Modeling Change One Step at a Time

Mathematics required:
derivatives as limits to differences

Mathematics developed:
solution methods for linear first-order ordinary differential
equations; solution to difference equations through iteration

3.1 Introduction -
Let us do something simple but practical for a change: compound
interest and mortgage payments. Without a strategy, one can get over-
whelmed by the complexity very quickly even for this simple problem.
We will introduce the difference equation as a modeling tool. It allows
us to consider changes in time from one step to another, one step
at a time.

3.2 Compound Interest and Mortgage Payments
Consider three problems of increasing complexity, all involving com-
pound interest.

Your Bank Account

Let P(t) be your account balance at time ¢. P(0) = Py is your initial

deposit. From then on, it is earning interest at a fixed inferest rate r.
The quantity r has the dimension of (time)~!. For example, r = 6% per
year. Without compounding, the interest you earn in one year is simply
(r Py - Tyr) and so

P(1y1) = Po(1 -+ - 1yn).

Often bank savings and certificates of deposit carry compound interest.
Let At be the compounding interval. If your balance is compounded
monthly, then At = lmonth = lizyr. One month after your initial
deposit, you earn interest of

Py-1r- AL

3.2¢C
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That is added to your account, which becomes

Py - (1+ rAf).
“ime _ _
This larger amount then earns interest for the next month at the rater.
9 At the end of two months, your balance becomes
PEAY = P(AD) - (1 +rAb),
and so on.
fifferential Since there is no interest. compounding within At, the equation
ugh iteration governing the change of your balance in one Af step is actually quite
simple;

Pt + Af) = P(f) - (1 +rAD). (3.1)

re: compound
e can get over-
mple problem.
tool. It allows
pther, one step

This is a difference equation. It describes how P(t) evolves from one time
step to another. We have accomplished our modeling process for this
problem of compound interest once we have written down Eq. (3.1).
Solving Eq. (3.1) is simply a mathematical exercise.

Solution -
Equation (3.1) can be solved either by assuming P(f) = ci! as before, or
_ involving com- by iteration, starting with t = 0:

P(AD) = Py - (1 +rAD),

is your initial PRAY = P(AL) - (1 +rAl) = Py - (1+r At
8]
d interest rate r,
aple, r = 6% pet

ne year is simply P(mAt) = Py - (1 + rAD™.

This last equation can be rewritten as

npound inter
is compounds
fter your init

P(t) = P(0)- (1 +rApf/aL, (3.2)
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Your Mortgage Payments, Monthly Interest Compounding

Suppose you borrow Po from the bank to buy a house and agree to pay
interest at the fixed rate r compounded monthly. You also agree to
pay the bank a fixed amount M monthly. Suppose the loan is for
30 years. After 360 monthly payments you pay off both the originai
principal and interest completely. What is M, and how much total
interest have you paid when it is all over?

The problem is simpler if we consider the change over a single Af.
In one At, the principal increases because of the simple interest, but
reduces by the monthly payment of M. Thus

P+ A0 =P®-(1+rA) ~ M. (3.3)

After we solve Eq. (3.3), we set P(0) = Py and P(30 years) = 0, and we
will get M.

Solution

Let R = (1 + r At) be the growth factor due to interest accrued during Af,
just before a payment is made. Equation (3.3) is, in terms of R,

P(t+ At =P()-R—- M.

Itis solved by iteration:

P(At) = Py-R— M,
PQ2AD)=P(A)-R-M=[Py-R—M]| - R— M,
PQBA) =PQ2At)-R—M=Py-R*—M-[1+R+R%,

PmA) =Py - R"—M-[1+R+R*>+... 4+ R™1).

The sum inside the square brackets is a geometric series, which can be
summed exactly using the following trick. Let

S=1+R+R*+...+R™,
RS=R+R*4...4 R™14 pm
S—RS=1-R"™ ‘

Solving for S, we get

S =(1—R™/(1—R).

You



g Change 3.2 Compound Interest and Mortgage Payments 57

Therefore,

ee 1o pay

agiee 1o L
' ; 1 R™

;1ch total

single I?tt In a 30-year mortgage, we want
rerest, bu

P (360 months) = 0,

(33) 1 — R360
0=m.ﬁmmM7—§ﬂ
0, and we -
and we can solve for the correct monthly payment that will allow you
to pay off your loan in 30 years:
| dugring At,
R
’ R-1)
_p,.p0. _R-D 3.5
M=Po R (3.5)
Your Mortgage Payments, Daily Interest Compounding
Most mortgages carry a daily compounding interest. The repayment is
still on a monthly basis. This introduces a complication because the
R* interval over which interest compounds is different from the payment
interval. We choose At to be the interval between mortgage payments.
We will have, one At later,
PE+A)=P({t)-R— M.
which can be However, the growth factor R is now due to interest compounded daily

over a period of one month. For now we take one year to be 365 days and
one month to be 365 days/12. Thus, from Eq. (3.2), for compounding
- interest without repayment, we have

365/12
R = (1 +r- %yr) . (3.6)

The solution is still Eq. (3.4) and Eq. (3.5), but with R replaced by
Eq. (3.6).

4}
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3.3 Some Examples
Example 1
Suppose you porrowed $100,000 to buy a condominium at 10% annual
interest, compounded monthly. What should your monthly payment
be if you want to pay off the loan in 30 years? -
Solution
We want to find M such that P(360 months) = 0. This yields from
Eq. (3.5):

R-1)
(R0 - 1)

0.1\ /0.1

= $877.57.

M=Py- R

This is the required monthly payment if the § 100,000 original loanisto
be paid off in 360 equal monthly installments.

Example 2
What is your monthly mortgage payment if you borrow $100,000 for 3}
years at 10% annual interest, compounded daily?

Solution
We use the same formula as in Example 1, except with

365/12
=14+ — = 1.008367.
e (1 22" = oosae
So

M = $100,000 - (1.00836)%° - (0.00836) /[(1.00836)°% — 1]
= $880.55.

The required monthly mortgage payment is $881. You pay aboul
more per month with daily compounding of the money you owWe &
pared with monthiy compounding. :

3.4 Compounding Continuously
We would like to calculate the account balance for various €
ing frequencies n within a year. We have found, from (3.2);
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balance after one year is

H
anual ' P(lyr) = Py - (1 +r- (}-yr)) )
ment ; H
where 7 is the number of times within a year that interest is deposited
into the account for the purpose of subsequent compounding. Table 3.1
; from lists the year-end balance for an initial $1,000 deposit under various
’ compounding frequencies.
Continuous Compounding
If the interest is compounded continuously, # — co. We have
1 n
P(lyn) = Py -35{)10 (1 +r- (;yr)) .
The symbol e, in honor of the Swiss mathematician Leonhard Euler
an is to (1707-1783), is assigned to the limit:
1 mn
lim (1 + —) =e=271828....
=00 F41]
)0 for 30
By letting L =r - (1yr), we can show that
1 M 1 m(r-1yr) 1 - (r-1y1)
lim (1+r-(»~yr)) = lim (1-{——) =[lim (1+-) :[
o0 H H— 00 £ HE— 00 m
— e(r-lyr).
So the formula for the balance after one year of continuous compound-
ingis
-1]
P(lyr) = Pye" v,
about $3 It can be shown easily that at any time ¢,
owe Com-
P(t) = P(O)e'". (3.7)
ompound- It is even simpler than the “discrete compounding” formula we wrote

1, that the down earlier, as it only depends on r (no n-dependence) (see Table 3.1).
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TasLE 3.1 yielg
Compounding interest at r = 6% on an original principal Po = $1,000 ‘

- Compounding Frequency n Year-End Balance Annual Yield

Annually 1 $1,060.00 6% It sex
Semiannually 2 $1,060.90 6.090% it tal
Quarterly 4 $1,061.36 6.136% W
Monthly 12 $1,061.68 6.168% were
Daily 365 $1,061.83 6.183% was .
Instantly 00 $1,061.84 6.184% use,

) of he

The “annual yield” is calculated from (P — P}/ Ppand islisted in the right column.

There is actually very little difference (0.016%) between the interesl
earned from continuous compounding and that from daily compound

ing. Itamounts to about 1£on a principal of $1,000. Agai
Double My Money: “Rule of 72,” or Is It “Rule of 69”7

In financial circles there is a mythical “rule of 72.” It says that if you

divide the APR, the annual percentage rate (i.e., 100 times r times ! SO

year), into 72, you will get the number of years it takes to double your

money. As is often the case with these “ryles” created by nonscientisis,

there is no specification of the conditions under which the formuli

is valid. The accuracy of the rule actually depends on the magnitu This

of r and how it is compounded, as we will see. In any case, the rile on W

is supposed to work this way: if you are earning 6% interest annually, will s
the a

APR = 6. Divide 6 into 72, and you get 12. So it takes 12 years to double;
your money at a 6% interest rate. Let us see if it is right.

First consider the case where the annual jnterest rate r is con
pounded daily (this is the case in most bank savings accounts). Since w
have shown that there is very little difference in the yield between <l
compounding and continuous compounding, we will use the latter
approximate the former. Starting with a principal of P(0), after f yei
we have in our savings account

P(t) = P(O)e".

We want to find the t = t for which P(r)/P(0) = 2. Thus
2=¢".
Take the natural log on both sides, and since In2 = 0.693, we have

rr =1n2 = 0.693,
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vielding
(z/yr) == 69/APR.

It seems that the rule should have been called the “rule of 69,” and that
it takes 11.5 years to double your money at an APR of 6.

Well, perhaps the financial people who came up with this rule of 72
were not thinking of daily or continuous compounding. Perthaps there
was no compounding within each year. To resolve this ambiguity, let’s
use, instead of APR, the AY, the annual yield (in percent). So, regardless
of how often we compound within a year, we always have

AV Wyn
100)

P(t) = P(0) (1 + =

Again we seek the t = r for which P(z)/P(0) = 2:

AY
In2 = (z/yr)in (1 + 1_0_6) ,

AY
(r/yr1) = 0.693/In (1 + T{jﬁ) .

This formula is not so easy to use. We should not forget that most people
on Wall Street may not know what In is. Since an approximate formula
will suffice, and we know that In(1 + x) = x for |x| < 1, we approximate
the above formula by

T = 69/ AY years, provided that |[AY/100| < 1.

Thus we again obtained the rule of 69, for small annual yields.

Table 3.2 compares various approximations with the exact value
of 7, the number of years it takes to double the original investment,
Neither approximation is perfect, but the rule of 72 appears to give a
better approximation to the exact value for AY between 6 and 8, amore
- commonly encountered range for interest rates, while the rule of 69
* gives a better approximation for AY of 2 or less.

We thus see that the rule of 72 is an ad hoc formula because it is
' not derived mathematically. The rule of 69, on the other hand, is a
mathematically correct (asymptotic) approximation for small AY; the
approximation is better the smaller the AY. The rule of 69 is also almost

exact for any interest rate as long as the compounding frequency is daily
or more often.

o
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TasLE 3.2 Continuol
Years to double an original investment for various annual yields It

1ir

AY Exact 72/AY 69/AY

2 35.0 36 34.5
4 17.7 18 17.3
6
8

119 12 1L.5

9.0 9.0 8.6

10 7.3 7.2 6.9
12 6.1 6.0 5.8
14 5.3 5.1 4.9
16 4.7 4.5 4.3
18 4.2 4.0 3.8
20 3.8 3.6 3.5
25 31 2.9 2.8
30 2.6 2.4 2.3
35 2.3 2.1 2.0
40 - 21 1.8 1.7
45 1.9 1.6 1.5
50 1.7 1.4 1.4
60 1.5 1.2 1.2
70 1.3 1.0 1.0
80 1.2 0.9 0.9
90 11 0.8 0.8
1.0 0.7 0.7

3.5 Rate of Change
The difference equation (3.1) for compound interest can also be written
in the form of a rate of change:

P+ M) —P® _ iy
At - '

Equation (3.8) says that the time rate of change of P(t) is proportiondk
P(¥) itself, and the proportionality constant is r. If the rate of chang
P(¢) is in addition reduced by withdrawal at the rate of w(t) = W)/
we say

P(t+ A;i— PO _ypt) - wid.

Equation (3.9} is the same as Eg. (3.3); it is just rewritten inafo
emphasizes that it is the rate of change that is being modeled.
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Continuous Change
It is now quite easy to go to the continuous limit. We simply take the
limit as At — 0and recognize that

Pt+AD-P@® d
= =P,

lim
At->0 At

Equation (3.8) reduces to the differential equation:

d
ZP® =P, (3.10)

whose solution is (see Appendix A)

P(f) = Poe™,

the same as Eq. (3.7), obtained earlier.
Alternatively, one could view the solution to Eq. (3.10) as the contin- ¥

uous limit of Eq. (3.2) as At — 0. The limiting process done to arrive at

(3.7) then tells us that P(t) = Ppe"* is the solution to Eq. (3.10) because

that equation is the limit of the discrete equation (3.8) whose solution

is (3.2). Equation (3.9) becomes, in the continuous limit:

d
PO =rP(t) —w(®).

Similar equations are used to model a variety of phenomena. One
example that we will discuss later is the harvesting of fish (where w(f)
is the harvesting rate and P({) is the fish population), although the way
the fish population “compounds” needs some modification.

> written

.6 Chaotic Bank Balances
Although we will wait until chapter 7 to discuss the phenomenon of
deterministic chaos, we cannot resist the temptation to give one example
here. Normally we expect our bank account balances to be precisely
predictable (to the cent). Here is an example where a precise formula
for calculating balances can yield chaotic values.

Most banks do not pay interest on “dormant accounts.” In the state of
Washington, your bank account is considered “dormant” if there are no
deposits or withdrawals for 5 years. One possible reason for this practice
is to avoid the astronomical sums that can build up through interest
compounding over a long period of time, which can bankrupt the bank

- if later claimed.

An alternative way to avoid this is to specify a maximum amount,

K, that a bank is willing to pay out to any account, and have the

(3.8)

rtional t0
change of
: W)/ AL,

(3.9)

| form that
1.
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interest rate reduced gradually asthe account balance approaches K. For
table formula for the account

continuously compounded interest, a sui
balance P () at an initial interest rate r is

d P()
HEP(t)er(t)(l———j-(-——)

e on this formula beforehand.
automatically without human

The depositor and the bank can agre
The balance can then be calculated
intervention.

Now, since most ban

version is more appropr
able (it seems), discrete formula:

Pt+AD - P _P@®
‘_d—_—dat _r-P(t)-(l K)’

where At is the compounding period, taken to be one year for our
t to normalize all P(t) by

present problem. 1t will also be convenien
K. For example, if K = §1 million, then all dollar amounts will he

measured in millions of dollars. 50, for p(f) = P(H)/K, the formula cail

be rewritten as

ks do not pay interest continuously, a discrete
iate. We consider the following, rather reason

plt+ A = p® +rat-p®) -1 - p).

0% per year compounded yearly:

The bank pays a huge interest of 30
you sell your house and put the;

(i.e., r At = 3). Sensing an opportunity,
proceeds, $58,000 (p(0) = 0.058),in the bank.

a. Calculate your account balance after 45 years. Since most
banking institutions want to be accurate to the penny,
keep nine decimal places in your calculator for p(t).

b. You want to be more accurate and keep an extra digit. Do
the calculation in (a) again, but this time keep 10 decimal
places in your calculator.

¢. Suppose you want to withdraw your money after 43 years.
If you had a choice, would you prefer to have the more
“accurate” way of computihg interest (i.e., keep 10 decimal

places instead of 9)?

Solution
Table 3.3 lists the values of P, = p(nat) for Caleulator 1, which k

digits after the decimal point for P(t) (and hence is accurafe to the
and for Calculator 2, which keeps 10 digits (and hence is accil ;
0.1 cent). 7 = 1 is one year later, n = 2 is two years later, etc. %

3.7 Exercises

TABLE 3.3
Balance P, after

$58, 000
$221, 908
$739, 902

$1,317,242

$63, 585
$242 211
$792, 846

$1, 285, 569
$184, 212,
$635, 047.

31, 330, 333.
" $11, 970.

¢ $47,452.
$183, 053.
$631, 688.

$1,329, 662.

514, 641 .
$57, 922,

$221,626.:
$739, 150.
$1,317.571.¢
$62, 301.:
$237, 560.¢
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TaBLE3.3
Balance P, after n years

65

n | Py (Calclator 1) Py (Calculator 2) n Py (Calculator 1) Py (Calculator 2)
0 $58,000.000 $58,000.0000 || 23 $780, 938.022 $780,094.1514
1 $221, 908.000 $221,908.0000 || 24 | $1,294,159.505 $1,294, 735.9504
2 $739,902.518 $739,902.5186 25 $152, 091.546 $149, 920.2578
3 $1,317,242.863 $1,317,242.8633 26 $538, 970.668 $532, 252.7801
4 $63, 585.171 $63,585.1704 27 | $1,284,414.529 $1,279, 132.0546
5 $242, 211.462 $242, 211.4599 28 $188, 496.069 $207,991.7790
6 $792, 846.671 $792, 846.6656 || 29 $647, 391.971 $702, 185.3756
7 | $1,285,569.152 $1, 285, 569.1569 30 | $1,332,218.791 $1, 329, 548.5972
8 5184, 212.474 $184, 212.4560 31 $4,454.442 $15,095.9718
9 $635,047.189 $635,047.1371 32 $17,758.241 $59,700.2221
10 | $1,330,333.959 $1,330,333.9493 33 $70, 086.898 $228, 108.5388
11 $11, 970.508 $11,970.5472 34 $265, 611.072 $756, 333.6387
12 $47,452.152 $47,452.3067 35 $850, 796.563 $1,309,212.8357
13 $183, 053.487 $183,054.0625 36 | $1,231,621.877 $94, 736.5933
14 $631, 688.210 $631, 689.8806 37 $375, 810.164 $352,021.3137
15 | $1,329,662.856 $1, 329, 663.2066 38 | $1,079,540.817 $1,036,328.2389
16 $14, 641.492 $14, 640.0974 39 $821,938.141 $923, 384.2993
17 $57,922. 848 $57,917.3922 || 40 | $1,261,005.641 $1,135.621.5046
18 $221,626.223 $221,606.2958 4] $273, 616.884 $673, 577.4132
19 $739, 150.343 $739,097.1321 42 $869,868.938 $1, 333, 190.0580
20 | $1,317,571.683 $1,317, 594.8163 43 | $1,209,459.844 $573.0397
21 $62,301.312 562, 210.9653 44 $449, 460.003 $2,291.1736
22 $237,560.887 $237,233.2485 45 | $1,191,797.168 $9, 148.9459

Calculator 1 is accurate to the cent, while Calculator 2 is accurate to 0.1 cent.

a. An initial deposit of $58,000 grows to $1.19 million after 45
years.

b. Itis, however, only $9,149 after 45 years if we keep 10 digits

after the decimal point.

c. After 43 years, I would prefer to keep the $1.209 million using
the bank’s method. My “more accurate” method gives me only

Exercises

$573, a tenth of my original deposit!

a. You borrowed $200,000 on a 15-year mortgage at a 4.75% annual
interest rate compounded daily. What is your monthly mortgage

payment?
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b. Same as in (a), except that it is a 30-year mortgage at 5.25%. What
is your monthly payment? (Typically, the interest rate for a 30-year
mortgage is higher than for a 15-year mortgage by about 0.50%.)

c. How much more total interest will you pay on a 30-year mortgage
compared with a 15-year mortgage ((b) vs. (a))?

2. Biweekly mortgage

Let M be the monthly payment for a 30-year mortgage at 7 annual 7. Presentv.

interest rate compounded daily. Your employer pays you on a biweekly You
schedule instead of on a monthly schedule. You want to make a morl now
gage payment every two weeks in the amount of M/2. How many years your
sooner can you finish paying off your mortgage? Use r = 10% per yea, adju

P, = $100,000. Your answer should be independent of Po.

3. Redo problem 1, but use continuously compounding interest an
an approximation to daily compounding. What errors would you

have in your answers for (a), (b), and (c)?

4. Lottery winner

You are the winner of the $10 million lottery jackpot. The first decision
you need to make is whether to take your winnings in 25 annuil
payments of $400,000 each, or to elect the $10 million lump sum tif}
front. Discuss how you arrive at your decision. Your decision should b
dependent on the prevailing interest rate for safe investments.

5. Power of compounding

A professor’s daughter is now at a private college that costs $30,000 pef
year. When she was born her grandparents put $10,000ina college fund
for her, investing it in a mutual fund that has had an average annt
return of 18% for the past 18 years. Ignore the year-to-year fluctuatlo
of the return. Does she have enough money in her account for four yei
of college expenses if she entered college at 18 years of age?

6. Power of compounding
a. You borrowed $1,000 from a loan shark at 5% monthly interest. H{

much do you owe four years later?
b. You are trying to build a nest egg for your retirement. You b
estimated that you will need income of $5,000 a month in ord

live comfortably after retirement. How large a nest egg (principi
must you have at retirement? Assume that at your retirement you
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67
‘What that money, Py, in an annuity with a guaranteed annual return of
D-year : 8%. And suppose you think you will live forever, '
0.)

¢. You are now 25 and plan to retire at age 65. You want to start saving
rtgage { so that you can build a nest egg of $1 million. How much should

: you save each month? Assume that your savings will be earning 10%
interest each year, compounded monthly.

al 7. Presentvalue of money
nnu.

weekly You have a contract that entities you to receive $1 million 20 years from
1 mort- 5 now. But you can’t wait and want your money now. You want to sell
y years your contract. What is a fair price for it? Assume the risk-free, inflation-
2T year, adjusted interest rate is 3% per yeat, compounded continuously.
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