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a b s t r a c t 

A simplified model of the crustacean gastric mill network is considered. Rhythmic activity in this network 

has largely been attributed to half center oscillations driven by mutual inhibition. We use mathematical 

modeling and dynamical systems theory to show that rhythmic oscillations in this network may also 

depend on, or even arise from, a voltage-dependent electrical coupling between one of the cells in the 

half-center network and a projection neuron that lies outside of the network. This finding uncovers a 

potentially new mechanism for the generation of oscillations in neuronal networks. 
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. Introduction 

Networks of neurons display a variety of oscillatory behaviors.

or example, oscillations in the levels of calcium concentrations,

ene expressions and in the membrane voltage across cell mem-

ranes are all commonly found in neuronal systems. Often these

scillations are rhythmic in that they display a consistent pattern

t a prescribed frequency [1] . Central pattern generating (CPG)

etworks provide several examples that exhibit rhythmic activity.

PGs refer to networks of neurons in the central nervous system

hat produce patterned (usually oscillatory) activity in the absence

f patterned sensory input. These networks play a critical role in

enerating a diverse array of motor functions such as digestion, lo-

omotion, respiration and regulation of heartbeat in invertebrates

2] . A central question in the study of neural oscillations is what

re the mechanisms that underlie the generation of rhythmic ac-

ivity and how that activity is regulated. This study will focus on

his general question in the context of the gastric mill rhythm

GMR; frequency 0.1 Hz) that arises in the stomatogastric ganglion

STG) in the crustacean central nervous system. In particular, we

ill show the existence of a new mechanism based on voltage-
Abbreviations: CPG, central pattern generating; GMR, gastric mill rhythm; STG, 

tomatogastric ganglion; HCO, half-center oscillator; LG, lateral gastric; INT1, in- 

erneuron 1; STNS, stomatogastric nervous system; AB, anterior burster; MCN1, 

odulatory commissural neuron 1. 
∗ Corresponding author. Tel.: +9737202262. 
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ependent electrical coupling for generation of oscillations within

 neuronal network. 

The gastric mill network consists of a small number of neu-

ons in the STG that control muscles that move teeth to provide

rinding of food (chewing) within the gastric mill stomach of crus-

aceans [3] . In the Jonah crab, a pair of neurons, the lateral gas-

ric ( LG ) and Interneuron 1 ( INT 1) form a half-center oscillator

HCO) and are primary contributors to the GMR. These neurons

re connected by reciprocally inhibitory synapses and, during gas-

ric mill activity, display anti-phase bursting oscillations. They also

eceive input from various parts of the stomatogastric nervous sys-

em (STNS). In particular, INT 1 receives rhythmic inhibition from

he pacemaker anterior burster neuron ( AB ) of the pyloric CPG.

ecause the pyloric rhythm (frequency 1 Hz) is much faster than

he gastric mill, the AB to INT 1 input produces pyloric timed pat-

erns in the INT 1 bursting activity. Both LG and INT 1 receive exci-

atory input from the modulatory commissural neuron 1 ( MCN 1)

ith INT 1 receiving fast excitation and LG receiving slow modula-

ory excitation. Additionally, the MCN 1 axon terminals are electri-

ally coupled to LG in a manner that is dependent on the voltage of

G [5] . It is the role of this electrical coupling that is of particular

nterest to us in this paper. 

Neurons that lie within an HCO typically utilize reciprocal in-

ibition to generate oscillations [6] . In particular, in a two cell

CO, when one of the cells is active, its inhibitory synapse sup-

resses the other. At some later time, the silent cell escapes or is

eleased from inhibition and the roles of the two cells switch [7] .

n the gastric mill network, LG and INT 1 can oscillate in this man-

er with the ability to escape inhibition and generate oscillations,

http://dx.doi.org/10.1016/j.mbs.2016.05.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mbs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2016.05.001&domain=pdf
mailto:mouserc@wpunj.edu
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Fig. 1. Schematic diagram of the modeled network.Solid elements are explicitly 

represented in the reduced two-dimensional model whereas dashed elements are 

defined as functions of the explicit variables. Filled small circles indicate synaptic 

inhibition, solid box is synaptic excitation and the resistor symbol indicates electri- 

cal gap junction coupling between the MCN 1 axon terminals and LG . 
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but only in the presence of the excitatory input provided by MCN 1

[5,8] . 

Although a number of modeling studies have explored the gen-

eration of oscillations in the gastric mill network [8–11,13] , the role

of the strong electrical coupling between the MCN 1 axon termi-

nals and the LG neuron has not been previously explored. In this

study, we will show that voltage-dependent electrical coupling can

provide an alternative mechanism for the generation of oscillations

when the inhibition based HCO mechanism is incapable of doing

so. In particular the LG − INT 1 HCO can be rendered ineffective if

(1) the inhibitory synapse form INT 1 to LG is inactivated, or (2)

if the excitability property of LG is reduced. In order to fully un-

derstand how electrical coupling affects this network, we will first

consider a simple model to see how electrical coupling between

LG and MCN 1 axon terminals affects the ability of oscillations to

be created through the standard HCO inhibition based mechanism.

We will discuss how the electrical coupling modulates the rhyth-

mic properties of this oscillation. We will then remove the INT 1

to LG synapse and show that rhythmic oscillations can still arise

through the electrical coupling between LG and MCN 1 axon termi-

nals, but only if this coupling is voltage dependent, as has been

reported experimentally [5] . We will then demonstrate the same

in a biophysical model based on the Morris–Lecar equations [15] .

For both models, we derive conditions on parameters showing why

the electrical coupling must be voltage dependent to produce os-

cillations. 

The modeling and analysis in this paper is based on the use of

geometric singular perturbation theory. Exploiting inherent differ-

ences in timescales, we will derive sets of fast and slow equations

that can be studied in the relevant phase space. For the simple

model, this can be done on a two-dimensional phase plane and

is the focus of Sections 3.1 –3.4. The analysis in those sections fol-

lows the tradition of using relaxation oscillators with the individ-

ual neurons modeled as passive elements. The relaxation oscilla-

tions in this case arise due to the method of model reduction that

incorporates a slow synaptic variable. In Section 3.5 , the fast–slow

analysis allows us to project the relevant dynamics onto two dif-

ferent phase planes to facilitate understanding of the model. 

2. Model 

2.1. Simple passive cell network model 

We describe the simple network that we shall initially consider.

A key assumption for this model is that INT 1 and LG are mod-

eled as passive cells with no active currents or excitable properties.

Thus if oscillations are to be generated, they must arise as a direct

result of network interactions. By identifying variables that evolve

on different time scales and by making a few other assumptions,

we can use geometric singular perturbation theory to focus on the

analysis of a reduced two-dimensional system of equations. These

variables correspond to the voltage of LG and to the synaptic in-

put that LG receives from MCN1 and are shown in solid in Fig. 1 .

The electrical coupling is also shown in solid in Fig. 1 as it can be

defined in terms of the reduced quantities including the voltage of

LG . Shown with dotted lines/circles are the other variables that we

will incorporate into the solid variables and thus will not need to

explicitly track. 

Let V L and V I denote the voltages of LG and INT 1 respectively.

We will not model individual spikes but instead keep track of

when a cell is above (active) or below (silent) threshold. These

voltages will evolve on a fast time scale. Notice that AB and MCN 1

do not receive synaptic input from any other cells in the circuit.

Thus we do not explicitly model either but instead need only keep

track of their synaptic and electrical output. The equations that de-
cribe the relevant voltages are: 

dV L 

dt 
= − I rest,L (V L ) − I syn,I→ L (V I , V L ) 

− I syn,M→ L (V M 

, V L , s ) − I elec (V L , V M 

) (1)

dV I 

dt 
= − I rest,I (V I ) − I syn,L → I (V I , V L ) − I syn,AB → I (V I , s AB → I ) (2)

he intrinsic current I rest,x (V x ) = g rest,x [ V − E rest,x ] where g rest, x and

 rest, x are the passive rest conductance and reversal potentials. No-

ice that in the absence of any other currents, the value V = E rest,x 

s a stable rest point. For LG, E rest, L < V T while for INT 1, E rest, I 

 V T for a fixed threshold V T . MCN 1 is assumed to be tonically

ctive which we model by setting its voltage to a value V M 

>

 T . The synaptic currents obey an equation of the form I syn,x → y =
 x → y s x → y [ V y − E inh ] where x and y are the pre- and post-synaptic

ells. The variables s AB → I , s L → I and s I → L are straight forward

o understand and are instantaneous. The synaptic variable s AB → I 

rovides the input due to AB activity and is modeled using a pe-

iodic, half-sine function with an amplitude of 1 and period of 1

. This synapse takes on the value one when the sine function is

reater than a threshold, set here to 0.5, and is zero otherwise.

he synapses between LG and INT 1 are also instantaneous and we

tilize the fact that these cells are always out-of-phase with one

nother. 

 AB → I (t) = Heav 

(
sin 

(
2 π(t) 

10 0 0 

)
− 0 . 5 

)
(3)

 L → I (V L ) = 

[ 
1 + exp 

(v 1 − V L 

k 1 

)] −1 

(4)

 I→ L (V I ) = 

[ 
1 + exp 

(v 2 − V I 

k 2 

)] −1 

(5)

he remaining synaptic variable s requires some explanation. In the

iological system, MCN 1 exerts a slow excitatory effect on LG that

s modulated by pre-synaptic inhibition from LG onto the MCN 1

o LG synapse. Thus when LG is active, this excitation is slowly re-

oved; when LG is silent, the excitation slowly builds. This is mod-

led by the variable s that evolves on a slow time scale and is the

nly slow variable in our model. Equations governing this variable

re: 

ds 

dt 
= 

{
(1 − s ) /τr V L ≤ V T 

−s/τ f V L > V T 
(6)

n equation (1) , the synaptic current is then given by 

 syn,M→ L = g M→ L s [ V L − E exc ] . (7)

Fig. 1 shows an electrical coupling between LG and the MCN 1

xon terminals. The electrical current is given by 

 elec (V L , V M 

) = g elec (V L )[ V L − V M 

] . (8)

his coupling is dependent on the voltage of LG and MCN 1 in two

ifferent ways. First, the strength is an increasing function of V .
L 
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he dependency of the conductance g elec on V L is incorporated us-

ng an increasing sigmoidal function n ∞ 

( V L ). Second this strength

s dependent on the driving force which is the difference between

he LG and MCN 1 voltages. In the biological system, the electrical

oupling has a minimal effect on the MCN1 voltage [5] , almost as

f the electrical coupling were rectifying. We model this by simply

eeping the MCN 1 voltage fixed at V M 

independent of the value of

 L . We define 

 elec (V L ) = ḡ elec n ∞ 

(V L ) (9) 

here 

 ∞ 

(V L ) = (1 − g min ) 
(

1 + exp 

(v el − V L 

k el 

))−1 

+ g min . (10) 

here v el is the half activation value at which n ∞ 

(V L ) = (1 −
 min ) / 2 and k el is the reciprocal of the slope at that point. The

symptotic value of n ∞ 

( V L ) as V L → −∞ is denoted by g min ∈ (0,

) and is the smallest positive value of the electrical conductance. 

While, equations (1) –(8) govern the flow of the gastric mill cir-

uit, the dynamics can be simplified by exploiting the small pa-

ameter ε that demarcates the fast and slow time scales, as was

rst done by Kintos et al. [11] . Set ε = 0 in (1) and (2) . The latter

f these equations can be rewritten in terms of V L and of the inde-

endently controlled quantity s AB → I . Namely, from (2) , note that

e can solve for V I = h 1 (V L , s AB → I ) ; see Appendix . Thus the set of

quations governing the slow flow can be reduced to 

 = − g rest,L [ V L − E rest,L ] − g I→ L s I→ L (h 1 (V L , s AB → I )))[ V L − E inh ] 

− g M→ L s [ V L − E exc ] − g elec (V L , V M 

)[ V L − V M 

] (11) 

ds 

dt 
= 

{
(1 − s ) /τr V L ≤ V T 

−s/τ f V L > V T . 
(12) 

enote the right-hand side of (11) by F ( V L , s ). The first equation

onstrains the flow to lie on F (V L , s ) = 0 , and slaves the evolution

f V L to s which is governed by the second equation (12) . Rescale

 = ετ, then set ε = 0 to obtain the fast equations 

dV L 

dτ
= F (V L , s ) (13) 

ds 

dτ
= 0 . (14) 

quations (13) and ( 14 ) govern the fast jumps that a trajec-

ory in the phase plane makes between different possible (stable)

ranches of the V L -nullcline. For ε small enough, an actual solu-

ion to (1) –(8) lies O ( ε) close to a singular periodic orbit which is

ieced together from solutions of (11) –(14) . 

The V L nullcline is the set of points { (V L , s ) : F (V L , s ) = 0 } and

an be graphed by explicitly solving for s to obtain 

 = 

−g rest,L [ V L − E rest,L ] − g I→ L s I→ L (h 1 (V L , s AB → I )))[ V L − E inh ] − g elec (

g M→ L [ V L − E exc ] 

he s -nullcline is simply the Heaviside function given by s = 1

hen V L < V T and s = 0 when V L > V T . We could smooth this null-

line out to a sigmoid with no qualitative change in results. 

The shape of the V L -nullcline is dependent on our choice of

arameters. It is known from prior modeling work of this system

11,12] , and of many others in different contexts, that when one of

he nullclines is cubic shaped and the other is linear or sigmoidal

hat oscillations may occur if the nullclines intersect on the mid-

le branch of the cubic. In the results section below we will show

ow various parameters related to both the synaptic and electrical

oupling affect the shape of the V L nullcline and allow it to be a

ubic. 
  L − V M 

] 
. (15) 

.2. Biophysical model 

In Section 3.5 , we will use the Morris–Lecar equations to model

oth LG and INT 1. As a result of the added dimensionality of

he model, we will not be able to reduce the analysis to a two-

imensional phase plane. However, similar to our analysis with the

imple model, we will be able to show that the projection of the

G trajectory onto two distinct two-dimensional phase planes will

e crucial to understanding the role of voltage-dependent electrical

oupling. When parameters are chosen in the Morris–Lecar equa-

ions to reduce the excitability of LG , the inhibition based HCO be-

omes ineffective. In that case, as in the case of the simple model,

lectrical coupling will be able to produce oscillations but only

hen it is voltage-dependent. Details of the model will be pro-

ided in Section 3.5 and Appendix . 

. Results 

.1. Oscillations that arise through the INT 1- LG reciprocal inhibition 

For completeness and for ease in explaining the role of the volt-

ge dependent electrical coupling, we begin by reviewing the case

hen ḡ elec = 0 as described in [10] . Oscillations in this case arise as

 direct consequence of the mutually inhibitory pair INT 1 and LG .

ecause of different synaptic strengths between the two and dif-

erent time constants in the active and silent states of LG , the cells

orm an asymmetric half-center oscillator (HCO) in that the duty

ycle of each cell is not equal to 1/2. They do, however, oscillate in

nti-phase where only one of the cells is active at any moment in

ime. 

First set g AB → I = 0 meaning that AB inhibition to INT 1 is ab-

ent. We choose similar parameter values to [10] such that the

 L -nullcline is then a cubic shaped curve where the left and right

ranches are positively sloped; see the left panel of Fig. 2 A. Except

or the local extrema, points that lie on the left and right branches

re stable fixed points of the fast equations (13) . The threshold V T 

s chosen to intersect the middle branch of the cubic nullcline. The

olution trajectory for this case is easy to understand. Starting at

he local maximum of the left branch, equation (13) is used to

ake a fast jump to the right branch. Note that this jump is hor-

zontal since d s/d τ = 0 according to (14) . Then (11) and (12) are

sed to evolve the slow flow down the right branch until the tra-

ectory reaches the local minimum. A fast jump back to the left

ranch under (13) and (14) then ensues, followed by slow evolu-

ion under (11) and (12) along the left branch back to the local

aximum. 

When the AB to INT 1 inhibition is present ( g AB → I > 0), then

 portion of the V L nullcline moves in phase space. In particular,

hen the AB to INT 1 synapse is active, then V I decreases. In turn,

hrough equation (5) , s I → L decreases causing the V L nullcline to

ove down in the phase space. However, since the AB to INT 1

ynapse is irrelevant when LG is active, only the left branch of the

ullcline is affected. The left panel of Fig. 2 B shows the LG trajec-

ory when the AB to INT 1 inhibition is present. The small depo-

arizations while the trajectory is on the left branch correspond to

eriodic disinhibition from the INT 1 inhibition to LG that is itself

reated by the periodic inhibition of INT 1 by AB . When the trajec-

ory has evolved sufficiently far up the left branch to above the

ocal maximum of the lower nullcline, the disinhibition allows LG

o escape from the INT 1 inhibition and become active. In this case,

he period of the orbit is reduced since the time spent on both the

eft and right branches is reduced. 
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Fig. 2. Synaptic and electrical connectivity.The synaptic and electrical connectivity of the gastric mill network along with nullclines and voltage trace of LG is shown. 

Schematic diagrams shows that LG and INT 1 reciprocally inhibit one another. MCN 1 provides a slow modulatory excitation ( s ) to LG . This excitation to LG is removed by 

presynaptic inhibition of this synapse by LG , when LG is active. (A) In the absence of rhythmic input from AB to INT 1, the interaction between LG, INT 1 and s produces 

oscillatory activity. The graph on the far left displays the V L − s nullclines. The red curve shows the V L nullcline whereas the green step curve shows the s nullcline. The 

solution trajectory is in black with the arrows indicating the direction of the trajectory and double arrows indicating the fast jumps. As the excitation s builds up, the solution 

trajectory slowly travels up the left branch of the V L nullcline and jumps across to the right branch once the trajectory reaches the local maximum and LG transitions to 

its active phase ( V L > V T ). Once LG is active, the excitatory input s slowly decays, causing the trajectory to slowly travel down the right branch of the V L nullcline until it 

reaches the local minimum at which it jumps back to the left branch. The corresponding changes in V L versus t is shown in the middle panel. (B) In the presence of the AB 

to INT 1 synaptic inhibition, during each pyloric cycle when AB inhibits INT 1, LG is released from INT 1 inhibition and the left branch of the V L nullcline moves down (lower 

red V L nullcline). The nullcline returns to its original uninhibited position (upper red V L nullcline) once the AB inhibition turns off. In response, the solution trajectory slowly 

travels up the left branch of the V L nullcline while making jumps in fast time between to upper and lower branch when the AB inhibition is on or off. As in panel A, the 

solution jumps across to the right branch once the trajectory reaches the local maximum. The trajectory then slowly travels down the right branch of the V L nullcline until 

it reaches the local minimum at which it jumps back to the left branch. Note that the AB inhibition does not affect the right branch of the V L nullcline (or the trajectory) 

because, when LG is active, it inhibits INT 1 thereby removing the functional effect of the AB to INT 1 synapse. The corresponding changes in V L versus t is shown in the 

middle panel. Small depolarizations in the voltage of LG due to the AB input can be seen in the silent phase of its rhythm. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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3.2. The effect of non-voltage dependent electrical coupling on the 

INT - LG generated rhythm 

We next investigate the effect of adding electrical coupling to

the network. First we consider the case when the electrical cou-

pling is not voltage dependent. To do so, set v el = −100 . Since V L 

> v el in this case, this causes n ∞ 

(V L ) = 1 in equations (9) and (10) .

The effect of ḡ elec > 0 is to lower the V L nullcline in the phase

space; see Fig. 3 A. Note that because V M 

does not change and,

for this case g elec ( V L ) is constant, the effect of the electrical cur-

rent on the V L nullcline is largely due to the difference V L − V M 

.

This difference is the driving force of the electrical current. Since

V M 

is constant, it acts like the driving force of a synaptic current

that drives the voltage towards a constant reversal potential. When

ḡ elec > 0 , the left branch of the V L -nullcline moves down more than

the right branch since the driving force is larger there. That be-

ing said, the effect on the left branch is not too much larger than

on the right branch. The result of the electrical coupling is simply

to increase the burst duration of LG and shorten its interburst du-

ration. The reason for this is readily explained through the phase

plane of LG . The slow flow is directly related to the distance of the

trajectory from the s -nullcline. When ḡ elec > 0 , the right branch of

the nullcline moves down toward s = 0 thereby slowing the tra-

jectory down when LG is active. The opposite happens to the left

branch; the distance from the s -nullcline increases, thus speeding

up the trajectory in the silent state. The period of LG is an increas-

ing function of ḡ elec . In fact, the period tends to infinity when ḡ elec 

becomes sufficiently large as a saddle-node bifurcation at s = 0 is

created. 

Next, observe that electrical coupling and the MCN1 synapse

have similar effects on the V L - nullcline. Namely, increases in ei-

ther g M → L or ḡ elec lower the V L nullcline. This implies that some
mount of the chemical synaptic excitation can be replaced by

he metabolically less costly electrical coupling. For instance, begin

ith ḡ elec = 0 and g M → L chosen such that the left branch of the

 L -nullcline intersects s = 1 creating a stable fixed point ( Fig 3 B). If

¯ elec is now chosen sufficiently large then the V L -nullcline is low-

red enough so that the fixed point on the left branch moves to

he middle branch and is unstable. However, if ḡ elec is too large,

hen the right branch of the V L -nullcline intersects the s -nullcline

t s = 0 creating an asymptotically stable fixed point there. Thus,

here can exist a range ( ̄g ∗(g M→ L ) , ̄g 
∗(g M→ L )) of ḡ elec values for

hich the fixed point lies along the middle branch and oscillations

an occur. Note however if g M → L is too small, then the value ḡ elec 

eeded to move the local maximum below s = 1 would be so large

hat it would also lower the local minimum to below s = 0 , creat-

ng a stable fixed point there. In these cases there is no range of

¯ elec values that produce oscillations. 

We can get a better understanding of the range of conductance

alues for which oscillations exist. Fig. 3 C shows a bifurcation di-

gram in g M → L - ̄g elec space for the non-voltage dependent case.

he shaded region R 1 depicts the range of parameter values for

hich oscillations exist. Note that this region is bounded on three

ides by lines. The lower boundary along ḡ elec = 0 corresponds to

he range of oscillations that exist when there is no electrical cou-

ling. For this set of parameters, the boundary begins at roughly

8.91, 0). If g M → L < 8.91 and ḡ elec = 0 , then there are no oscil-

ations as the V L -nullcline has a fixed point on its left branch at

 = 1 . 

The left boundary corresponds to the set of saddle-node values

long the local maximum of the V L -nullcline at s = 1 . This curve

s a line and has negative slope. To see why, consider the equa-

ion F (V L , s ) = 0 and equation (15) for the V L nullcline in the volt-

ge independent case where g elec (V L ) = ḡ elec . We rewrite (15) as
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and g M → L small (8.8 here, compared to 10 in panel A), a stable fixed point (filled circle) exists on the left branch of the V L nullcline thereby preventing the existence of 

oscillations (upper nulllcline). If the value of ḡ elec is chosen to be large enough, the V L nullcline is lowered and oscillations can occur. The V L nullcline from Fig. 1 A and 

panel A (with g M→ L = 10 ) is shown (in gray) for comparison. (C) The bifurcation diagram in g M→ L − ḡ elec space. The shaded region R 1 depicts the range of parameter values 

for which oscillations exist. The lower boundary along ḡ elec = 0 corresponds to the range of oscillations that exist when there is no electrical coupling. The left boundary 

corresponds to the set of saddle-node values along the local maximum of the V L nullcline at s = 1 . The top boundary corresponds to the set of saddle-node points when 

the minimum of the cubic nullcline is tangent to s = 0 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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 = 

f (V L ) − ḡ elec [ V L − V M 

] 

g M→ L [ V L − E exc ] 
, (16) 

here f ( V L ) refers to the first two terms in the numerator on the

eft hand side of (15) . A saddle-node point occurs when F (v L , 1) =
 and d s/d V L = 0 . The equation F (V L , 1) = 0 implies 

¯
 elec = −V L − E exc 

V L − V M 

g M→ L + 

f (V L ) 

V L − V M 

. (17) 

ext observe that 

ds 

dV L 

= 

[ df/dV L − ḡ elec ][ V L − E exc ] − [ f (V L ) − ḡ elec [ V L − V M 

]] 

g M→ L [ V L − E exc ) ] 2 
. (18) 

he condition d s/d V L = 0 implies that the numerator of the above

raction equals zero which reduces to the relationship, 

df 

dV L 

[ V L − E exc ] − f (V L ) − ḡ elec [ V M 

− E exc ] = 0 . (19) 

et V ∗
L 
( ̄g elec ) denote the solution of (19) and note it that does not

epend on g M → L . Further, it only weakly depends on ḡ elec in the

ense that this term is scaled by the difference V M 

− E exc . Therefore

he curve that defines the saddle-node points given in (17) is basi-

ally a line with the slope given by the ratio of the driving forces

(V ∗L − E exc ) / (V 
∗
L − V M 

) . Note that if E exc = V M 

, then the slope of the

addle-node curve is negative one and the V ∗
L 

value of the local

aximum is independent of both g M → L and ḡ elec . 

The top boundary of the oscillation region corresponds to the

et of saddle-node points when the minimum of the cubic null-

line is tangent to s = 0 . This curve is given by F (V L , 0) = 0 and

 s/d V L = 0 . From (19) , we already know that the solution to the

atter are independent of g . Now from (16) , the intersection of
M → L 
he V L nullcline with s = 0 is also independent of g M → L . Thus the

op boundary is simply a horizontal line in the g M → L - ̄g elec plane. 

The region R 1 is unbounded on the right. This is precisely be-

ause the local minimum of s at s = 0 is independent of g M → L . As

 M → L → ∞ , the oscillations are no longer burst-like. Instead the

rajectory spends almost all of its time on the right branch in a

eighborhood of the local minimum. 

.3. The effect of voltage dependent electrical coupling on the 

NT 1 − LG generated rhythm 

To explore the role of voltage dependence on the electrical cou-

ling in the INT 1- LG generated rhythm, we let v el = V T which is

 value that lies along the middle branch of the V L -nullcline. The

oltage dependence now allows the conductance of the electrical

oupling to vary as a function of V L between g min along the left

ranch of the V L -nullcline and ḡ elec along the right branch. Thus

he voltage-dependent electrical coupling affects the right branch

f the V L nullcline much more than the left branch. This is in con-

rast to the non-voltage dependent case; compare Fig. 4 A and B. 

Fig. 4 C shows the regions of oscillations for these cases. For

his set of parameters, there are two primary differences between

he voltage-dependent ( R 2) and independent ( R 1) cases. First, the

eft boundary is more steeply sloped and the top boundary sits

t a higher ḡ elec value compared to the voltage-independent case.

oth are easily explained. In the voltage-dependent case, equation

17) becomes 

¯
 elec = − V L − E exc 

n ∞ 

(V L )[ V L − V M 

] 
g M→ L + 

f (V L ) 

V L − V M 

. (20) 

he condition d s/d V L = 0 yields a solutions V ∗L ( ̄g elec ) which is

gain independent of g . By definition n ∞ 

( V ) < 1. Thus the
M → L L 
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less steeply sloped. In this case, the left boundary of the oscillation region decreases to a value that is much closer to the voltage-independent case. The top boundary of R 3 

increases because larger values of g elec are required to generate oscillations. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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prefactor multiplying g M → L is in fact a slope and is larger in mag-

nitude than in the voltage-independent case. Thus the left bound-

ary is steeper (-5.4 compared to -0.8 for the default parameters). 

The intersection of the V L nullcline with s = 0 satisfies 

ḡ elec n ∞ 

(V 

∗∗
L ) 

= 

g rest,L [ V 

∗∗
L − E rest,L ] + g I→ L s I→ L (h 1 (V 

∗∗
L , s AB → I )))[ V 

∗∗
L − E inh ] 

V M 

− V 

∗∗
L 

. (21)

The value V ∗∗
L 

increases with voltage dependence (specifically with

v el from (10) ). As a result, the right-hand side of (21) increases

since the numerator increases while the denominator decreases. In

the voltage independent case, n ∞ 

( V L ) ≡ 1, whereas in the voltage

dependent case n ∞ 

(V ∗∗
L 

) < 1 . To compensate, the maximal conduc-

tance of the electrical coupling ḡ elec must increase. This allows the

top boundary of the region R 2 to sit at higher values of ḡ elec ( ≈1.57

compared to 1.2 in the voltage independent case). 

The effect of voltage dependence can be amplified by making

the n ∞ 

( V L ) curve less steeply sloped. For instance, if k el is increased

from 5 to 20, then the slope of the left boundary of the oscillation

region decreases in magnitude to around 2, which is much closer

to the voltage-independent case; see R3 in Fig. 4 D. Further, because

the change in n ∞ 

is more gradual, larger values of ḡ elec are needed

to satisfy (21) , so that the top boundary of R 3 now sits around 2.02

compared to 1.57 for R 2. Other changes of parameters can similarly

be explored. 

3.4. Oscillations arising through the voltage-dependent MCN1 − LG 

coupling in the absence of the INT 1- LG HCO 

To this point, we have simply shown how electrical coupling af-

fects the existing oscillations that arise through the INT 1- LG HCO. A

more important observation that we now make is that oscillations

can arise in the absence of this HCO provided that the electrical

coupling is voltage-dependent. 
Consider equations (11) –(14) with g I→ L = 0 . This removes the

NT 1 to LG inhibition and destroys the HCO mechanism for oscilla-

ions. The V L -nullcline now is defined by 

 = 

−g rest,L [ V L − E rest,L ] − ḡ elec n ∞ 

(V L )[ V L − V M 

] 

g M→ L [ V L − E exc ] 
. (22)

n this case, to see why voltage dependence is necessary for os-

illations, first take the case where the electrical coupling is non-

oltage dependent. Then d s/d V L = [ g rest,L [ E exc − E rest,L ] + ḡ elec [ E exc −
 M 

]] /g M→ L [ V L − E exc ] 
2 > 0 if V M 

is not too large. In this case, the

 L nullcline is a monotone increasing function that asymptotes to

[ g rest,L + ḡ elec ] /g M→ L as V L → −∞ and E exc as V L → ∞ ; see Fig 5 A.

n this case, oscillations are not possible as any ensuing fixed point

s asymptotically stable. 

Now take the case when the electrical coupling is voltage de-

endent. Then after some algebraic manipulation, the condition

 s/d V L = 0 yields 

 rest,L [ E exc − E rest,L ] 

 ḡ elec 

[
dn ∞ 

dV L 

[ v L − E exc ] 
2 + [ V L + n ∞ 

(V L ) − E exc ][ V M 

− E exc ] 

]
. 

For simplicity, take E exc = V M 

in which case the condition re-

uces to 

 rest,L [ V M 

− E rest,L ] = ḡ elec 

dn ∞ 

dV L 

[ V L − V M 

] 2 . (23)

he left hand side is independent of ḡ elec , while the right hand side

ncreases with it. Further the right hand side has a zero at V L = V M 

nd also tends to 0 as V L → ±∞ . Thus for ḡ elec sufficiently large,

here are two solutions of (23) , meaning that the graph of (22) has

 local maximum and minimum. In this case, the V L -nullcline is

gain cubic shaped and oscillations are possible; see Fig. 5 B black

rajectory and voltage trace. Therefore, voltage-dependent electrical

oupling together with the slow excitation from MCN1, and its sub-

equent removal, via pre-synaptic inhibition from LG provides an
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trical coupling is voltage dependent, the V L nullcline is cubic even in the absence of 

reciprocal inhibition (red nullcline). Thus, oscillations can be generated through the 

electrical coupling together with the slow excitation ( s ) from MCN 1. (B) When the 

reciprocal inhibition is restored, the left branch of the V L nullcline is raised (top red 

nullcline) thereby increasing both the LG burst and interburst durations. The trajec- 

tory must now reach the local maximum of the raised cubic in order to transition 

to the active state. The corresponding voltage trace is shown in the bottom panel. 

(C) In the presence of AB input to INT 1 in addition to the voltage dependent electri- 

cal coupling, the LG interburst duration is shortened because the solution trajectory 

is allowed to jump to the right branch at a time when the LG nullcline is lowered 

due to the AB inhibition of INT 1. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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lternate mechanism for the generation of oscillations. Note that

he voltage range and period of the oscillation are within the range

f the oscillation generated by the INT 1 − LG HCO. 

Using equation (10) , we can derive an estimate on how large

¯ elec needs to be to obtain oscillations. The right hand side of

23) has a local maximum at V L = V el . Substituting and finding the

mallest value of ḡ elec that allows the right hand side to equal the

eft yields 

¯
 elec ≥

4 g rest,L k el [ V M 

− E rest,L ] 

[ v el − V M 

] 2 
. (24) 

his condition is fairly straightforward to interpret. Namely, the

tronger the passive properties of LG , either through larger leak

onductance g rest, L or smaller leak reversal E rest, L , or the more

radual the voltage dependence, larger k el or v el , the larger the

lectrical conductance ḡ needs to be. 
elec 
We next explore the role of INT 1 on the MCN1 − LG generated

scillation. We emphasize that, although the inhibition from INT 1

o LG is restored, the parameters remain in range where the in-

ibition based HCO-based mechanism is not capable of producing

scillations. INT 1 inhibition to LG raises the LB of V L -nullcline as

hown in Fig 5 B. Now the trajectory (black) must increase to higher

alues of s in the phase plane to escape inhibition, thereby increas-

ng the interburst duration. In turn, when LG is active, the trajec-

ory must also traverse through a larger range of s values to reach

he local minimum of the cubic, thereby increasing LG ’s burst dura-

ion. Thus the effect of this inhibition is to increase the oscillation

eriod (and range of voltage values) by increasing both the inter-

urst and burst duration (black voltage traces). 

When AB to INT 1 inhibition is included, the trajectory is al-

owed to leave the left branch prematurely at one of the moments

n time when INT 1 is inhibited by AB . This results in a shorter in-

erburst and burst duration very similar to what was described in

ection 3.1 . Note that the period is very similar to that obtained

hen INT 1 to LG inhibition is completely absent ( g I→ L = 0 ); see

ig. 5 C. This makes sense as the AB inhibition to INT 1 has the prac-

ical effect of making g I→ L = 0 periodically when LG is in its inter-

urst. Thus it is at one of those moments in time when LG is able

o escape from inhibition. 

.5. Voltage-dependent oscillations in the Morris–Lecar equations 

We now demonstrate that our main findings regarding the role

f voltage dependent electrical coupling hold in a model in which

G and INT 1 are modeled using biophysical equations. We model

ach of these cells using the two-dimensional Morris–Lecar equa-

ions, which are a commonly used set of equations that are derived

n the Hodgkin–Huxley formalism. The voltage equation includes

onic currents for calcium, potassium and a leak current. There is

 recovery variable associated with the activation of the potassium

urrent. The equations for each cell are 

dV L 

dt 
= − g leak,L [ V L − E leak,L ] − g Ca,L m ∞ 

(V L )[ V L − E Ca ] 

− g K w L [ V L − E K ] 

− I syn,I→ L (V I , V L ) − I syn,M→ L (V M 

, V L , s ) 

− I elec (V L , V M 

) + I app,L (25) 

dW L 

dt 
= φL [ w ∞ ,L (V L ) − W L ] /τ∞ 

(V L ) (26) 

dV I 

dt 
= − g leak,I [ V I − E leak,I ] − g Ca,I m ∞ 

(V I )[ V I − E Ca ] − g K w I [ V I − E K ]

− I syn,L → I (V I , V L ) − I syn,AB → I (V I , s AB → I ) + I app,I (27)

dW I 

dt 
= φI [ w ∞ ,I (V I ) − W I ] /τ∞ 

(V I ) . (28) 

n the right-hand side of equations (25) and (27) , the first three

erms are specific to the Morris–Lecar equations, while the remain-

ng terms have the same form as defined in Section 2.1 . The spe-

ific details of the model and parameter values are provided in

ppendix . Of interest to us here is the shape of the nullclines of

he two cells. For INT 1, parameters are chosen such that in the ab-

ence of input ( g L → I = 0 , g AB → I = 0 ), the V I nullcline is cubic shaped

nd intersects the sigmoidal W I nullcline on its right branch. This

igh voltage fixed point indicates that INT 1 is tonically active in

he absence of input. 

For LG , we consider two different parameter choices. In one

ase, in the absence of input, we choose g Ca,L = 4 . 0 which is large

nough so that the V L nullcline is cubic shaped. In that case, the

 and W nullclines intersect along the left branch of V which
L L L 
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Fig. 6. Oscillations arising through the voltage-dependent coupling between MCN 1 

and LG in the biophysical model. (A) Input from INT1 to LG is removed by setting 

g I→ L = 0 . For the non-voltage dependent case, the projection of V L nullcline onto the 

V L − W L space is shown for different cases (solid brown ḡ elec = 2 . 2 , s = 0 , solid red 

ḡ elec = 2 . 2 , s = 1 , dashed brown ḡ elec = 22 , s = 0 , dashed red ḡ elec = 22 , s = 1 ). (B1) 

When the electrical coupling is voltage dependent, the V L nullcline is cubic (brown 

larger s , red smaller s ). The trajectory transitions between branches from the local 

extrema points of the relevant V L nullclines. (B2) The corresponding figure for the 

projection of the V L nullcline onto the V L − s space. (B3) Voltage traces for INT 1 and 

LG showing anti-phase oscillations. (C) The reciprocal inhibition from INT 1 to LG is 

restored, lengthening the LG interburst similar to Fig. 5 B. (D) The presence of AB 

inhibition to INT 1, shortens the LG interburst due to disinhibition as in Fig. 5 C. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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models LG being at rest. In this case, LG is excitable in the clas-

sical sense that, if it receives the appropriate synaptic input from

MCN 1, it will fire. With these parameters, and with the LG - INT 1

HCO intact, the presynaptic LG to MCN 1 inhibition is sufficient to

produce oscillations, as was shown in the previous sections. The

addition of electrical coupling, either voltage-dependent or not,

simply modulates the oscillations in a manner analogous to that

found in Sections 3.2 and 3.3 . In other words, electrical coupling is

not necessary to produce oscillations. Numerical simulations (not

shown) in this case yield results that are qualitatively similar to

those found in Figs. 3 and 4 . 

The more interesting situation arises in the second case when

we choose g Ca,L = 0 . 5 so that the V L nullcline is monotone decreas-

ing. Now, LG is no longer excitable. As a result, the INT 1- LG HCO

is not able to produce oscillations, independent of whether g I → L 

is zero or not. Just as in Section 3.4 with the simple model, volt-

age dependent electrical coupling can provide an alternative mech-

anism for oscillations. Fig. 6 shows results from the biophysical

model. First consider the case when g I→ L = 0 . The phase plane in

Fig. 6 A shows the projection of V L nullcline for four different cases

onto the V L − W L phase plane when the electrical coupling is in-

dependent of voltage. The solid curves are for ḡ elec = 2 . 2 where

brown corresponds to s = 0 and red is s = 1 . The dashed curves

are their counterparts for ḡ elec = 22 . Because the MCN 1 to LG ex-

citation which is governed by s can change slowly, the four null-

clines that are shown are only representative snapshots of the V 
L 
ullcline. However for all values of s , the V L nullcline is monotone

ecreasing, precluding the possibility of oscillations. 

In contrast, consider Fig. 6 B1. Shown is the V L nullcline when

he electrical coupling is voltage-dependent for two different val-

es of s (smaller s in brown, larger in red). As can be seen, the

oltage dependence creates a cubic shaped nullcline by preferen-

ially affecting the nullcline at higher voltages. As a result oscilla-

ions are possible. The V L trajectory is superimposed on the figure.

he red nullcline associated with the larger value of s corresponds

o those at which the trajectory jumps from the left branch to the

ight branch signaling LG ’s transition to the active state. The brown

ullcline is associated with a smaller value of s when the LG tra-

ectory jumps from the right branch to the left branch signaling

G ’s transition to the silent state. The dependence on s is seen in

anel B2 which shows the projection of nullclines and the trajec-

ory onto the V L versus s phase space; note the parallel to Fig. 5 B.

ecall that s increases when LG is in the silent phase. This means

hat in the V L − s phase plane, the trajectory moves up along the

eft branches. However, the left branches themselves are moving

own because as s increases, the added excitation from MCN 1 pro-

uces a greater chance to become active. The jump to the active

tate occurs from a local maximum of the red nullcline. On the

ight branch, the trajectory moves down, but the nullcline moves

p. The jump to the silent state occurs from the minimum of the

rown nullcline. The corresponding voltage traces for both LG and

NT 1 are shown in panel B3. 

In Fig. 6 C, we restore the INT 1 to LG synapse g I→ L = 10 .The LG

nterburst length increases, as was also seen in the simple model

ig. 5 B. As before, this is because the inhibition from INT 1 to LG

eans that s has to increase to larger values for LG to jump to

he active state. This implies a longer interburst duration. Finally,

n Fig. 6 C, we restore the AB input to INT 1 which shortens the LG

urst and interburst in a similar manner to Fig. 5 C because the pe-

iodic inhibition of INT 1 by AB provides periodic disinhibition of LG .

his provides LG an opportunity to escape the silent state earlier

ust as with the simple model, thereby shortening LG ’s interburst

nd speeding up the rhythm. 

Just as in Section 3.4 , we can determine conditions under which

oltage-dependence allows the electrical coupling to produce oscil-

ations. Consider the case g I→ L = 0 . For compactness of notation,

efine f (V L ) = −g rest,L [ V L − E rest,L ] − g Ca,L m ∞ 

(V L )[ V L − E Ca ] , h (V L ) =
ḡ elec n ∞ 

(V L )[ V L − E M 

] − g s s [ V L − E exc ] + I app,L . Note that s depends

n V L . Let prime denote the derivative with respect to V L . We can

olve for the V L nullcline by setting the right-hand side of equation

25) to zero and solving for W L . 

 L = 

f (V L ) + h (V L ) 

g K [ V L − E K ] 
(29)

he slope of this nullcline is given by 

dW L 

dV L 

= 

[ f ′ (V L ) + h 

′ (V L )][ V L − E K ] − [ f (V L ) + h (V L )] 

g K [ V L − E K ] 2 
(30)

o show that the V L nullcline can be cubic shaped, we need to find

onditions under which the derivative (30) changes sign. Observe

hat f (V L ) + h (V L ) > 0 thus the second term in the numerator of

30) is negative. Next observe that 

f ′ (V L ) = −g rest,L − g Ca,L [ m 

′ 
∞ 

(V L )[ V L − E Ca ] + m ∞ 

(V L )] < 0 (31)

f g Ca, L is sufficiently small. The derivative 

 

′ (V L ) = − ḡ elec n 

′ 
∞ 

(V L )[ V L − V M 

] − ḡ elec n ∞ 

(V L ) 

− g s s 
′ [ V L − E exc ] − g s s. (32)

he first term in (32) is non-negative, while the remaining three

re all negative (note that s ′ ( V L ) < 0). Thus the sign of h ′ ( V L ) will

e negative unless the first term is sufficiently large. When the

lectrical coupling is not dependent on voltage, n ∞ 

( V ) ≡ 1 and
L 
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herefore n ′ ∞ 

(V L ) = 0 . Thus the first term will actually be zero in

his case. In turn this implies that h ′ ( V L ) < 0. Together, these re-

ults imply that, in the voltage-independent case, the V L nullcline

emains monotone decreasing and that no oscillations are possi-

le. Alternatively, when the electrical coupling is voltage depen-

ent, then n ′ ∞ 

(V L ) > 0 and is also relatively large in an interme-

iate range of V L values (roughly -35 to -15 mv). Thus for ḡ elec 

ufficiently large, the first term in (32) dominates the others and

 

′ ( V L ) > 0. As a consequence, if ḡ elec is large enough, then volt-

ge dependent electrical coupling allows dW L / dV L > 0 over a range

f intermediate V L values. In conjunction with the synaptic input

rom MCN 1, this provides the opportunity for oscillations to exist. 

. Discussion 

Neuronal circuits involved in the generation of rhythmic behav-

or often involve half center oscillators that are composed of sets of

eciprocally inhibitory neurons. There is an extensive and ongoing

ffort to understand the dynamics of half center oscillators in the

ontext of central pattern generation [10,11,14,16,17] . In many cases,

t has been noted that a careful coordination between network el-

ments is necessary to generate and set the frequency of the net-

ork [18–20] . The role of electrical coupling in rhythmic networks

as also been studied [21,22] where the neurons were modeled as

ntrinsic oscillators. Electrical coupling was not needed to generate

scillations, but rather used to modulate the characteristics of the

scillation. 

As part of a larger work on the role of feedback to projec-

ion neurons, Kintos and colleagues [10,12] had shown how to em-

loy phase plane analysis to understand the effect of MCN 1 synap-

ic input on the GMR . In particular, they showed how to analyze

CN 1 synaptic input and AB inhibition of INT 1 to determine the

requency of the GMR . In this paper, we have extended this anal-

sis to show how to incorporate the effect of MCN1 − LG voltage-

ependent electrical coupling to determine the conditions under

hich electrical coupling in the absence of the LG − INT 1 HCO can

enerate oscillations. 

In the presence of an intact LG − INT 1 HCO, we first consid-

red the effect of non-voltage dependent electrical coupling. We

howed that the non-voltage dependent electrical coupling acts to

ncrease the LG burst duration while shortening its interburst du-

ation. This occurs because the voltage of LG is driven towards the

xed, large voltage of MCN 1. If the strength of the electrical cou-

ling is too large, however, LG gets stuck in its burst phase. One

dvantage of the non-voltage dependent electrical coupling is that

t can be used in conjunction with the MCN 1 chemical synapse

llowing for the generation of the GMR for a smaller amount of

he chemical excitation. This is a “cheaper” way to generate oscil-

ations as it requires less synaptic resources. The bifurcation dia-

ram in Fig. 3 C shows the precise relationship between electrical

nd synaptic coupling needed to create oscillations. We showed

hat boundaries of this diagram are all roughly linear. In the case

f voltage dependent electrical coupling, the right branch of the LG

ullcline is affected much more significantly than the left branch.

his allows for an increase in the LG burst duration and a larger

ange of values of ḡ elec for the generation of network oscillations. 

A significant finding of our study is that network oscillations

an also be generated in the absence of coupling between LG and

NT 1 simply through the voltage dependent electrical coupling be-

ween MCN 1 and LG and the slow excitation from MCN 1, together

ith its removal due to the pre-synaptic inhibition of this exci-

ation. We derived a condition on the minimum value of ḡ elec in

rder for the GMR oscillations to exist in the absence of the HCO.

e showed that non-voltage dependent electrical coupling alone

s not sufficient for generation of the GMR . When the reciprocal

nhibition between LG and INT 1 is restored, the period of the oscil-
ations increases due to increases in both the interburst and burst

urations of the oscillations. If, in addition, AB periodically inhibits

NT 1, the interburst duration of LG is shortened. This is a direct re-

ult of the disinhibitory effect of LG from INT 1 each time AB fires. 

Our findings are not limited to the simple model in which LG

nd INT 1 are modeled as passive cells that we first considered.

e showed that voltage-dependent electrical coupling played the

ame role in a model in which these cells were described using the

iophysically based Morris–Lecar equations. In order for voltage-

ependent electrical coupling to create the mechanism for oscil-

ations, we showed that LG must not be modeled as being ex-

itable. This fact is consistent with the underlying biological prop-

rties of the LG neuron, which, in the absence of MCN 1 or other

odulatory input, shows no active properties (e.g. post-inhibitory

ebound, voltage sags or plateaus) that are associated with slow

ursting oscillations [4] . 

There are several natural extensions of this work. In previous

ork [23] , based on experiments of Wood et al. [24] , we showed

hat AB inhibition to MCN 1 provides an alternate mechanism to reg-

late the gastric mill frequency. In the current work, we did not in-

lude the inhibition from AB to MCN 1. If the AB inhibition to MCN 1

ere included, the LG burst would end when AB inhibits MCN 1. It

ould be necessary for MCN 1 to be gated when LG is in its ac-

ive state in order to maintain robust oscillations. Indeed, in the

CN-activated version of the gastric mill rhythm, the AB to MCN 1

ynapse is gated out during LG active phase [25] . It would be of

nterest to extend our current model to test whether this gating is

ruly necessary to maintain oscillations. 

Another area that remains to be explored is the role of electri-

al coupling in the MCN 1/ CPN 2 generated gastric mill rhythm. Kin-

os and Nadim [10] showed that the LG − INT 1 HCO could be re-

laced by a tri-synaptic pathway that included the projection neu-

on CPN 2. Of interest would be to see whether voltage dependence

an replace one or more of those synaptic pathways. 

Although the networks under consideration in this, and related

apers, are relatively simple and only involve a small number of

eurons, it is evident that the dynamics exhibited by them can be

uite complicated. Moreover, the neural mechanisms that underlie

he existence of oscillations are often hard to separate from those

hat simply modulate the rhythmic properties of these networks.

inimal modeling and mathematical analysis of small networks

lays a critical role in allowing us to discern which inputs gen-

rate oscillations versus those that modulate oscillations by pro-

iding valuable insights into how these important central pattern

enerating networks operate. 
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ppendix 

Numerical simulations were performed using XPPAUT [26] . For

he simple model of passive cells used to produce Figs. 2 –5 the

ollowing set of equations was used. 

dV L 

dt 
= − g rest,L [ V L − E rest,L ] − g M→ L s [ V L − E exc ] 

− g elec (V L )[ V L − V M 

] − g I→ L s I→ L (h 1 (V L , s AB → I ))[ V L − E inh ] 

(33) 

ds 

dt 
= 

1 − s 

τr 
Heav (V T − V L ) − s 

τ f 

Heav (V L − V T ) (34) 
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Table 1 

Parameter values common to all simulations of the simple model. 

Intrinsic Inhibitory Excitatory Electrical 

g rest,L = 1 g L → I = 2 V M = 10 g min = 0 . 1 

g rest,I = 0 . 75 v 1 = −30 E exc = 0 k el = 5 

E rest,L = −60 k 1 = 8 V T = −30 Voltage dependent 

E rest,I = 10 v 2 = −25 τr = 5 , 0 0 0 v el = −30 

k 2 = 5 τ f = 3 , 500 Non-voltage dependent 

v 3 = −35 v el = −100 

k 3 = 3 

E inh = −80 
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Table 2 

Parameter values common to all simulations of the Morris–Lecar model. 

Intrinsic Intrinsic Synaptic Electrical 

g leak,L = 3 I app,I = 120 V M = 10 g min = 0 . 1 

g leak,I = 2 I app,L = 100 E exc = 20 k el = 2 

E leak = −60 φI = 0 . 001 V T = −10 Voltage dependent 

g Ca,I = 4 . 4 φL = 0 . 0 0 03 τr = 5 , 0 0 0 v el = −12 

g Ca,L = 0 . 5 w f I = 10 τ f = 3 , 500 Non-voltage dependent 

E Ca = 120 w f L = −10 g s = 5 v el = −120 

g K = 8 g L → I = 1 

E K = −84 γ = 5 

C = 20 v ith = 25 

cv 1 = −1 . 2 t α = 10 

cv 2 = 9 α = 2 

cv 3 = 3 β = 2 

cv 4 = 11 E inh = −80 

T  

τ  
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The term V I = h 1 (V L , s AB → I ) that appears in equation (33) is gov-

erned by 

h 1 (V L , s AB → I ) = 

E rest,I + 

g L → I 

g rest,I 
s L → I (V L ) E inh + 

g AB → I 

g rest,I 
s AB → I (t) P (V L ) E inh 

1 + 

g AB → I 

g rest,I 
s AB → I (t) P (V L ) + 

g L → I 

g rest,I 
s L → I (V L ) 

. 

Note here the presence of the function P (V L ) = (1 + exp( 
V L −v 3 

k 3 
)) −1 .

This term is used to gate out the effect of AB input to INT 1,

and its subsequent effect on the V L nullcline when INT 1 is in

its silent state. The other remaining equations are simply ( 3 )–

( 5 ) s AB → I (t) = Heav ( sin (2 πt) 
10 0 0 − 0 . 5) , s L → I (V L ) = (1 + exp ( 

v 1 −V L 
k 1 

)) −1 ,

s I→ L (V I ) = (1 + exp ( 
v 2 −V I 

k 2 
)) −1 and (9) and (10) written as one

g elec (V L ) = ḡ elec [(1 − g min )(1 + exp( 
v el −V L 

k el 
)) −1 + g min ] . 

Table 1 shows parameter values that were common to all sim-

ulations of the simple model. Below that we show specific values

used for ḡ elec and g M → L for each of the relevant figures. 

For Figs. 2 –4 , we chose g I→ L = 12 . For Fig. 2 : g M→ L = 10 , ḡ elec =
0 , g AB → I = 0 ( 2 A) and g AB → I = 0 . 2 ( 2 B). For Fig. 3 A: g M→ L = 10 ,

g AB → I = 0 and ḡ elec = 0 , 0.5, 1.0, 1.5. For Fig. 3 B: g M→ L = 8 . 8 and

ḡ elec = 0 . 0 (upper cubic) and 0.8 (lower cubic). For Fig. 4 A, the elec-

trical coupling is non-voltage dependent: g M→ L = 8 . 8 and ḡ elec =
0 . 088 , ḡ elec = 0 . 155 at the left saddle node point, and ḡ elec = 1 . 2

at the right saddle node point. For Fig. 4 B, the electrical cou-

pling is voltage dependent and we chose, g M→ L = 8 . 8 and ḡ elec = 0 ,

ḡ elec = 0 . 594 at the left saddle node point, and ḡ elec = 1 . 57 at the

right saddle node point. 

For Fig. 5 A: g M→ L = 0 . 35 , g I→ L = 0 , the three monotone null-

clines are when the electrical coupling is non-voltage depen-

dent with ḡ elec = 0 , ḡ elec = 0 . 6 and ḡ elec = 1 . 3 . The cubic is for the

voltage-dependent case with ḡ elec = 1 . 3 . For Fig. 5 B: voltage depen-

dent electrical coupling, g M→ L = 0 . 35 , ḡ elec = 1 . 24 , g I→ L = 0 (lower

cubic) or g I→ L = 0 . 2 (upper cubic). For Fig. 5 C: same as Fig. 5 B ex-

cept g AB → I = 0 . 2 . 

For the simulations shown in Fig. 6 , the following set of equa-

tions was used: 

 

dV L 

dt 
= −g leak,L [ V L − E leak ] − g K w L [ V L − E K ] − g Ca,I m ∞ 

(V L )[ V L − E Ca ]

−g I→ L s I→ L I[ V L − E inh ] −g s s [ V L − E exc ] −g elec (V L )[ V L − V M 

] + I ap

dW L 

dt 
= φL 

w ∞ ,L (V L ) − W L 

τ∞ 

(V L ) 

C 
dV I 

dt 
= −g leak,I [ V I − E leak ] − g K w I [ V I − E K ] − g Ca,I m ∞ 

(V I )[ V I − E Ca ] 

−g L → I s L → I [ V I − E inh ] − g AB → I s AB (t)[ V I − E syn ] + I app,I 

dW I 

dt 
= φI 

w ∞ ,I (V I ) − W I 

τ∞ 

(V I ) 

The synaptic variables are governed by 

ds I→ L 

dt 
= γ ( 

1 

1 + exp ( v ith −V I 
t α

) 
− s I→ L ) 

ds L → I = α(1 − s L → I ) Heav (V L − V T ) − βs L → I Heav (V T − V L ) 

dt 
ds 

dt 
= 

1 − s 

τr 
Heav (V T − V L ) − s 

τ f 

Heav (V L − V T ) . 

he remaining terms are given by m ∞ 

(V x ) = (1 + tanh ( V x −cv 1 
cv 2 )) / 2 ,

∞ 

(V x ) = cosh ( V x −cv 3 
2 cvv ) , w ∞ ,x (V x ) = (1 + tanh ( V x −w f x 

cv 4 )) / 2 , where

he subscript x refers to either L or I . In addition, we used equa-

ions (3), (9) and (10) . For Fig. 6 A and B, g I→ L = 0 , for Fig. 6 C,

 I→ L = 10 and for Fig. 6 D, g AB → I = 1 . Table 2 shows parameter

alues for the simulations of the Morris–Lecar model. 
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