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1. Introduction

Networks of neurons display a variety of oscillatory behaviors.
For example, oscillations in the levels of calcium concentrations,
gene expressions and in the membrane voltage across cell mem-
branes are all commonly found in neuronal systems. Often these
oscillations are rhythmic in that they display a consistent pattern
at a prescribed frequency [1]. Central pattern generating (CPG)
networks provide several examples that exhibit rhythmic activity.
CPGs refer to networks of neurons in the central nervous system
that produce patterned (usually oscillatory) activity in the absence
of patterned sensory input. These networks play a critical role in
generating a diverse array of motor functions such as digestion, lo-
comotion, respiration and regulation of heartbeat in invertebrates
[2]. A central question in the study of neural oscillations is what
are the mechanisms that underlie the generation of rhythmic ac-
tivity and how that activity is regulated. This study will focus on
this general question in the context of the gastric mill rhythm
(GMR; frequency 0.1 Hz) that arises in the stomatogastric ganglion
(STG) in the crustacean central nervous system. In particular, we
will show the existence of a new mechanism based on voltage-

Abbreviations: CPG, central pattern generating; GMR, gastric mill rhythm; STG,
stomatogastric ganglion; HCO, half-center oscillator; LG, lateral gastric; INT1, in-
terneuron 1; STNS, stomatogastric nervous system; AB, anterior burster; MCNI1,
modulatory commissural neuron 1.
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dependent electrical coupling for generation of oscillations within
a neuronal network.

The gastric mill network consists of a small number of neu-
rons in the STG that control muscles that move teeth to provide
grinding of food (chewing) within the gastric mill stomach of crus-
taceans [3]. In the Jonah crab, a pair of neurons, the lateral gas-
tric (LG) and Interneuron 1 (INT1) form a half-center oscillator
(HCO) and are primary contributors to the GMR. These neurons
are connected by reciprocally inhibitory synapses and, during gas-
tric mill activity, display anti-phase bursting oscillations. They also
receive input from various parts of the stomatogastric nervous sys-
tem (STNS). In particular, INT1 receives rhythmic inhibition from
the pacemaker anterior burster neuron (AB) of the pyloric CPG.
Because the pyloric rhythm (frequency 1 Hz) is much faster than
the gastric mill, the AB to INT1 input produces pyloric timed pat-
terns in the INT1 bursting activity. Both LG and INT1 receive exci-
tatory input from the modulatory commissural neuron 1 (MCN1)
with INT1 receiving fast excitation and LG receiving slow modula-
tory excitation. Additionally, the MCN1 axon terminals are electri-
cally coupled to LG in a manner that is dependent on the voltage of
LG [5]. It is the role of this electrical coupling that is of particular
interest to us in this paper.

Neurons that lie within an HCO typically utilize reciprocal in-
hibition to generate oscillations [6]. In particular, in a two cell
HCO, when one of the cells is active, its inhibitory synapse sup-
presses the other. At some later time, the silent cell escapes or is
released from inhibition and the roles of the two cells switch [7].
In the gastric mill network, LG and INT1 can oscillate in this man-
ner with the ability to escape inhibition and generate oscillations,
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but only in the presence of the excitatory input provided by MCN1
[5,8].

Although a number of modeling studies have explored the gen-
eration of oscillations in the gastric mill network [8-11,13], the role
of the strong electrical coupling between the MCN1 axon termi-
nals and the LG neuron has not been previously explored. In this
study, we will show that voltage-dependent electrical coupling can
provide an alternative mechanism for the generation of oscillations
when the inhibition based HCO mechanism is incapable of doing
so. In particular the LG — INT1 HCO can be rendered ineffective if
(1) the inhibitory synapse form INT1 to LG is inactivated, or (2)
if the excitability property of LG is reduced. In order to fully un-
derstand how electrical coupling affects this network, we will first
consider a simple model to see how electrical coupling between
LG and MCN1 axon terminals affects the ability of oscillations to
be created through the standard HCO inhibition based mechanism.
We will discuss how the electrical coupling modulates the rhyth-
mic properties of this oscillation. We will then remove the INT1
to LG synapse and show that rhythmic oscillations can still arise
through the electrical coupling between LG and MCN1 axon termi-
nals, but only if this coupling is voltage dependent, as has been
reported experimentally [5]. We will then demonstrate the same
in a biophysical model based on the Morris-Lecar equations [15].
For both models, we derive conditions on parameters showing why
the electrical coupling must be voltage dependent to produce os-
cillations.

The modeling and analysis in this paper is based on the use of
geometric singular perturbation theory. Exploiting inherent differ-
ences in timescales, we will derive sets of fast and slow equations
that can be studied in the relevant phase space. For the simple
model, this can be done on a two-dimensional phase plane and
is the focus of Sections 3.1-3.4. The analysis in those sections fol-
lows the tradition of using relaxation oscillators with the individ-
ual neurons modeled as passive elements. The relaxation oscilla-
tions in this case arise due to the method of model reduction that
incorporates a slow synaptic variable. In Section 3.5, the fast-slow
analysis allows us to project the relevant dynamics onto two dif-
ferent phase planes to facilitate understanding of the model.

2. Model
2.1. Simple passive cell network model

We describe the simple network that we shall initially consider.
A key assumption for this model is that INT1 and LG are mod-
eled as passive cells with no active currents or excitable properties.
Thus if oscillations are to be generated, they must arise as a direct
result of network interactions. By identifying variables that evolve
on different time scales and by making a few other assumptions,
we can use geometric singular perturbation theory to focus on the
analysis of a reduced two-dimensional system of equations. These
variables correspond to the voltage of LG and to the synaptic in-
put that LG receives from MCN1 and are shown in solid in Fig. 1.
The electrical coupling is also shown in solid in Fig. 1 as it can be
defined in terms of the reduced quantities including the voltage of
LG. Shown with dotted lines/circles are the other variables that we
will incorporate into the solid variables and thus will not need to
explicitly track.

Let V; and V; denote the voltages of LG and INT1 respectively.
We will not model individual spikes but instead keep track of
when a cell is above (active) or below (silent) threshold. These
voltages will evolve on a fast time scale. Notice that AB and MCN1
do not receive synaptic input from any other cells in the circuit.
Thus we do not explicitly model either but instead need only keep
track of their synaptic and electrical output. The equations that de-
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Fig. 1. Schematic diagram of the modeled network.Solid elements are explicitly
represented in the reduced two-dimensional model whereas dashed elements are
defined as functions of the explicit variables. Filled small circles indicate synaptic
inhibition, solid box is synaptic excitation and the resistor symbol indicates electri-
cal gap junction coupling between the MCN1 axon terminals and LG.

scribe the relevant voltages are:

dv,
g = ~hrestn (Vi) —Iynin (V. V)
— LIyn vt (Var, Vi, 8) — Lejec (Vi, Vin) (1)
av
EE = *Irest,l(vl) - Isyn,L»I(VIv Vi) — syn,ABal(Vlv SAB—1) (2)

The intrinsic current Irest x (Vx) = Srest x[V — Erest x] where grest, x and
Erest, x are the passive rest conductance and reversal potentials. No-
tice that in the absence of any other currents, the value V = Eyest x
is a stable rest point. For LG, Eyg | < V¢ while for INT1, Ee |
> Vr for a fixed threshold V;. MCN1 is assumed to be tonically
active which we model by setting its voltage to a value Vy >
Vr. The synaptic currents obey an equation of the form Isynx—y =
8x—ySx—y[Vy — Eipp] where x and y are the pre- and post-synaptic
cells. The variables spg _, |, s -, ; and s;_, | are straight forward
to understand and are instantaneous. The synaptic variable sap _, |
provides the input due to AB activity and is modeled using a pe-
riodic, half-sine function with an amplitude of 1 and period of 1
s. This synapse takes on the value one when the sine function is
greater than a threshold, set here to 0.5, and is zero otherwise.
The synapses between LG and INT1 are also instantaneous and we
utilize the fact that these cells are always out-of-phase with one
another.

Sap_1 () = Heav(sin(zlg(()to)) - 0.5) (3)
_ -1

s (V) = [1 + exp<v1 T VL)] (4)
-1

The remaining synaptic variable s requires some explanation. In the
biological system, MCN1 exerts a slow excitatory effect on LG that
is modulated by pre-synaptic inhibition from LG onto the MCN1
to LG synapse. Thus when LG is active, this excitation is slowly re-
moved; when LG is silent, the excitation slowly builds. This is mod-
eled by the variable s that evolves on a slow time scale and is the
only slow variable in our model. Equations governing this variable
are:

ds (1 -s)/z
dt -s/T¢

Vi<Vr

de — Vi>Vr (6)

In equation (1), the synaptic current is then given by
Isyn,M»L = gMeLS[VL - Eex61~ (7)

Fig. 1 shows an electrical coupling between LG and the MCN1
axon terminals. The electrical current is given by

Tetec (Vi Vi) = Zetee VDIVL — V] (8)

This coupling is dependent on the voltage of LG and MCN1 in two
different ways. First, the strength is an increasing function of V;.
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The dependency of the conductance g.,. on V; is incorporated us-
ing an increasing sigmoidal function ns (V). Second this strength
is dependent on the driving force which is the difference between
the LG and MCN1 voltages. In the biological system, the electrical
coupling has a minimal effect on the MCN1 voltage [5], almost as
if the electrical coupling were rectifying. We model this by simply
keeping the MCN1 voltage fixed at V), independent of the value of
V.. We define

8elec (VL) = gelecnoo (VL) (9)
where
Ve — Vi \\ !
oo Vi) = (1 = ) (1 + exp(%=2) )+ (10)
e

where v, is the half activation value at which n. (V) = (1 -
Zmin)/2 and k,; is the reciprocal of the slope at that point. The
asymptotic value of n.(V;) as V; - —oo is denoted by gni, € (0,
1) and is the smallest positive value of the electrical conductance.

While, equations (1)-(8) govern the flow of the gastric mill cir-
cuit, the dynamics can be simplified by exploiting the small pa-
rameter € that demarcates the fast and slow time scales, as was
first done by Kintos et al. [11]. Set € =0 in (1) and (2). The latter
of these equations can be rewritten in terms of V; and of the inde-
pendently controlled quantity ssp _, ;. Namely, from (2), note that
we can solve for V; = hy(V, spp_,); see Appendix. Thus the set of
equations governing the slow flow can be reduced to

0 = — Zrest.LIVi — Erest..] — 8115151 (h1 (Vi, Sap—1) ) [Vi — Einin]

— M- 18IVL — Eexc] — Zetec (Vi VM) [VL — Viu] (11)
ds _J(1-s)/t Vi<Vr
E - {—S/'L'f V. > Vr. (12)

Denote the right-hand side of (11) by F(Vj, s). The first equation
constrains the flow to lie on F(V;,s) =0, and slaves the evolution
of V| to s which is governed by the second equation (12). Rescale
t = €1, then set € = 0 to obtain the fast equations

v
a7 = FW.s) (13)
ds

Equations (13) and (14) govern the fast jumps that a trajec-
tory in the phase plane makes between different possible (stable)
branches of the V;-nullcline. For € small enough, an actual solu-
tion to (1)-(8) lies O(¢) close to a singular periodic orbit which is
pieced together from solutions of (11)-(14).

The V; nullcline is the set of points {(V,,s) : F(V;,s) = 0} and
can be graphed by explicitly solving for s to obtain

N

_ ~8rest[Vi = Erest.] = 811811 (M (Vi Sap-D)IVL — Einn] = 8etec (VI [VL = V]

2.2. Biophysical model

In Section 3.5, we will use the Morris-Lecar equations to model
both LG and INT1. As a result of the added dimensionality of
the model, we will not be able to reduce the analysis to a two-
dimensional phase plane. However, similar to our analysis with the
simple model, we will be able to show that the projection of the
LG trajectory onto two distinct two-dimensional phase planes will
be crucial to understanding the role of voltage-dependent electrical
coupling. When parameters are chosen in the Morris-Lecar equa-
tions to reduce the excitability of LG, the inhibition based HCO be-
comes ineffective. In that case, as in the case of the simple model,
electrical coupling will be able to produce oscillations but only
when it is voltage-dependent. Details of the model will be pro-
vided in Section 3.5 and Appendix.

3. Results
3.1. Oscillations that arise through the INT1-LG reciprocal inhibition

For completeness and for ease in explaining the role of the volt-
age dependent electrical coupling, we begin by reviewing the case
when g, = 0 as described in [10]. Oscillations in this case arise as
a direct consequence of the mutually inhibitory pair INT1 and LG.
Because of different synaptic strengths between the two and dif-
ferent time constants in the active and silent states of LG, the cells
form an asymmetric half-center oscillator (HCO) in that the duty
cycle of each cell is not equal to 1/2. They do, however, oscillate in
anti-phase where only one of the cells is active at any moment in
time.

First set gap_,; = 0 meaning that AB inhibition to INT1 is ab-
sent. We choose similar parameter values to [10] such that the
V,-nullcline is then a cubic shaped curve where the left and right
branches are positively sloped; see the left panel of Fig. 2A. Except
for the local extrema, points that lie on the left and right branches
are stable fixed points of the fast equations (13). The threshold Vy
is chosen to intersect the middle branch of the cubic nullcline. The
solution trajectory for this case is easy to understand. Starting at
the local maximum of the left branch, equation (13) is used to
make a fast jump to the right branch. Note that this jump is hor-
izontal since ds/dt = 0 according to (14). Then (11) and (12) are
used to evolve the slow flow down the right branch until the tra-
jectory reaches the local minimum. A fast jump back to the left
branch under (13) and (14) then ensues, followed by slow evolu-
tion under (11) and (12) along the left branch back to the local
maximum.

When the AB to INT1 inhibition is present (g45 . ; > 0), then
a portion of the V, nullcline moves in phase space. In particular,
when the AB to INT1 synapse is active, then V; decreases. In turn,
through equation (5), s;_, | decreases causing the V| nullcline to

81V — Eexc]

The s-nullcline is simply the Heaviside function given by s =1
when V; < Vr and s = 0 when V| > V;. We could smooth this null-
cline out to a sigmoid with no qualitative change in results.

The shape of the V;-nullcline is dependent on our choice of
parameters. It is known from prior modeling work of this system
[11,12], and of many others in different contexts, that when one of
the nullclines is cubic shaped and the other is linear or sigmoidal
that oscillations may occur if the nullclines intersect on the mid-
dle branch of the cubic. In the results section below we will show
how various parameters related to both the synaptic and electrical
coupling affect the shape of the V| nullcline and allow it to be a
cubic.

(15)

move down in the phase space. However, since the AB to INT1
synapse is irrelevant when LG is active, only the left branch of the
nullcline is affected. The left panel of Fig. 2B shows the LG trajec-
tory when the AB to INT1 inhibition is present. The small depo-
larizations while the trajectory is on the left branch correspond to
periodic disinhibition from the INT1 inhibition to LG that is itself
created by the periodic inhibition of INT1 by AB. When the trajec-
tory has evolved sufficiently far up the left branch to above the
local maximum of the lower nullcline, the disinhibition allows LG
to escape from the INT1 inhibition and become active. In this case,
the period of the orbit is reduced since the time spent on both the
left and right branches is reduced.
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Fig. 2. Synaptic and electrical connectivity.The synaptic and electrical connectivity of the gastric mill network along with nullclines and voltage trace of LG is shown.
Schematic diagrams shows that LG and INT1 reciprocally inhibit one another. MCN1 provides a slow modulatory excitation (s) to LG. This excitation to LG is removed by
presynaptic inhibition of this synapse by LG, when LG is active. (A) In the absence of rhythmic input from AB to INT1, the interaction between LG, INT1 and s produces
oscillatory activity. The graph on the far left displays the V; —s nullclines. The red curve shows the V; nullcline whereas the green step curve shows the s nullcline. The
solution trajectory is in black with the arrows indicating the direction of the trajectory and double arrows indicating the fast jumps. As the excitation s builds up, the solution
trajectory slowly travels up the left branch of the V; nullcline and jumps across to the right branch once the trajectory reaches the local maximum and LG transitions to
its active phase (V; > Vr). Once LG is active, the excitatory input s slowly decays, causing the trajectory to slowly travel down the right branch of the V; nullcline until it
reaches the local minimum at which it jumps back to the left branch. The corresponding changes in V; versus t is shown in the middle panel. (B) In the presence of the AB
to INT1 synaptic inhibition, during each pyloric cycle when AB inhibits INT1, LG is released from INT1 inhibition and the left branch of the V; nullcline moves down (lower
red V; nullcline). The nullcline returns to its original uninhibited position (upper red V; nullcline) once the AB inhibition turns off. In response, the solution trajectory slowly
travels up the left branch of the V; nullcline while making jumps in fast time between to upper and lower branch when the AB inhibition is on or off. As in panel A, the
solution jumps across to the right branch once the trajectory reaches the local maximum. The trajectory then slowly travels down the right branch of the V; nullcline until
it reaches the local minimum at which it jumps back to the left branch. Note that the AB inhibition does not affect the right branch of the V; nullcline (or the trajectory)
because, when LG is active, it inhibits INT1 thereby removing the functional effect of the AB to INT1 synapse. The corresponding changes in V, versus t is shown in the
middle panel. Small depolarizations in the voltage of LG due to the AB input can be seen in the silent phase of its rhythm. (For interpretation of the references to color in
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this figure legend, the reader is referred to the web version of this article.)

3.2. The effect of non-voltage dependent electrical coupling on the
INT-LG generated rhythm

We next investigate the effect of adding electrical coupling to
the network. First we consider the case when the electrical cou-
pling is not voltage dependent. To do so, set v,; = —100. Since V|
> Vg in this case, this causes n.(V;) = 1 in equations (9) and (10).
The effect of g > 0 is to lower the V; nullcline in the phase
space; see Fig. 3A. Note that because V), does not change and,
for this case g.(Vy) is constant, the effect of the electrical cur-
rent on the V; nullcline is largely due to the difference V; — Vj,.
This difference is the driving force of the electrical current. Since
V) is constant, it acts like the driving force of a synaptic current
that drives the voltage towards a constant reversal potential. When
Zolec > 0, the left branch of the V;-nullcline moves down more than
the right branch since the driving force is larger there. That be-
ing said, the effect on the left branch is not too much larger than
on the right branch. The result of the electrical coupling is simply
to increase the burst duration of LG and shorten its interburst du-
ration. The reason for this is readily explained through the phase
plane of LG. The slow flow is directly related to the distance of the
trajectory from the s-nullcline. When g, > 0, the right branch of
the nullcline moves down toward s =0 thereby slowing the tra-
jectory down when LG is active. The opposite happens to the left
branch; the distance from the s-nullcline increases, thus speeding
up the trajectory in the silent state. The period of LG is an increas-
ing function of g,,.. In fact, the period tends to infinity when g,
becomes sufficiently large as a saddle-node bifurcation at s =0 is
created.

Next, observe that electrical coupling and the MCN1 synapse
have similar effects on the V;- nullcline. Namely, increases in ei-
ther gy _ [ or g, lower the V; nullcline. This implies that some

amount of the chemical synaptic excitation can be replaced by
the metabolically less costly electrical coupling. For instance, begin
with g, =0 and gy _. ; chosen such that the left branch of the
V;-nullcline intersects s = 1 creating a stable fixed point (Fig 3B). If
Zelec 1S Now chosen sufficiently large then the V;-nullcline is low-
ered enough so that the fixed point on the left branch moves to
the middle branch and is unstable. However, if g,,.. is too large,
then the right branch of the V;-nullcline intersects the s-nullcline
at s = 0 creating an asymptotically stable fixed point there. Thus,
there can exist a range (g.(gv_r),&* (8u—r)) Of Zee Values for
which the fixed point lies along the middle branch and oscillations
can occur. Note however if gy, _, | is too small, then the value g,
needed to move the local maximum below s = 1 would be so large
that it would also lower the local minimum to below s = 0, creat-
ing a stable fixed point there. In these cases there is no range of
Zelec Values that produce oscillations.

We can get a better understanding of the range of conductance
values for which oscillations exist. Fig. 3C shows a bifurcation di-
agram in gy _ [-Zeec Space for the non-voltage dependent case.
The shaded region R1 depicts the range of parameter values for
which oscillations exist. Note that this region is bounded on three
sides by lines. The lower boundary along g,.. = 0 corresponds to
the range of oscillations that exist when there is no electrical cou-
pling. For this set of parameters, the boundary begins at roughly
(891, 0). If gy _. 1 < 891 and &, =0, then there are no oscil-
lations as the V;-nullcline has a fixed point on its left branch at
s=1.

The left boundary corresponds to the set of saddle-node values
along the local maximum of the V;-nullcline at s = 1. This curve
is a line and has negative slope. To see why, consider the equa-
tion F(V;,s) = 0 and equation (15) for the V; nullcline in the volt-
age independent case where gyoc(V1) = Zooc- We rewrite (15) as
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Fig. 3. The effect of non-voltage dependent electrical coupling. Non-voltage dependent electrical coupling between LG and MCN1 increases the LG burst duration and
decreases the interburst duration. (A) The left panel shows the V; — s nullclines for g, = 0 (gray curve; same as in Fig. 1A), 0.5, 1 and 1.5 (red curves). As the value of g
increases, the V; nullcline shifts down. Because the electrical coupling is non-voltage dependent, both the left and right branches of the V; nullcline shift downward. The
middle panel shows V; vs t traces for the different values of Zgjec. AS g increases the LG burst duration increases while its interburst duration decreases. (B) For g, = 0
and gy ., ; small (8.8 here, compared to 10 in panel A), a stable fixed point (filled circle) exists on the left branch of the V; nullcline thereby preventing the existence of
oscillations (upper nulllcline). If the value of g... is chosen to be large enough, the V; nullcline is lowered and oscillations can occur. The V; nullcline from Fig. 1A and
panel A (with gy_, = 10) is shown (in gray) for comparison. (C) The bifurcation diagram in gy, — geec Space. The shaded region R1 depicts the range of parameter values
for which oscillations exist. The lower boundary along g, = 0 corresponds to the range of oscillations that exist when there is no electrical coupling. The left boundary
corresponds to the set of saddle-node values along the local maximum of the V; nullcline at s = 1. The top boundary corresponds to the set of saddle-node points when
the minimum of the cubic nullcline is tangent to s = 0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

follows

s = f(VL) _g_elec[VL - VM]’ (16)
gM*)L[VL - Eexc]

where f{V) refers to the first two terms in the numerator on the

left hand side of (15). A saddle-node point occurs when F (v, 1) =

0 and ds/dV; = 0. The equation F(V;, 1) = 0 implies

VL - Eexc f(VL) )

8elec = — V, —Vy ML+ V. —Vy (17)
Next observe that
E _ [df/dVL - gelec][VL - Eexc] - [f(VL) _gelec[VL - VM]]. (]8)

v, — 8v—1IVi — Eexc)]?

The condition ds/dV; = 0 implies that the numerator of the above
fraction equals zero which reduces to the relationship,

a
dv;

Let V*(Ze1ec) denote the solution of (19) and note it that does not
depend on gy _, ;. Further, it only weakly depends on g, in the
sense that this term is scaled by the difference Vj; — Eexc. Therefore
the curve that defines the saddle-node points given in (17) is basi-
cally a line with the slope given by the ratio of the driving forces
(V" = Eexc)/ (V) — Viy). Note that if Eexc = Vjy, then the slope of the
saddle-node curve is negative one and the V;* value of the local
maximum is independent of both gy, _, ; and Zejec-

The top boundary of the oscillation region corresponds to the
set of saddle-node points when the minimum of the cubic null-
cline is tangent to s =0. This curve is given by F(V;,0) =0 and
ds/dV; = 0. From (19), we already know that the solution to the
latter are independent of g, _, ;. Now from (16), the intersection of

[VL - Eexc] - f(VL) _gelec[VM - Eexc] =0. (19)

the V; nullcline with s = 0 is also independent of gy, _, ;. Thus the
top boundary is simply a horizontal line in the gy _, ;-8 Plane.

The region R1 is unbounded on the right. This is precisely be-
cause the local minimum of s at s = 0 is independent of gy, _, ;. As
gv - L — oo, the oscillations are no longer burst-like. Instead the
trajectory spends almost all of its time on the right branch in a
neighborhood of the local minimum.

3.3. The effect of voltage dependent electrical coupling on the
INT1 — LG generated rhythm

To explore the role of voltage dependence on the electrical cou-
pling in the INT1-LG generated rhythm, we let v, =V which is
a value that lies along the middle branch of the V;-nullcline. The
voltage dependence now allows the conductance of the electrical
coupling to vary as a function of V; between g, along the left
branch of the V;-nullcline and g, along the right branch. Thus
the voltage-dependent electrical coupling affects the right branch
of the V; nullcline much more than the left branch. This is in con-
trast to the non-voltage dependent case; compare Fig. 4A and B.

Fig. 4 C shows the regions of oscillations for these cases. For
this set of parameters, there are two primary differences between
the voltage-dependent (R2) and independent (R1) cases. First, the
left boundary is more steeply sloped and the top boundary sits
at a higher g, value compared to the voltage-independent case.
Both are easily explained. In the voltage-dependent case, equation
(17) becomes

- VL - Eexc f(VL)
= e+
Belec Nee (VI[VL — VM]gM PV =V

The condition ds/dV; =0 yields a solutions V/*(g,.) which is
again independent of gy, _, ;. By definition n.,(V;) < 1. Thus the

(20)
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Fig. 4. The effect of voltage dependent electrical coupling between LG and the MCN1 output to LG. (A) The V; nullcline is shown for various values of g, in the non-voltage
dependent case (as in Fig. 2) with gy_,; = 8.8. As the value of g, increases, both the left and right branches of the V; nullcline move down. The values of g, shown are 0,
0.088 where oscillations first appear, and 1.2 where oscillations disappear due to the appearance of a stable fixed point on the right branch. (B) The V; nullcline is shown for
various values of g in the voltage dependent case. As the value of g, increases, the right branch of the V; nullcline shifts down much more than the left branch. As in
panel A, the values of g, shown are 0, 0.594 where oscillations first appear, and 1.57 where oscillations disappear due to the appearance of a stable fixed point on the right
branch. (C) A bifurcation diagram in gy, — Zeec Space is shown. The shaded region R1 depicts the range of parameter values for which oscillations exist for non-voltage
dependent electrical coupling (same as in Fig. 3C) while the region R2 depicts the range for voltage dependent electrical coupling. The region R2 is more steeply sloped and
the top boundary sits at a higher value of g, than the region R1. (D) Region R3 depicts the range of parameter values for which oscillations exist when the n..(V;) curve is
less steeply sloped. In this case, the left boundary of the oscillation region decreases to a value that is much closer to the voltage-independent case. The top boundary of R3
increases because larger values of g... are required to generate oscillations. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

prefactor multiplying g, _, ; is in fact a slope and is larger in mag-

nitude than in the voltage-independent case. Thus the left bound-

ary is steeper (-5.4 compared to -0.8 for the default parameters).
The intersection of the V; nullcline with s = 0 satisfies

gelecnoo (VL**)
~ Brest LIV — Erest 1] + 811511 (h1 (Vi spap1))[V)™ — Eipn

Vi — V7 1)

The value V;** increases with voltage dependence (specifically with
Ve from (10)). As a result, the right-hand side of (21) increases
since the numerator increases while the denominator decreases. In
the voltage independent case, n.(V;) = 1, whereas in the voltage
dependent case n (V;*) < 1. To compensate, the maximal conduc-
tance of the electrical coupling g, must increase. This allows the
top boundary of the region R2 to sit at higher values of g, (~1.57
compared to 1.2 in the voltage independent case).

The effect of voltage dependence can be amplified by making
the n (V) curve less steeply sloped. For instance, if k,; is increased
from 5 to 20, then the slope of the left boundary of the oscillation
region decreases in magnitude to around 2, which is much closer
to the voltage-independent case; see R3 in Fig. 4D. Further, because
the change in n., is more gradual, larger values of g, are needed
to satisfy (21), so that the top boundary of R3 now sits around 2.02
compared to 1.57 for R2. Other changes of parameters can similarly
be explored.

3.4. Oscillations arising through the voltage-dependent MCN1 — LG
coupling in the absence of the INT1-LG HCO

To this point, we have simply shown how electrical coupling af-
fects the existing oscillations that arise through the INT1-LG HCO. A
more important observation that we now make is that oscillations
can arise in the absence of this HCO provided that the electrical
coupling is voltage-dependent.

Consider equations (11)-(14) with g;_,; = 0. This removes the
INT1 to LG inhibition and destroys the HCO mechanism for oscilla-
tions. The V;-nullcline now is defined by

— _grest,L[VL - Erest,L] - gelec"oo (VL)[VL - VM]
gM»L[VL - Eexc] ’

In this case, to see why voltage dependence is necessary for os-
cillations, first take the case where the electrical coupling is non-
voltage dependent. Then ds/dVy = [grest 1[Eexc — Erest,L] 4 Zetec[Eexc —
Viull/gmo IV — Eexc]? > 0 if Vy is not too large. In this case, the
V, nullcline is a monotone increasing function that asymptotes to
—[&rest.L + &elec|/&m—1 as Vi — —oo and Eexc as V| — oo; see Fig 5A.
In this case, oscillations are not possible as any ensuing fixed point
is asymptotically stable.

Now take the case when the electrical coupling is voltage de-
pendent. Then after some algebraic manipulation, the condition
ds/dV; = 0 yields

N

(22)

grest,L[Eexc - Erest.L]

_ dn.
= gelec|:dVL[UL - Eexc]2 + [VL + N (VL) - Eexc][VM - Eexc]]~

For simplicity, take Eexc = V), in which case the condition re-
duces to

grest,L[VM - Erest.L] = gelec‘finToc[VL - VM]2~ (23)
L
The left hand side is independent of g,;.., while the right hand side
increases with it. Further the right hand side has a zero at V; =V,
and also tends to 0 as V; — +oo. Thus for g, sufficiently large,
there are two solutions of (23), meaning that the graph of (22) has
a local maximum and minimum. In this case, the V;-nullcline is
again cubic shaped and oscillations are possible; see Fig. 5B black
trajectory and voltage trace. Therefore, voltage-dependent electrical
coupling together with the slow excitation from MCNT1, and its sub-
sequent removal, via pre-synaptic inhibition from LG provides an
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Fig. 5. Oscillations arising through the voltage-dependent coupling between MCN1
and LG when the INT1 — LG HCO is ineffective. (A) Input from INT1 is removed by
setting g, = 0. The V; nullcline is shown for three values of g... (weak, medium
and strong) in the non-voltage dependent case (gray curves). In these cases, the V,
nullcline is monotonically increasing and oscillations cannot occur. When the elec-
trical coupling is voltage dependent, the V; nullcline is cubic even in the absence of
reciprocal inhibition (red nullcline). Thus, oscillations can be generated through the
electrical coupling together with the slow excitation (s) from MCN1. (B) When the
reciprocal inhibition is restored, the left branch of the V; nullcline is raised (top red
nullcline) thereby increasing both the LG burst and interburst durations. The trajec-
tory must now reach the local maximum of the raised cubic in order to transition
to the active state. The corresponding voltage trace is shown in the bottom panel.
(C) In the presence of AB input to INT1 in addition to the voltage dependent electri-
cal coupling, the LG interburst duration is shortened because the solution trajectory
is allowed to jump to the right branch at a time when the LG nullcline is lowered
due to the AB inhibition of INT1. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

alternate mechanism for the generation of oscillations. Note that
the voltage range and period of the oscillation are within the range
of the oscillation generated by the INT1 — LG HCO.

Using equation (10), we can derive an estimate on how large
Zolec Needs to be to obtain oscillations. The right hand side of
(23) has a local maximum at V; = V,;. Substituting and finding the
smallest value of g, that allows the right hand side to equal the
left yields

= 4grest<Lkel[VM — Erest L]
- s
8elec = [vel — VM]Z

This condition is fairly straightforward to interpret. Namely, the
stronger the passive properties of LG, either through larger leak
conductance g ; or smaller leak reversal E. [, or the more
gradual the voltage dependence, larger k. or v,, the larger the
electrical conductance g, needs to be.

(24)

We next explore the role of INT1 on the MCN1 — LG generated
oscillation. We emphasize that, although the inhibition from INT1
to LG is restored, the parameters remain in range where the in-
hibition based HCO-based mechanism is not capable of producing
oscillations. INT1 inhibition to LG raises the LB of V;-nullcline as
shown in Fig 5B. Now the trajectory (black) must increase to higher
values of s in the phase plane to escape inhibition, thereby increas-
ing the interburst duration. In turn, when LG is active, the trajec-
tory must also traverse through a larger range of s values to reach
the local minimum of the cubic, thereby increasing LG’s burst dura-
tion. Thus the effect of this inhibition is to increase the oscillation
period (and range of voltage values) by increasing both the inter-
burst and burst duration (black voltage traces).

When AB to INT1 inhibition is included, the trajectory is al-
lowed to leave the left branch prematurely at one of the moments
in time when INT1 is inhibited by AB. This results in a shorter in-
terburst and burst duration very similar to what was described in
Section 3.1. Note that the period is very similar to that obtained
when INT1 to LG inhibition is completely absent (g;_,; = 0); see
Fig. 5C. This makes sense as the AB inhibition to INT1 has the prac-
tical effect of making g;_,; = 0 periodically when LG is in its inter-
burst. Thus it is at one of those moments in time when LG is able
to escape from inhibition.

3.5. Voltage-dependent oscillations in the Morris-Lecar equations

We now demonstrate that our main findings regarding the role
of voltage dependent electrical coupling hold in a model in which
LG and INT1 are modeled using biophysical equations. We model
each of these cells using the two-dimensional Morris-Lecar equa-
tions, which are a commonly used set of equations that are derived
in the Hodgkin-Huxley formalism. The voltage equation includes
ionic currents for calcium, potassium and a leak current. There is
a recovery variable associated with the activation of the potassium
current. The equations for each cell are

dv,
GT; = _gleak,L[VL - Eleak,L] — &ca,lMx (VL)[VL - ECa]

—gxwi [V — Ex]
—Lyn -1 (Vio V1) = Ly (V. Vi, S)

- elec(VL, VM) + Iapp,L (25)

dw,
S = PulWe (V) — Wi/ T (V) (26)

av
EE = _gleak,l[vl - Eleak,l] — 8ca,1Mso (VDIVi — Ecq] — g8kWilVi — Ex]
—Lyyn 11 (Vi VL) = Lyn ag—1 (VI Sap—1) + lapp.1 (27)

dw,
Tp = UlWeea (V) = Wil/ T (V). (28)

On the right-hand side of equations (25) and (27), the first three
terms are specific to the Morris-Lecar equations, while the remain-
ing terms have the same form as defined in Section 2.1. The spe-
cific details of the model and parameter values are provided in
Appendix. Of interest to us here is the shape of the nullclines of
the two cells. For INT1, parameters are chosen such that in the ab-
sence of input (g;_,; = 0, g4p_,; = 0), the V; nullcline is cubic shaped
and intersects the sigmoidal W, nullcline on its right branch. This
high voltage fixed point indicates that INT1 is tonically active in
the absence of input.

For LG, we consider two different parameter choices. In one
case, in the absence of input, we choose g¢,; = 4.0 which is large
enough so that the V; nullcline is cubic shaped. In that case, the
V, and W, nullclines intersect along the left branch of V; which
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Fig. 6. Oscillations arising through the voltage-dependent coupling between MCN1
and LG in the biophysical model. (A) Input from INT1 to LG is removed by setting
g1 = 0. For the non-voltage dependent case, the projection of V; nullcline onto the
V. — W, space is shown for different cases (solid brown g, = 2.2,s =0, solid red
Zolec = 2.2, =1, dashed brown g, = 22,5 =0, dashed red g, =22,5=1). (B1)
When the electrical coupling is voltage dependent, the V; nullcline is cubic (brown
larger s, red smaller s). The trajectory transitions between branches from the local
extrema points of the relevant V; nullclines. (B2) The corresponding figure for the
projection of the V; nullcline onto the V; — s space. (B3) Voltage traces for INT1 and
LG showing anti-phase oscillations. (C) The reciprocal inhibition from INT1 to LG is
restored, lengthening the LG interburst similar to Fig. 5B. (D) The presence of AB
inhibition to INT1, shortens the LG interburst due to disinhibition as in Fig. 5C. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

models LG being at rest. In this case, LG is excitable in the clas-
sical sense that, if it receives the appropriate synaptic input from
MCNT1, it will fire. With these parameters, and with the LG-INT1
HCO intact, the presynaptic LG to MCN1 inhibition is sufficient to
produce oscillations, as was shown in the previous sections. The
addition of electrical coupling, either voltage-dependent or not,
simply modulates the oscillations in a manner analogous to that
found in Sections 3.2 and 3.3. In other words, electrical coupling is
not necessary to produce oscillations. Numerical simulations (not
shown) in this case yield results that are qualitatively similar to
those found in Figs. 3 and 4.

The more interesting situation arises in the second case when
we choose gc,; = 0.5 so that the V; nullcline is monotone decreas-
ing. Now, LG is no longer excitable. As a result, the INT1-LG HCO
is not able to produce oscillations, independent of whether g; _, |
is zero or not. Just as in Section 3.4 with the simple model, volt-
age dependent electrical coupling can provide an alternative mech-
anism for oscillations. Fig. 6 shows results from the biophysical
model. First consider the case when g;_,; = 0. The phase plane in
Fig. 6A shows the projection of V| nullcline for four different cases
onto the V; — W, phase plane when the electrical coupling is in-
dependent of voltage. The solid curves are for g, = 2.2 where
brown corresponds to s =0 and red is s = 1. The dashed curves
are their counterparts for g, = 22. Because the MCN1 to LG ex-
citation which is governed by s can change slowly, the four null-
clines that are shown are only representative snapshots of the V;

nullcline. However for all values of s, the V; nullcline is monotone
decreasing, precluding the possibility of oscillations.

In contrast, consider Fig. 6B1. Shown is the V; nullcline when
the electrical coupling is voltage-dependent for two different val-
ues of s (smaller s in brown, larger in red). As can be seen, the
voltage dependence creates a cubic shaped nullcline by preferen-
tially affecting the nullcline at higher voltages. As a result oscilla-
tions are possible. The V; trajectory is superimposed on the figure.
The red nullcline associated with the larger value of s corresponds
to those at which the trajectory jumps from the left branch to the
right branch signaling LG’s transition to the active state. The brown
nullcline is associated with a smaller value of s when the LG tra-
jectory jumps from the right branch to the left branch signaling
LG’s transition to the silent state. The dependence on s is seen in
panel B2 which shows the projection of nullclines and the trajec-
tory onto the V| versus s phase space; note the parallel to Fig. 5B.
Recall that s increases when LG is in the silent phase. This means
that in the V; —s phase plane, the trajectory moves up along the
left branches. However, the left branches themselves are moving
down because as s increases, the added excitation from MCN1 pro-
duces a greater chance to become active. The jump to the active
state occurs from a local maximum of the red nullcline. On the
right branch, the trajectory moves down, but the nullcline moves
up. The jump to the silent state occurs from the minimum of the
brown nullcline. The corresponding voltage traces for both LG and
INT1 are shown in panel B3.

In Fig. 6C, we restore the INT1 to LG synapse g;_,; = 10.The LG
interburst length increases, as was also seen in the simple model
Fig. 5B. As before, this is because the inhibition from INT1 to LG
means that s has to increase to larger values for LG to jump to
the active state. This implies a longer interburst duration. Finally,
in Fig. 6C, we restore the AB input to INT1 which shortens the LG
burst and interburst in a similar manner to Fig. 5C because the pe-
riodic inhibition of INT1 by AB provides periodic disinhibition of LG.
This provides LG an opportunity to escape the silent state earlier
just as with the simple model, thereby shortening LG’s interburst
and speeding up the rhythm.

Just as in Section 3.4, we can determine conditions under which
voltage-dependence allows the electrical coupling to produce oscil-
lations. Consider the case g;_,; = 0. For compactness of notation,
define f(VL) = _grest,L[VL - Erest,L] _gCa,Lmoo(VL)[VL - ECa]y h(VL) =
—Zelecloo (VL)IVL — Em] — &5S[Vi — Eexc] + lapp,.. Note that s depends
on V. Let prime denote the derivative with respect to V;. We can
solve for the V; nullcline by setting the right-hand side of equation
(25) to zero and solving for Wj.

_ fWD) +h()

gx[Vi — Ex| (29)
The slope of this nullcline is given by
aw, [ (V) + P ()IIVL = Ex] = [f (VL) + h(V)] (30)

av, — gxIVL — Ex]?

To show that the V; nullcline can be cubic shaped, we need to find
conditions under which the derivative (30) changes sign. Observe
that f(V;) +h(V;) > 0 thus the second term in the numerator of
(30) is negative. Next observe that

V1) = —&rest.r — 8carlml, (V)[VL — Eca] + Mmoo (V)] < O (31)
if g¢g, 1 is sufficiently small. The derivative
n (VL) = _gelecn/oo (VL)[VL - VM] - gelecnoo (VL)

—858'[Vi — Eexc] — &ss. (32)

The first term in (32) is non-negative, while the remaining three
are all negative (note that s'(V;) < 0). Thus the sign of h'(V;) will
be negative unless the first term is sufficiently large. When the
electrical coupling is not dependent on voltage, n.(V;) = 1 and
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therefore n/ (V;) = 0. Thus the first term will actually be zero in
this case. In turn this implies that h’(V;) < 0. Together, these re-
sults imply that, in the voltage-independent case, the V; nullcline
remains monotone decreasing and that no oscillations are possi-
ble. Alternatively, when the electrical coupling is voltage depen-
dent, then n/ (V) > 0 and is also relatively large in an interme-
diate range of V| values (roughly -35 to -15 mv). Thus for g,
sufficiently large, the first term in (32) dominates the others and
R (V) > 0. As a consequence, if g, is large enough, then volt-
age dependent electrical coupling allows dW;/dV; > 0 over a range
of intermediate V; values. In conjunction with the synaptic input
from MCNT1, this provides the opportunity for oscillations to exist.

4. Discussion

Neuronal circuits involved in the generation of rhythmic behav-
ior often involve half center oscillators that are composed of sets of
reciprocally inhibitory neurons. There is an extensive and ongoing
effort to understand the dynamics of half center oscillators in the
context of central pattern generation [10,11,14,16,17]. In many cases,
it has been noted that a careful coordination between network el-
ements is necessary to generate and set the frequency of the net-
work [18-20]. The role of electrical coupling in rhythmic networks
has also been studied [21,22] where the neurons were modeled as
intrinsic oscillators. Electrical coupling was not needed to generate
oscillations, but rather used to modulate the characteristics of the
oscillation.

As part of a larger work on the role of feedback to projec-
tion neurons, Kintos and colleagues [10,12] had shown how to em-
ploy phase plane analysis to understand the effect of MCN1 synap-
tic input on the GMR. In particular, they showed how to analyze
MCNT1 synaptic input and AB inhibition of INT1 to determine the
frequency of the GMR. In this paper, we have extended this anal-
ysis to show how to incorporate the effect of MCN1 — LG voltage-
dependent electrical coupling to determine the conditions under
which electrical coupling in the absence of the LG — INT1 HCO can
generate oscillations.

In the presence of an intact LG — INT1 HCO, we first consid-
ered the effect of non-voltage dependent electrical coupling. We
showed that the non-voltage dependent electrical coupling acts to
increase the LG burst duration while shortening its interburst du-
ration. This occurs because the voltage of LG is driven towards the
fixed, large voltage of MCN1. If the strength of the electrical cou-
pling is too large, however, LG gets stuck in its burst phase. One
advantage of the non-voltage dependent electrical coupling is that
it can be used in conjunction with the MCN1 chemical synapse
allowing for the generation of the GMR for a smaller amount of
the chemical excitation. This is a “cheaper” way to generate oscil-
lations as it requires less synaptic resources. The bifurcation dia-
gram in Fig. 3C shows the precise relationship between electrical
and synaptic coupling needed to create oscillations. We showed
that boundaries of this diagram are all roughly linear. In the case
of voltage dependent electrical coupling, the right branch of the LG
nullcline is affected much more significantly than the left branch.
This allows for an increase in the LG burst duration and a larger
range of values of g, for the generation of network oscillations.

A significant finding of our study is that network oscillations
can also be generated in the absence of coupling between LG and
INT1 simply through the voltage dependent electrical coupling be-
tween MCN1 and LG and the slow excitation from MCN1, together
with its removal due to the pre-synaptic inhibition of this exci-
tation. We derived a condition on the minimum value of g in
order for the GMR oscillations to exist in the absence of the HCO.
We showed that non-voltage dependent electrical coupling alone
is not sufficient for generation of the GMR. When the reciprocal
inhibition between LG and INT1 is restored, the period of the oscil-

lations increases due to increases in both the interburst and burst
durations of the oscillations. If, in addition, AB periodically inhibits
INT1, the interburst duration of LG is shortened. This is a direct re-
sult of the disinhibitory effect of LG from INT1 each time AB fires.

Our findings are not limited to the simple model in which LG
and INT1 are modeled as passive cells that we first considered.
We showed that voltage-dependent electrical coupling played the
same role in a model in which these cells were described using the
biophysically based Morris-Lecar equations. In order for voltage-
dependent electrical coupling to create the mechanism for oscil-
lations, we showed that LG must not be modeled as being ex-
citable. This fact is consistent with the underlying biological prop-
erties of the LG neuron, which, in the absence of MCN1 or other
modulatory input, shows no active properties (e.g. post-inhibitory
rebound, voltage sags or plateaus) that are associated with slow
bursting oscillations [4].

There are several natural extensions of this work. In previous
work [23], based on experiments of Wood et al. [24], we showed
that AB inhibition toMCN1 provides an alternate mechanism to reg-
ulate the gastric mill frequency. In the current work, we did not in-
clude the inhibition from AB to MCN1. If the AB inhibition to MCN1
were included, the LG burst would end when AB inhibits MCN1. It
would be necessary for MCN1 to be gated when LG is in its ac-
tive state in order to maintain robust oscillations. Indeed, in the
VCN-activated version of the gastric mill rhythm, the AB to MCN1
synapse is gated out during LG active phase [25]. It would be of
interest to extend our current model to test whether this gating is
truly necessary to maintain oscillations.

Another area that remains to be explored is the role of electri-
cal coupling in the MCN1/CPN2 generated gastric mill rhythm. Kin-
tos and Nadim [10] showed that the LG — INT1 HCO could be re-
placed by a tri-synaptic pathway that included the projection neu-
ron CPN2. Of interest would be to see whether voltage dependence
can replace one or more of those synaptic pathways.

Although the networks under consideration in this, and related
papers, are relatively simple and only involve a small number of
neurons, it is evident that the dynamics exhibited by them can be
quite complicated. Moreover, the neural mechanisms that underlie
the existence of oscillations are often hard to separate from those
that simply modulate the rhythmic properties of these networks.
Minimal modeling and mathematical analysis of small networks
plays a critical role in allowing us to discern which inputs gen-
erate oscillations versus those that modulate oscillations by pro-
viding valuable insights into how these important central pattern
generating networks operate.
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Appendix

Numerical simulations were performed using XPPAUT [26]. For
the simple model of passive cells used to produce Figs. 2-5 the
following set of equations was used.

dv,
T; = _grest,L[VL — Erest.1] — 8v—1S[Vi — Eexc]
— 8etec VIVL — V] — &= 1811 (h1 (Vi Sag—1)) [V — Einn]
(33)
ds 1-s S
@ o Heav(V;y — V) — T—fHeav(VL —-Vr) (34)
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Table 1
Parameter values common to all simulations of the simple model.
Intrinsic Inhibitory Excitatory Electrical
8rest,L = 1 81 = 2 Vy =10 8min = 0.1
8rest,] = 0.75 V= -30 Eexe =0 kel =5
Erest.. = —60 ki =8 Vr =-30 Voltage dependent
Erest1 = 10 vy =-25 7, = 5,000 Vo = —30
ky=5 7;=3,500  Non-voltage dependent
v3=-35 Ve = —100
k3 =3
Einy = —80
The term V; = hy(V}, spp_,;) that appears in equation (33) is gov-
erned by

Erest.1 + gL S 1 (VL) Ejnpy + gAB%I 5AB»I(t)P(VL)Emh

it [

14 &l SABal(t)P(VL) + els (V)

hy (Vi sag—i) =

Note here the presence of the function P(V;) = (1 + exp(vlk_%))*l.

This term is used to gate out the effect of AB input to INTI,
and its subsequent effect on the V; nullcline when INT1 is in
its silent state. The other remaining equations are simply (3)-
(5) sap_.i(£) = Heav(¥HEE0 — 0.5), 5,1 (V) = (1 +exp(U=h)) T,

SHL(VI)—(I-i-eXp( V’)) T and (9) and (10) written as one

Boe V) = Zael (1~ i) (1 +exp(“4=1)) 1 + g

Table 1 shows parameter values that were common to all sim-
ulations of the simple model. Below that we show specific values
used for g, and gy _, | for each of the relevant figures.

For Figs. 2-4, we chose g;_,; = 12. For Fig. 2: gy = 10, Zejec =
0, g4 =0 (2 A) and gup_.; = 0.2 (2 B). For Fig. 3A: gy = 10,
gap—; =0 and g, =0, 0.5, 1.0, 1.5. For Fig. 3B: gy, = 8.8 and
Zolec = 0.0 (upper cubic) and 0.8 (lower cubic). For Fig. 4A, the elec-
trical coupling is non-voltage dependent: gy_; = 8.8 and . =
0.088, g,joc =0.155 at the left saddle node point, and g, = 1.2
at the right saddle node point. For Fig. 4B, the electrical cou-
pling is voltage dependent and we chose, gy_,; = 8.8 and g =0,
Zolec = 0.594 at the left saddle node point, and g, = 1.57 at the
right saddle node point.

For Fig. 5A: gy_ = 0.35, g, =0, the three monotone null-
clines are when the electrical coupling is non-voltage depen-
dent with Zjec = 0, Zejec = 0.6 and g, = 1.3. The cubic is for the
voltage-dependent case with g, = 1.3. For Fig. 5B: voltage depen-
dent electrical coupling, gy_; = 0.35, & = 1.24, g1, = 0 (lower
cubic) or g;_,; = 0.2 (upper cubic). For Fig. 5C: same as Fig. 5B ex-
cept gap_,; = 0.2.

For the simulations shown in Fig. 6, the following set of equa-
tions was used:

dV
dtL = —Zleak LIVL — Etear] — 8kWiIVL — Ex] — &ca, iMoo (V1) [VL — Ecq]
—81-181-> UV — Einn -85SV — Eexcl=Zetec (Vi) Vi — V] +app,1
aw, & Woot (V1) =W,
a ~— "t (W)
av
H = _gleak,l[Vl - Eleak] - gKWl[VI - EK] — 8ca. 1Mo (Vl)[vl - ECa]
—81-151-1IVi — Einn] — &ap—1Sa (O)[Vi — Esyn] + lapp.s
Wi wee (V) — W
dt " (V)
The synaptic variables are governed by
dsi_p 1
= — S/
& = ey Y
s .

i a(1l—s;)Heav(V; — Vr) — Bs;_,Heav(Vr —V})

Table 2

Parameter values common to all simulations of the Morris-Lecar model.
Intrinsic Intrinsic Synaptic Electrical
ZleakL =3 lapp,s = 120 Vi =10 Zmin = 0.1
Sleaks = 2 lapp.. = 100 Eexe =20 ke =2
Ejeak = =60 ¢ =0.001 Vr =-10 Voltage dependent
8car =44 ¢ =0.0003 7,=5000 v,;=-12
gcar =05 wfi =10 7;=3,500  Non-voltage dependent
Eca =120 wfi =-10 g = Uy = —120
& =38 8L-1=
Ex = -84 y=5
C=20 Viep = 25
awl=-12 ty =10
aw2=9 =2
w3=3 B=2
w4 =11 Eip = —80

ds 1- S

a = VL) - _L_—Heav(VL - VT)

The remaining terms are given by me (Vi) = (1 + tanh(%2=%1)) /2,

cv2
Too (Vy) = cosh(W-92)  wgx (Vi) = (1 + tanh(%%)) /2, where
the subscript x refers to either L or I. In addition, we used equa-
tions (3), (9) and (10). For Fig. 6A and B, g;_, =0, for Fig. 6C,
g.. =10 and for Fig. 6D, gsp_,; = 1. Table 2 shows parameter

values for the simulations of the Morris-Lecar model.
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