0),
then δr = 0 and the trajectory immediately reaches
threshold. If rlast ∈ (gmin − g0, k

∗), then δr > 0.
Once the silent cell reaches threshold, it becomes
the active cell and inhibits the other cell. It then
will use two cycles and associated synaptic kicks
k1(r) and k2(r) to position the newly suppressed,
now silent, cell onto Λ(k∗). From this point on, the
active cell delivers kicks of size k∗, keeping the silent
cell on Λ(k∗). So long as Rj > k∗, the active cell
can fire a (j + 1)th spike that will maintain sup-
pression of the silent cell. By definition there exists
an m such that Rj > k∗ for j = 0, 1, . . . ,m + 1,
Rm+2 < k∗ and Rm+3 = 0. We call Rm+2 = rnew. If
rnew = rlast then the currently silent cell receives its
last synaptic input of exactly the same size as the
last synaptic input of the previously silent cell. This
matching corresponds to a periodic solution where
each cell fires m + 3 spikes in the anti-phase burst;
if k1(r) and k2(r) are chosen appropriately, then for
the resulting m, m + 3 is the maximal number of
spikes a cell can fire for given synaptic resources
M , at least locally within the space of strategies
(see Sec. 4), such that we call the pattern optimally
periodic.

This construction leads to the definition of a
map

Π(r) = M − k1(r) − k2(r) − mk∗ (9)

that takes the r value (the last synaptic kick size) of
the currently silent cell and determines the r value
that the newly silent cell will ultimately receive at
the end of its suppressed phase. The map is defined
based on the flow from the initial condition with the
currently silent cell located at (1−, g0 + r) and the
currently active cell located at (0, 0). After the cur-
rently silent cell has fired, it will be reset to a value
(0, gr) where gr ∈ [g0, gmin]. For each r, we denote
by T (r) the time it takes a cell starting at (0, gr) to
reach threshold. As we will show below, T (r) plays
an important role in determining the dynamics of
the map Π(r).

Theorem 1. Suppose that M − k1(r) − k2(r) ≥ 0
for all r ∈ [0, k∗). Π(r) : [0, k∗) → [0, k∗) is a
piecewise continuous map that is differentiable at
each point of continuity. It is a decreasing func-
tion on each interval where it is continuous within
(0, gmin−g0) and, assuming that T ′(r) is sufficiently
small or that dk1(r)/dr is bounded away from 0 as

β increases, it is decreasing where it is continuous
within (gmin − g0, k

∗) as well. The map increases
from 0 to k∗ at all points of discontinuity and has at
least one fixed point, corresponding to a synaptically
exhaustive, optimally periodic solution of system (3)
with the reset condition (2).

Proof. There are two distinct intervals to consider
depending on the value of r. First choose r ∈
[0, gmin − g0). In the construction of Π(r), we start
at the moment that the currently silent cell receives
its final input, of size r, and the active cell is at
(v, g) = (0, 0). In this case, upon receipt of the
final input, the currently silent cell lies below the
v-nullcline, such that δr = 0 and the cell reaches
threshold immediately. It will then become active,
fire and be reset to (0, g0 +r) in phase space. Define
the input to the other cell, which started at (0, 0), as
k1(r) = (g0+r)+. This input places the newly silent
cell at the same voltage as the newly active cell but
at an infinitesimally larger g value. The newly active
cell will then evolve and reach the threshold v = 1
at some time T (r) ∈ (Tmin, Tmax) with the silent
cell trailing it to v = 1−. Note that dT (r)/dr > 0
on the interval [0, gmin−g0); see Fig. 4. Next choose

0 0.5 1 1.5
0.7

0.8

0.9

1

1.1

1.2

1.3

r

T(r)

β=0.2
β=0.5
β=1.0
β=2.0

Fig. 4. Numerical examples of T (r) for E = −0.1, I = 2
and various values of β. On the interval (0, gmin − g0), T (r)
is an increasing function of r, while it is decreasing on the
remainder of the interval for each fixed β. For each of the
curves shown, the minimum value equals Tmin and is attained
at the endpoints of the interval. The maximum value, which
equals Tmax, occurs at r = gmin − g0. These values depend
on β. As β increases, g decays faster, which allows v to grow
from 0 to 1 faster, and hence T (r) decreases. Similarly, the
value g0 decreases (and g∗k∗ increases) as β increases, whereas
gmin stays fixed at the value given in (5). The dashed black
line is the time of passage T from v = 0 to v = 1 with g = 0
which is a firm lower bound on T (r) for all β.
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k2(r) = g∗k∗−(g0+r) exp(−βT (r)). When the active
cell fires and provides this input to the suppressed
cell, the suppressed cell is kicked to (1−, g∗k∗), at
the maximal location on Λ(k∗), and the active cell
is reset to (0, 0), which is time T away from thresh-
old. Thus the active cell can now deliver some nat-
ural number m of synaptic kicks to the other cell,
thereby keeping it suppressed. The value of m can
be bounded from above and below as the unique
integer that satisfies

M − k1(r) − k2(r)
k∗ − 1

< m ≤ M − k1(r) − k2(r)
k∗ . (10)

Let us now show that the map Π(r) = M −
k1(r) − k2(r) − mk∗ is decreasing on the interval
(0, gmin − g0). Assuming for the moment that Π is
differentiable,

dΠ
dr

= − d

dr
(k1(r) + k2(r))

= −1 −
[
−e−βT (r) + rβe−βT (r) dT (r)

dr

]

= −[1 − e−βT (r)] − rβe−βT (r) dT (r)
dr

.

The first term is negative, as is the second since
dT (r)/dr > 0. Thus dΠ/dr < 0 and Π is decreasing
wherever it is differentiable. To assess the continu-
ity and differentiability of Π, note that T (r) is both
continuous and differentiable, which follows since
the vector field of (3) is smooth between resets.
Thus both k1(r) and k2(r) are differentiable. Thus
the only discontinuity that can occur is when a spike
is lost. More precisely if r1 < r2, it can happen
that for the same value of j, Rj(r1) > k∗ while
Rj(r2) < k∗. This would mean that there is an extra
cycle of suppression associated with r1, thereby
causing a discontinuity in Π in the interval (r1, r2).

Now fix r ∈ (gmin − g0, k
∗). In this case, δr > 0

since the currently silent cell lies above the v-
nullcline, where v′ < 0, just after the last input
of size r arrives. For the sake of argument denote
this cell by c1 and assume that the last synap-
tic input to this cell occurs at t = 0. The cur-
rently active cell, c2, starts at t = 0 at the position
(0, 0) and after time δr will lie at (v2(δr), 0); see
Fig. 5. Note that v2(δr) can be calculated directly
from Eq. (1), but we only care that this value lies
in (0, 1). At t = δr, c1 is reset to v = 0 and

(k*)

0

g*
k*

v (δr)
2

Tmin

Ω

g
min

v (δr)
1

T(r)
Ω

0

v

g

1

Λ
Tmax

Ω

g

Fig. 5. The curve ΩT (r) for the case r ∈ (gmin−g0, k∗). The
curve ΩT (r) (green) lies between ΩTmax (cyan) and ΩTmin .
Yellow dots depict the initial position of cell 1 (along v = 1)
and cell 2 (at (0, 0)) just after the last synaptic input. Aqua
dots depict the position of the cells at time δr just before cell
1 becomes active, while the black dots represent the cell’s
position just after cell 1 becomes active. Note that cell 2
is reset to the curve ΩT (r), which is time T (r) away from
threshold.

g = (g0 + r) exp(−βδr) ∈ (g0, gmin). Thus the time
c1 will take to reach threshold, again denoted by
T (r), lies between Tmin and Tmax. In this case, unlike
above, dT (r)/dr < 0 since the larger the r value, the
smaller the value of (g0 + r) exp(−βT (r)) and thus
the smaller the value of T (r); see Fig. 4. To guaran-
tee that c2 becomes suppressed, c2 must receive a
synaptic kick k1(r) that causes it to be at least time
T (r) away from threshold. To find such a kick size
we define a curve ΩT (r) consisting of points that lie
T (r) away from threshold.

To define ΩT (r), first consider two extreme
cases. Observe that if r = gmin − g0 then δr = 0
and the time T (r) is exactly Tmax. In this case, c1

would be reset to (0, gmin) on ΩTmax . This will be one
endpoint of ΩT (r). At the other extreme, if r = k∗,
then δr = T , c1 is reset to (0, g0), and the time T (r)
is Tmin. At t = T−, c2 has evolved to (1−, 0) and is
reset to the curve ΩTmin

at v = 1− with g > g∗k∗ .
This reset point will be the other endpoint of ΩT (r).
In general, for any r ∈ (gmin − g0, k

∗), c2 evolves
along the (g = 0)-axis to a point v2(δr) ∈ (0, 1)
until c2 is reset to a point located a time T (r)
away from threshold. By the intermediate value the-
orem and the monotonicity of T (r) on this interval,
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for each r there exists a value of g and a corre-
sponding point in phase space lying between ΩTmin

and ΩTmax that is exactly T (r) away from thresh-
old. For r ∈ (gmin − g0, k

∗),we define ΩT (r) as a
curve containing all such points. Note that ΩT (r) is
a monotone increasing curve that has endpoints at
v = 0 on ΩTmax and at v = 1 on ΩTmin

. We set
k1(r) as the g-coordinate of (ΩT (r))+. It is clear
by inspection that dk1(r)/dr > 0. Note that c2

ends up at (1−, k1(r) exp(−βT (r))) at t = T (r).
Thus, similarly to the first case, we set k2(r) =
g∗k∗−k1(r) exp(−βT (r)), and subsequent kicks have
size kj = k∗.

We now show that Π(r) is piecewise decreasing
on (gmin− g0, k

∗) under the assumptions of the the-
orem. As before, a discontinuity can arise when a
spike is lost if Π(r) = 0. Away from all discontinu-
ities, calculate dΠ/dr to find

dΠ
dr

= −dk1

dr
[1 − e−βT (r)] − k1β

dT

dr
e−βT (r). (11)

The first term is negative, but the second is pos-
itive since dT (r)/dr < 0 in this case. If dT/dr is
sufficiently small, then Π′(r) < 0. Otherwise, note
that as β grows, dT/dr goes to 0. Indeed, for each
r ∈ (gmin − g0, k

∗), T (r) is the time of evolution
from a point (v, g) ∈ {v = 0, g ∈ (g0, gmin)} to the
set {v = 1}. The largest such time is T (gmin−g0) ≡
Tmax, achieved for g = gmin, while all of these times
are bounded below by T . Both gmin and T are inde-
pendent of β and T (gmin−g0) → T as β → ∞, such
that the whole T (r) curve collapses to T . Thus, if
dk1/dr stays bounded away from 0 as β grows, then
for β sufficiently large, Π′(r) < 0 on (gmin − g0, k

∗)
(also see the remark following the proof).

Next, consider points of discontinuity of Π(r).
These occur where Π(r) tends to 0 from above as r
increases and a spike is lost. For r above this point,
the input that no longer goes to the extra spike is
left over for the final remainder kick of size r, which
can be at most k∗. That is, in the limit as r decreases
to a discontinuity, Π(r) ↑ k∗, and thus Π(r) jumps
from 0 to k∗ at each discontinuity.

Finally, we show that Π(r) must have a fixed
point. If Π(0) = 0, then we are done. Thus assume
that Π(0) �= 0. If there exists r̂ such that Π(r̂) = 0,
then since the map is decreasing and continuous on
(0, r̂), it must have a fixed point on this subinterval.
If no such r̂ exists, then the map is decreasing and
continuous on the entire interval (0, k∗) and must
cross the identity line creating a fixed point. Note
that when the map has a discontinuity at r = r̂,

there must exist another fixed point to the right
of r̂. Indeed each discontinuity of the map forces
the existence of another fixed point to the right of
the discontinuity. By construction, the fixed point
corresponds to a synaptically exhaustive, optimally
periodic solution of (3), (2), as claimed. �

Remark 3.2

(1) Numerical simulations, discussed in detail in
the next subsection, show that Π(r) is always
decreasing. Furthermore, as β is increased with
all other parameters fixed, the slope of Π(r)
stays rather constant except for r just above
gmin − g0, where it becomes more negative as
β increases. The larger negative slopes suggest
that an unstable fixed point may occur for β
sufficiently large, leading to interesting dynam-
ics that could be studied in the future but are
beyond the scope of this work.

(2) The assumption that dk1/dr stays bounded
away from 0 as β increases is quite natural.
Indeed, we can show that the function k1(r)
grows arbitrarily large as β increases. As β
increases, g0 ↓ 0 and g∗k∗ → ∞ so the relevant
interval of r values tends to (gmin,∞). At the
lower limit, k1(gmin) remains equal to gmin, as
discussed in the proof of Theorem 1, for all β.
On the other hand, no matter how large β is,
as r approaches k∗ from below, the active cell
evolves to (v, g) = (1−, 0) in time δr. Further-
more, the point on ΩT (r) corresponding to this
limit in r, namely the right endpoint of ΩT (r),
exceeds g∗k∗ , since it takes fixed time T to pass
from (v, g) = (1−, g∗k∗) to (v, g) = (1−, g0) for
all β and T (r) > T (e.g. see Fig. 3). Thus, the
difference in k1 values at the endpoints of the
relevant interval of r, which can be computed
for fixed β, grows at least as fast as the length
of the interval as β increases. What we do not
know rigorously at this point is whether dk1/dr
stays bounded away from 0 locally in r.

3.3. Numerical computation of Π(r)

To illustrate the validity of the construction of Π(r)
and our results regarding its properties, we com-
puted examples of Π(r) numerically, as shown in
Fig. 6. For r > gmin − g0, completing this compu-
tation using forward integration of multiple initial
value problems would be somewhat problematic.
That is, for a given initial value of r, we would
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Fig. 6. Numerical examples of Π(r) for β = 0.5, E = −0.1,
I = 2 and various values of M . The dashed black line is the
identity line and the dotted black line marks r = gmin − g0.
Note that depending on parameters there may be more than
one fixed point of the map.

need to flow the trajectory from the initial con-
dition (v1, g1) = (1−, g0 + r) forward to find the
time δr > 0 such that v1(δr) = 1, taking cell 1 as
the initially suppressed cell and cell 2 as the ini-
tially active cell for concreteness. Next, we would
need to flow the trajectory from (v2, g2) = (0, 0)
forward for time δr to obtain a value v2(δr). Third,
we would need to flow cell 1 forward from its reset
value at (v1, g1) = (0, g1(δr) := (g0 + r)e−βδr) until
a time T (r) > 0 such that v1(T (r)) = 1. Finally,
we would need to flow (v2, g2) = (v2(δr), k1(r)) for-
ward for time T (r) as well. The complication in this
step is that the value of k1(r), selected such that
v2(T (r)) = 1, is not analytically accessible.

To circumvent this difficulty and make the com-
putations more efficient, we computed Π(r) by solv-
ing a double boundary value problem in XPPAUT.
This approach allows us to find the unknowns

{δr, g1(δr), v2(δr), T (r), k1(r)} (12)

simultaneously, with one run of a boundary value
solver. There are three important steps required
to make this approach work. The first is to
introduce four different pairs of (v, g) variables,
one corresponding to each of the initial value
problems described above. We refer to these as
(v, g), (v̂, ĝ), (ṽ, g̃), and (v∗, g∗) in the equations
below, with the exception that ĝ does not appear
since ĝ ≡ 0, corresponding to the evolution of cell
2 for time δr while cell 1 is still suppressed. The
second step is to define two different time scale

parameters, which we call P and Q. The parameter
P is used as a time constant in the ODEs for the
variables evolving for time δr, namely (v, g), (v̂, ĝ),
and the parameter Q appears as a time constant in
the ODEs for the variables evolving for time T (r),
namely (ṽ, g̃), (v∗, g∗). Taking this step allows us to
collapse all of our equations and conditions into a
single boundary value problem to be solved over a
fixed time interval t ∈ [0, 1], with boundary condi-
tions at t = 0 and t = 1. The third step is to define
the boundary conditions and equations appropri-
ately. It turns out that there are nine conditions to
satisfy, and thus we need nine ODEs in our system.
The equations for the evolving copies of v and g
only constitute seven of these, since ĝ ≡ 0 does not
appear. Because we wish to solve for P and Q, to
obtain the values of δr and T (r) respectively, we
introduce the trivial equations P ′ = 0 and Q′ = 0
as our eighth and ninth ODEs.

Altogether, our boundary value problem reads

v′ = P (I − v − g(v − E)),

g′ = P (−βg),

ṽ′ = Q(I − ṽ − g̃(ṽ − E)),

g̃′ = Q(−βg̃),

v̂′ = P (I − v̂),

(v∗)′ = Q(I − v∗ − g∗(v∗ − E)),

(g∗)′ = Q(−βg∗),

P ′ = 0, Q′ = 0,

(13)

where

v(0) = 1, v(1) = 1,

g(0) = g0 + r,

v̂(0) = 0,

ṽ(0) = 0, ṽ(1) = 1,

g̃(0) = g(1),

v∗(0) = v̂(1), v∗(1) = 1.

(14)

For fixed β > 0 and E < 0 < I, we can calculate
gmin and numerically obtain g0, g

∗
k∗ . With these in

hand, solving the boundary value problem (13), (14)
over a mesh of values r ∈ (gmin − g0, k

∗ ≡ g∗k∗ −
g0] gives us all of the unknowns listed in (12) for
each r as well as g∗(T (r)). From this last value, we
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compute k2(r) = g∗k∗ − g∗(T (r)). Finally, Π(r) is
obtained as

Π(r) = M − k1(r) − k2(r)

−
⌊

M − k1(r) − k2(r)
g∗k∗ − g0

⌋
(g∗k∗ − g0), (15)

where �·� denotes the integer floor function, where
the final product in (15) is mk∗ in our earlier nota-
tion, and where the same M , chosen to exceed
k1(r) + k2(r) for all r under consideration, is used
for all r. For r ∈ (0, gmin − g0), k1(r) = g0 + r and
direct forward integration from (v, g) = (0, g0 + r)
for time T (r) such that v(T (r)) = 1 gives k2(r) =
g∗k∗ − g(T (r)), such that Eq. (15) can again be
employed to compute Π(r).

Examples of the resulting Π(r) for several M
values and β = 0.5, E = −0.1, I = 2 are shown
in Fig. 6. Other parameter choices gave qualita-
tively similar results (data not shown). There are
several features to notice in Fig. 6. First, note that
gmin − g0 ≈ 0.121, as indicated with a dotted verti-
cal line. Π(r) is decreasing on both sides of this line,
and across this line as well, except where it jumps
vertically for M = 50, 55, 60. The jumps in these
cases occur because the integer value of the floor
function drops by one as r increases, correspond-
ing to a unit decrease of m and the loss of spike.
Once one fewer spikes is fired, one fewer kick of size
g∗k∗ − g0 is needed and hence the final value of r
becomes relatively much larger. Another feature to
note is that for all choices of M , there exists at least
one and possibly more fixed points of the map. As
stated in the proof of Theorem 1, the map must have
a fixed point because of the fact that it is piecewise
decreasing and the only discontinuity that can occur
happens when Π(r) = 0. Based on the graph of
these curves in Fig. 6, these fixed points all appear
to be stable, but this stability is not always main-
tained; for example, an unstable fixed point arises
when β = 5.0, M = 50 (data not shown). We will
return to this topic in the discussion.

As M increases with other parameters fixed,
progressively more spikes are fired in each cycle.
In the example in Fig. 6, for M ∈ {50, 55, 60, 65},
the numbers of spikes are {(149, 148), (164, 163),
(179, 178), (194)}, where the pairs provide spike
numbers before and after points of discontinuity.
The linear scaling of spikes with M makes sense,
since k1(r), k2(r), g∗k∗, and g0 are independent of M .
Furthermore, we note in Fig. 6 that as M is varied,

the slopes along the corresponding segments of the
graph remain the same. This relation is also consis-
tent with (15), which shows that the slope of these
graphs in between spike subtractions is independent
of M .

The observation that Π(r) always has a fixed
point for fixed M leads us naturally to the ques-
tion of what happens when M is no longer fixed,
but rather is determined by the rate of the recov-
ery of synaptic resources that occurs while a cell
is suppressed. We turn to this question in the next
subsection.

3.4. Recovery of synaptic resources

The argument in Sec. 3.2 shows that a cer-
tain synaptic release pattern yields a synaptically
exhaustive, optimally periodic, anti-phase bursting
solution for any fixed M sufficiently large, assuming
full recovery of synaptic resources back to the level
M between active spiking phases for each cell. Now,
let us more carefully consider the issue of recovery of
synaptic resources while a cell is suppressed. Denote
available resources as R and assume that while a cell
is suppressed

R′ = ρ(S − R), (16)

where ρ > 0 is a synaptic recovery rate and S >
M > 0 is a maximal level of resources available to
each cell. To be consistent with our earlier anal-
ysis, assume that R(0) = 0 for a formerly active
cell when it first becomes suppressed and ignore
recovery between spikes within an active phase. To
achieve recovery to the level R = M under Eq. (16)
with R(0) = 0 requires time

t∗ = −1
ρ

ln
(

1 − M

S

)
.

For consistency, we require t∗ = τ/2, where τ is the
period of the full bursting solution (including active
phases for both cells). This condition yields

T (r) + (m + 1)T + δr = −2
ρ

ln
(

1 − M

S

)
, (17)

where T (r) is the time it takes for the first spike in
the burst to be fired, which by construction differs
from T .

There are many ways to guarantee that (17)
holds. For example, the left-hand side of Eq. (17)
increases linearly in M , since m does. But the right-
hand side has a vertical asymptote at M = S and
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hence exceeds the left-hand side for S − M > 0
sufficiently small. Based on their slopes and the
intermediate value theorem, the two sides agree at a
unique value of M ∈ (2ĝ, S) provided that the left-
hand side of (17) exceeds that right-hand side at
2ĝ. The most straightforward condition that ensures
that this result holds is if S is sufficiently large,
as the existence of the anti-phase bursting solu-
tion simply requires sufficiently large M and is not
affected by still larger choices of S, while increas-
ing S can make the right-hand side of (17) become
arbitrarily small for each fixed M . Thus, we have
shown:

Theorem 2. Fix M > 0 such that Theorem 1
holds. For S sufficiently large, there exists a value
M > M such that a synaptically exhaustive, opti-
mally periodic anti-phase bursting solution exists
in which the synaptic resources of each cell are
fully exhausted during each active phase and recover
under Eq. (16) to the level M during each silent
phase.

Another way that (17) can hold is to fix M > 0
such that Theorem 1 holds. Then the left-hand side
of (17) is a constant. The right-hand side has the
two free parameters S and ρ. If we fix S > M ,
then clearly as ρ → 0, the right-hand side increases
monotonically and is unbounded. Thus there exists
a unique value of ρ at which (17) holds. This leads
to a second formulation of the existence of the anti-
phase bursting solution.

Theorem 3. Fix M > 0 such that Theorem 1 holds.
For each S > M, there exists a value of ρ such that
a synaptically exhaustive, optimally periodic anti-
phase bursting solution exists in which the synaptic
resources of each cell are fully exhausted during each
active phase and recover under Eq. (16) to the level
M during each silent phase.

Remark 3.3. We could generalize the above analysis
to include recovery of synaptic resources in between
spikes during each active phase. The expressions
involved would become more complicated, however,
without any new insights being gained. The above
analysis can be thought of as the specialization of
the more general case to the regime in which inter-
spike intervals are quite short relative to interburst
intervals, which is exactly the typical scenario for
neuronal bursting.

3.5. Dynamics of the map Π(r) and
optimal strategies for
anti-phase bursting

As noted earlier, Π(r) is a piecewise decreasing map
of the interval [0, k∗) into itself. Because discontinu-
ities can only occur at values where Π(r−) = 0 and
Π(r+) = k∗, the map must have a fixed point for
any fixed M above some value. Theorems 2 and 3
imply the existence of a synaptically exhaustive,
optimally periodic solution with recovery of synap-
tic resources, corresponding to the fixed point r∗
of Π(r) for some specific choice of M . The period
of this solution is 2(T (r) + T + mT + δr) where
δr = 0 if r∗ ∈ (0, gmin − g0) and δr > 0 if
r∗ ∈ (gmin − g0, k

∗). We express the period in this
manner to show explicitly how the various inter-
spike intervals contribute. Namely, T (r) + T rep-
resent the interspike intervals caused by synaptic
kicks k1(r) and k2(r), mT are the m interspike
intervals associated with subsequent kicks, and δr
is associated with the final synaptic kick.

We have not considered the stability of the fixed
point since its stability does not imply stability of
the optimally periodic solution. Indeed, the stabil-
ity of r∗ would only yield information about how
the coupled system responds to perturbations in the
last kick size but not, for example, perturbations in
the spike times of the active cell or synaptic kick
sizes prior to the last one. Given stability of the
fixed point, however, we can exploit perturbations
in kick sizes to determine alternative optimal synap-
tic strategies. That is, we consider an optimal strat-
egy that a cell can use to be one that maximizes the
number of spikes it can fire in a burst. Given this
definition, there may not be a unique optimal strat-
egy. Rather, there could be an infinite collection of
strategies that will allow each cell to fire m+3 spikes
per burst. We describe these here. All strategies are
variations of some sort on the solution that we found
above in Theorems 2 and 3, although the actual
anti-phase burst solution may technically not be a
periodic orbit of the dynamical system governed by
Eqs. (2)–(4) and hence we refer to such solutions as
optimal but not optimally periodic.

Theorem 4. If Π(r) has a globally stable fixed
point r∗ with m ≥ 3, then there exist infinitely
many synaptic strategies that lead to a synapti-
cally exhaustive, optimal anti-phase bursting solu-
tion. More precisely, assume that M,S and ρ are
chosen such that Theorem 2 or Theorem 3 holds,
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with an associated synaptic strategy given by kicks
{k∗

i } for i = 1, . . . ,m + 3 yielding a globally stable
fixed point r∗ of Π. Then there exists an infinite set
of synaptic strategies {ki}, i = 1, . . . ,m + 3 such
that each leads to a synaptically exhaustive, opti-
mal anti-phase bursting solution. For each of these
strategies, for each i ∈ {1, . . . ,m}, ki = k∗

i + εi with
εi ∈ [0, r∗], and for each strategy,

m+3∑
i=1

εi = r∗. (18)

Proof. For fixed M , suppose that Π has a globally
stable fixed point given by r∗ ∈ (0, k∗) correspond-
ing to a synaptically exhaustive, optimally periodic
anti-phase bursting solution with m + 3 spikes per
active phase. For this solution, the residual synaptic
resources left for the final spike in each active phase
are not sufficient to suppress the silent cell for one
more cycle. Thus, they are largely meaningless in
maximizing the number of spikes the active cell can
fire. Hence by redistributing some or all of r∗ among
the m + 2 spikes before the final one, we will not
change the number of spikes that occur within a
burst.

Suppose that for the first m− 1 kicks, ki = k∗
i .

Now, suppose that upon the mth spike, the active
cell gives the silent cell a kick of size km = k∗

m + εm

with εm ∈ (0, r∗). When the (m+1)st spike is fired,
the silent cell has g = g0 + εme−βT . Suppose that
the kick on this spike is of size km+1 = k∗

m+1 + εm+1

with εm+1 < 0 selected to place the trajectory of the
silent cell on ΩT , say with g = gm+1 < g∗k∗ . When
the (m+2)nd spike is fired, the silent cell has v = 1−
and g = gm+1e

−βT . Choose km+2 = k∗
m+2 + εm+2 =

g∗k∗−gm+1e
−βT , to place the trajectory at (1−, g∗k∗),

from which it will evolve to (1−, g0) in time T . Note
that k∗

m+2 = g∗k∗ − g0 and because trajectories from
ΩT cannot cross Λ(k∗), gm+1e

−βT < g0, such that
εm+2 > 0. Finally, let km+3 = k∗

m+3 + εm+3 with
εm+3 chosen to satisfy (18).

There are two conditions we must check to
ensure that the above choices are feasible. One is
that synaptic resources available at the (m + 2)nd
spike are at least equal to g∗k∗ − gm+1e

−βT . Mathe-
matically, this condition takes the form

r∗ + k∗
m+2 − εm+1 − εm ≥ g∗k∗ − gm+1e

−βT ,

or, since k∗
m+2 = g∗k∗ − g0,

r∗ − εm+1 − εm ≥ g0 − gm+1e
−βT . (19)

As εm → 0, it is clear that εm+1 → 0. In addition,
gm+1 → g∗k∗ , and by definition, g0 = g∗k∗ exp−βT .
Thus the right-hand side also tends to 0. The posi-
tive term r∗ is independent of εm, so we can ensure
that condition (19) holds for εm sufficiently small.
Secondly, we need the synaptic resources remain-
ing at the (m + 3)rd spike to be small enough that
the final kick keeps g < g∗k∗. Mathematically, this
condition is

g0 + k∗
m+3 + εm+3 < g∗k∗ .

We have k∗
m+3 = r∗ and εm+3 = −(εm + εm+1 +

εm+2). Since g0 +r∗ < g∗k∗ , this condition also holds
for εm sufficiently small.

These choices of perturbations ensure that the
silent cell remains suppressed in a way that allows
the active cell to fire m + 3 spikes. For εm suf-
ficiently small, the silent cell trajectory has g =
gm+3 ∈ (g0, g

∗
k∗) after it receives input km+3. More-

over, at that time, it has v = 1−. Hence, the silent
cell spikes before the active cell can spike again.
The stability of r∗ ensures that following the origi-
nal strategy on subsequent cycles will yield conver-
gence of the synaptic remainder back towards r∗.
Once the trajectory is sufficiently close to the opti-
mally periodic solution, an alternative strategy as
described above can be selected again without loss
of optimality.

The above argument already supplies infinitely
many optimal strategies, since εm can be any suf-
ficiently small positive real number. Furthermore,
the same idea can be applied to spikes before spike
m, specifically to spikes 3, . . . ,m, as long as the per-
turbed kicks are sufficiently small that (18) can be
satisfied in a way that yields gm+3 ∈ (g0, g

∗
k∗). �

In practice, the fact that Λ(k∗) is attract-
ing suggests that the special choices of εm+1, εm+2

would not be needed to attain optimality, at least
for m sufficiently large. Similarly, we expect that
sufficiently small perturbations to all k∗

i would
maintain optimality without these adjustments, and
that local stability of r∗ would suffice to allow opti-
mality to persist under these small perturbations.

In the event that there are two fixed points
r∗1 < r∗2 of Π, the smaller valued fixed point cor-
responds to a burst with m + 3 spikes versus m + 2
for the larger one. The optimal strategy is therefore
the one associated with r∗1. If the network is oper-
ating with the strategy associated with r∗2, then at
the start of the next burst, it should reallocate k1
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and k2 to redirect the solution towards the fixed
point r∗1.

Solutions found in this way suggest that the
optimal strategy is robust and to some degree insen-
sitive to the exact value of the synaptic input. In
other words, small changes in synaptic kick sizes are
permissible so long as each kick (except for the last)
remains above k∗. In this sense, the class of optimal
strategies is also robust to noise and perturbations,
with the degree of robustness corresponding to the
size of the residual synaptic resources, r∗, left over
at the final spike of each burst.

3.6. 1-1 anti-phase solutions

For this section, we present a proof of 1-1 anti-phase
spiking since the above analysis applies only to the
bursting case. We again neglect recovery of synapses
between spikes and we consider solutions in which
the two cells take turns firing, with equal inter-
spike intervals. Mathematically, if we let 2τ denote
the period of these solutions and v1(t−) = 1 with
g1(t−) = k for some t, then we have (1, k) = (v1(t+
2τ), g1(t + 2τ)) = (v1(t + 4τ), g1(t + 4τ)) = · · · =
(v2(t + τ), g2(t + τ)) = (v2(t + 3τ), g2(t + 3τ)) = · · ·
and (v2(t), g2(t)) = (v2(t + 2τ), g2(t + 2τ)) = · · · =
(v1(t+ τ), g1(t+ τ)) = (v1(t+3τ), g1(t+3τ)) = · · ·;
that is, the two cells exchange positions from one
firing event to the next.

First, consider a segment {(v, g) : v = 1, 0 ≤
g ≤ gmin} at threshold. Suppose we flow this seg-
ment backwards in time under the time-reversed
flow of (3). Obviously, the trajectory emanating
from its bottom endpoint simply lies along {g = 0}.
On the other hand, the trajectory emanating from a
point (1, g) for g sufficiently close to gmin intersects
the v-nullcline at some minimal value of v and then
continues back towards {v = 1}. By shooting, there
exists a g− ∈ (0, gmin) such that under the back-
wards flow of (3), (1, g−) · t → (E,∞) as t → ∞
(here, t refers to backwards time).

For each g ∈ [0, gmin], compare the forward
trajectory of (3) from (0, g), which belongs to
the set {0 ≤ v ≤ 1}, say γ+

0 (g) = {(v, g) =
(v+

0 (t; g), ge−βt) : t ≥ 0, v ≤ 1}, to the backward
trajectory from (1, g) inside {0 ≤ v ≤ 1}, say
γ−

1 (g) = {(v, g) = (v−1 (t; g), geβt) : t ≥ 0, v ≤ 1}
(where in the latter case we again abuse nota-
tion and use t to refer to backwards time). For
each g ∈ [0, g−], there exists a unique t(g) such
that v+

0 (t(g); g) = v−1 (t(g); g) ∈ (0, 1); for g = 0,
for example, t(0) = T/2. By continuity, such t(g)

also exists for g > g− as long as g − g− is suf-
ficiently small. On the other hand, for g = gmin,
the backwards flow immediately leaves {v ≤ 1}
as soon as t > 0, so t(gmin) is not defined. Let
g̃ = sup{g ∈ [0, gmin] : t(g) exists on [0, g]} > g−.

Proposition 3. For each g ∈ [0, g̃], there is a synap-
tic kick size

k̃(g) = g(eβt(g) − e−βt(g)) > 0 (20)

for which there exists a periodic 1-1 solution with
reset conditions (v, g) �→ (0, g) for the firing cell and
(v, g) �→ (v, g + k̃(g)) for the nonfiring cell. The
period of the solution is 2t(g).

Proof. Fix g ∈ [0, g̃] and let k̃(g) be defined by
Eq. (20). Choose the initial condition (v1, g1)(0) =
(0, g) for cell 1 and the initial condition (v2, g2)(0) =
(v−1 (t(g); g), geβt(g)) for cell 2. The choice of initial
conditions for cell 2 ensures that after time t(g),
v2(t(g)−) = 1 and g2(t(g)−) = g. Thus, cell 2 fires
at time t(g) and is reset to (v2(t(g)+), g2(t(g)+)) =
(0, g), which is exactly the initial position of cell
1. The definition of t(g) implies that after time
t(g), v1(t(g)−) = v2(0), while g1(t(g)−) = ge−βt(g).
Because cell 2 fires, g1(t(g)+) = g1(t(g)−) + k̃(g) =
g2(0), while v1(t(g)+) = v2(0). Thus, after time
t(g), cell 1 has assumed the initial position of
cell 2. In summary, after the reset, the two cells
have switched places, and a 1-1 anti-phase solution
results. �

Note that the synaptic kick size k̃(g) from
Eq. (20) is a strictly increasing function of g, with
k̃(0) = 0. Thus, the set of kick sizes for which 1-1
solutions exist is bounded above by k̃(g̃). Larger
resets will result in solutions for which one cell
remains suppressed for more than 1 spike of the
other cell, at least on some cycles.

4. Discussion

The primary focus of this paper has been the deriva-
tion and analysis of the one-dimensional map Π(r).
Maps that are derived in the context of coupled neu-
ronal networks often are either Poincaré maps in the
phase space of the dynamic variables or interspike
interval maps that strobe the network each time a
spike occurs. Our map Π(r) is instead a generalized
return map, defined at a particular spiking event,
but one that is based on a quantity r that is not
an explicit variable of the model under study but
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rather a derived quantity that turns out to be use-
ful. The map-based approach used here is somewhat
similar in style to earlier analysis of the induction of
activity using an event-based map [Rubin & Bose,
2006], but the details are quite different. We devel-
oped a novel method to numerically solve a dou-
ble boundary value problem to be able to compute
the graph of the map. We were analytically able
to explain many of the properties observed in our
numerical results. We find fixed points of Π(r) that
correspond to anti-phase solutions in which each
unit in our two-cell network fires a burst of max-
imal length, meaning that it fires as many spikes as
possible, or equivalently stays active for the longest
possible time, before the other unit activates and
takes over.

Somewhat unexpectedly, the map Π(r) exhibits
coexistence, and apparent bistability, of fixed points
for a wide range of parameter sets. This is a conse-
quence of two facts: one, Π(r) is piecewise decreas-
ing, and two, the nature of the discontinuity forces
the jump at the discontinuity to be an increase
across the entire range of the map. Piecewise con-
tinuous maps often give rise to quite complicated
dynamics and even chaos through border collision
bifurcations [Nusse & Yorke, 1992]. For the range
of β values that we focused on, although the dis-
continuity of Π(r) moves, the fixed points of the
map continue to exist and do not lose stability,
such that complicated dynamics are avoided. We do
note, however, that as β increases, our exploratory
numerical results suggest that the slope of the map
may drop below −1. This effect only arises near the
transitional point r = gmin − g0, but it may induce
unstable fixed points (e.g. for β = 5.0, M = 50).
In turn, this instability raises the possibility of
more interesting dynamics that remain to be fur-
ther explored.

After we define Π(r), it is not difficult to
enhance our model and extend our analysis to
include the recovery of synaptic resources, such
that the resources available to a cell when it first
becomes active are determined by the evolution of
a recovery equation while the cell is silent. Imposing
consistency between the resources expended over
the course of each spiking phase and the resources
recovered during each silent phase, we find that
there always exists some resource level for which
the corresponding fixed point achieves consistency.
That is, the constraint of dynamic resource recov-
ery selects a particular resource level and phase

duration at which the system can exhibit periodic
oscillations. Furthermore, we show that, if the con-
sistent strategy is stable as a fixed point of Π(r),
then it is in fact robust to small perturbations of
the sizes of the synaptic kicks induced at each spike,
which is an essential property for the use of such
strategies to derive sustainable anti-phase bursting
activity patterns in networks of oscillators coupled
with inhibition.

The solutions that arise as fixed points of Π(r)
are optimal, in the sense that at each spike time of
the active cell, the suppressed cell is itself as close
as possible (in a precise mathematical sense) to the
threshold. Any reduction in synaptic kick size would
allow the suppressed cell to take over after fewer
active cell spikes, while any small increase would
correspond to wasted synaptic resources that do
not lead to extra active cell spikes. On the other
hand, we have not proved that these strategies
achieve global maximization of spike numbers over
the entire space of possible synaptic strategies. In
particular, we do not compare them to “big kick”
strategies [Wang et al., 2011] in which one spike
is accompanied by a very large release of synap-
tic resources that keeps the silent cell suppressed
for multiple spikes of the active cell. Past work
has shown that in certain parameter regimes in
networks with excitatory coupling and constrained
synaptic resources, big kick strategies can maximize
the number of spikes that an excited neuron can
fire [Wang et al., 2011]. Here, we do not expect big
kick strategies to be useful, because the exponential
decay of the coupling variable causes it to decline by
a relatively large amount within a fixed interspike
interval when it begins from a large value, but we
have not considered them rigorously.

This work is largely motivated by the study of
central pattern generating neuronal networks that
are responsible for vital motor functions. These net-
works often exhibit characteristic anti-phase burst-
ing activity [Grillner, 1985; Marder & Calabrese,
1996; Marder & Bucher, 2001], and these patterns
are typically produced by groups of neurons that
communicate using synaptic inhibition. The period
and duty cycle (ratio of burst length to period) of
neurons within the oscillatory pattern are impor-
tant quantities to modulate as they may lead to dif-
ferent motor outputs [Butera et al., 1999; Marder &
Bucher, 2001; Briggman & Kristan Jr., 2008]. This
modulation is often achieved by specifically chang-
ing intrinsic or synaptic properties [Marder & Prinz,

1540004-16

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

5.
25

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
07

/1
6/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



July 7, 2015 10:16 WSPC/S0218-1274 1540004

Strategies to Maximize Burst Lengths in Rhythmic Anti-Phase Activity of Networks

2003; Mitchell & Johnson, 2003; Morris et al., 2003].
In this paper, we have taken a different approach
to controlling the oscillatory pattern. Namely, we
have allowed the constituent elements to decide how
much synaptic output is needed at each spike to
achieve a desired outcome. In this case, we looked
for strategies to maximize the number of spikes a
neuron can fire before it uses all of its synaptic
resources. Although there is currently no evidence
that neuronal networks solve the optimization prob-
lem that we have posed, the robustness of the
strategies we derive suggest that these could be
biologically relevant and should be considered in
the design and interpretation of future experiments.
Our analysis also inherently reveals strategies that
neurons can employ in order to fire any number of
spikes up to the maximum before relinquishing con-
trol of firing to the other cell. By simply providing
a synaptic kick of less than k∗ after an appropri-
ate spike, the currently active cell can initiate the
switch to becoming silent. Thus, a network could
be induced to switch phases prematurely by the
action of a modulator that transiently compromised
synaptic release, and other neuromodulatory effects
on synaptic dynamics could also be considered [Has-
selmo, 1995; Gil et al., 1997; Marder & Bucher,
2001; Cobb & Davies, 2005; Briggman & Kris-
tan Jr., 2008; Harris-Warrick, 2011]. We can also
generalize our findings to larger networks of neu-
rons that break up into two clusters of cells. If the
network is all-to-all coupled, one can easily envision
how cells from one cluster could take turns firing,
individually using up their own synaptic resources,
but never allowing cells from the other group to
gain control of the activity pattern. Another obvi-
ous problem that can naturally be considered with
this analysis is the relationship between activity
patterns and synaptic strategies when a cell can
provide different amounts of synaptic input to dif-
ferent postsynaptic targets.

There are several other extensions to our anal-
ysis that one could consider. Perhaps the most
compelling and straightforward one would be to
consider the effects of synaptic plasticity. If, for
example, the synapses exhibited short-term synap-
tic depression, then the active cell would need to
balance its own firing rate versus the depression
and recovery rates in order to solve the optimiza-
tion problem. This would add a layer of complica-
tion that would be quite interesting to model and
analyze. A second natural extension would be to

consider a network of neurons exhibiting activity
with more than two phases. One need only con-
sider a network of three neurons to begin exploring
such questions. For example, the pyloric rhythm of
the crab stomatogastric ganglion consists of three
major groups of neurons firing out of phase with
one another in a tri-phasic rhythm [Hooper, 1997;
Mouser et al., 2008]. Here a relevant question is
what sets the relative phase of firing of each group
of neurons. This question is directly related to how
long each group remains active and what are the
mechanisms responsible for the switching of cells
from being silent to active. One can imagine how
issues like the ones we consider may arise in estab-
lishing synaptic properties during the development
of rhythmic neuronal networks.
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Appendix A

Here we present a general modeling framework to
which the analysis done in this paper will general-
ize, such that we can identify strategies that give
rise to optimal anti-phase bursting solutions. Con-
sider a pair of oscillators coupled through mutu-
ally inhibitory interactions, defined more precisely
below. Assume that a certain variable quantifies the
state of each oscillator and that when this vari-
able reaches a threshold, an oscillator is able to
(i) fire a spike, and (ii) determine the strength
with which it inhibits the other oscillator. Sup-
pose we impose a reset condition such that once
an oscillator’s state variable reaches threshold, it
drops back to some low level. Finally, assume
that each time an oscillator fires, the amount by
which it boosts its inhibition of the other oscilla-
tor is independent of the boosts associated with
all other firing events. Within the inhibitory two-
oscillator network, we refer to the unit that most
recently reached threshold as active and the other as
silent.

Suppose that at some time t0, a silent oscilla-
tor activates and thus switches to active and renders
the other oscillator silent. Suppose that the newly
active oscillator stays active until a switching time
ts > t0. Without loss of generality, let t0 = 0. Math-
ematically, we write the equations that govern the
behavior of a silent oscillator for t ∈ [0+, ts] as

x′ = f(x, g),

g′ = −βg +
∑

i

kiδ(t − ti)
(A.1)

where f is smooth in both arguments and {ti}, i =
1, . . . , N is a finite collection of times with ti−1 < ti
for i ≥ 2 and each ti ∈ (0, ts). The times {ti} cor-
respond to spike times of the active oscillator. We
assume that

∑
i ki ≤ M , where M > 0 is some

bound and the sum is over the N inhibitory boosts
that the oscillator receives during all the consecu-
tive activations of the active oscillator; for now we
leave N unspecified. We also assume that:

(A0) f(0, g) > 0 for all g,
(A1) ∂f/∂g < 0, such that g corresponds to an

inhibitory input,
(A2) ∂f/∂x < 0, and
(A3) f(x, g) = 0 has a solution g = g(x) such that

g(x∗) = 0 for some 0 < θ < x∗ < ∞, with
θ defined below. Note that differentiation of

f(x, g(x)) = 0 yields g′(x) < 0, by (A.1)
and (A.2).

We fix equations for the active oscillator for t ∈
[0+, ts] based on a threshold θ > 0 as

y′ =

{
f(y, h), 0 < t < t1

f(y, 0), t1 < t ≤ ts

h′ = −βh, 0 < t < t1,

(A.2)

where t1 = inf{t > 0 : y(t) = θ}, which we assume
is a well-defined positive number, and we no longer
track h after time t1. We also assume that the
synaptic resources of the silent cell follow the synap-
tic recovery equation (4) and we impose the reset
condition y(t) = θ ⇒ y(t+) = 0, such that y(ti) = θ
for all i = 1, . . . , N . With this notation, our defini-
tion of ts means that 0 ≤ x < θ for all t ∈ (0, ts),
that t1 < ts, and that x(ts) = θ, y(ts) < θ both
hold. Our use of y′ = f(y, 0) for t ∈ (t1, ts) is an
approximation motivated by the idea that when the
inhibition to an oscillator gets sufficiently small, its
effect is negligible.

Consider a pair of oscillators described by vari-
ables (u, v, a, b, P,Q) defined as follows: u, v repre-
sent the states of the oscillators, a is the strength
of the inhibition from the v-oscillator to the u-
oscillator, b is the strength of the inhibition from
the u-oscillator to the v-oscillator, P is the amount
of resources that v has available to inhibit u, and
Q is the amount of resources that u has avail-
able to inhibit v. We can define one cycle of a
periodic oscillation of period τP + τQ as a function
(u, v, a, b, P,Q) of time such that (u, a) satisfy sys-
tem (A.1) for t ∈ (0, τP ) and system (A.2) for t ∈
(τP , τP + τQ), while (v, b) satisfy the same systems
on complementary time intervals, with u(τP ) =
θ, v(τP ) < θ, v(τP + τQ) = θ, u(τP + τQ) < θ, such
that switching occurs at times τP and τP + τQ, and
also such that P satisfies Eq. (4) on (0, τP ) and Q
satisfies Eq. (4) on (τP , τP + τQ).

We choose initial conditions to ensure conti-
nuity and extend this to a periodic oscillation on
all time in the natural way. Specifically, for the
sake of simplicity, let τ/2 = τP = τQ. Then for a
periodic oscillation to be well-defined, there must
exist a natural number N , a sequence of times
{ti}, i = 1, . . . , N in (0, τ/2) as described above,
and a sequence of kicks {ki > 0}, i = 1, . . . , N
together with an M ≥ ∑

i ki such that if P (0) =
s0 := M − ∑

i ki and P flows under Eq. (4), then
P (τ/2) = M . We impose this s0 as our value
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for P (0) and for Q(τ/2) and assume that P and
Q are governed by (4) on (0, τ/2) and (τ/2, τ),
respectively, such that P (τ/2)=M and Q(τ) = M .
To form a periodic orbit, we decrease P by ki at
each time ti ∈ (τP , τP + τQ) such that u(ti) = θ,
and similarly for Q when v(ti) = θ for ti ∈ (0, τP ).

For a model that satisfies the assumptions given
above, including (A0)–(A3), for fixed parameter val-
ues, we expect the main results obtained for the
integrate and fire model to hold for the more gen-
eral model, with similar justification to the analysis
presented in this paper.
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