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Abstract We construct and analyze a model network of the pyloric rhythm of the
crustacean stomatogastric ganglion consisting of an oscillator neuron that inhibits two
reciprocally inhibitory follower neurons. We derive analytic expressions that deter-
mine the phase of firing of the follower neurons with respect to the oscillator. An
important aspect of the model is the inclusion of synapses that exhibit short-term
synaptic depression. We show that these type of synapses allow there to be a com-
plicated relationship between the intrinsic properties of the neurons and the synapses
between them in determining phase relationships. Our analysis reveals the circum-
stances and ranges of cycle periods under which these properties work in concert with
or independently from one another. In particular, we show that phase maintenance
over a range of oscillator periods can be enhanced through the interplay of the two fol-
lower neurons if the synapses between these neurons are depressing. Since our model
represents the core of the oscillatory pyloric network, the results of our analysis can
be compared to experimental data and used to make predictions about the biological
network.
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162 C. Mouser et al.

1 Introduction

Neuronal networks responsible for the generation of rhythmic motor activity often
operate over a broad range of frequencies [18]. In many such oscillatory central pat-
tern generating (CPG) networks the relative activity phase between groups of neurons
remains fixed despite large variations in network frequency [6,10,11,13,14,25].
Hence, in face of changes in network frequency, the time delay between the active
states of these neuron groups must be adjusted proportionally with the network cycle
period. Yet, the biological mechanisms underlying such adjustments are largely unk-
nown. Previous modeling studies have addressed the question of phase determination
in neuronal networks. There is a large literature on weakly coupled oscillators (see
[8] for example) in which the phase relationship between neurons is obtained through
methods of averaging. In studies of the lamprey CPG, the phase between neurons
is explicitly constrained within the model [5], allowing the authors to investigate
what mechanisms are consistent with the constraint. Work on understanding the inter-
segmental lag in the crayfish CPG has focused on the interaction between weak and
strong coupling [15,30].

In previous work, we have suggested that short-term synaptic depression helps pro-
mote phase maintenance in feed-forward networks. We showed that depression in the
feed-forward inhibitory synapse from an oscillator to a follower neuron allows the
phase to be fairly constant over a large range of cycle periods [17] and that intrin-
sic ionic currents such as the transient potassium A current can act synergistically
with synaptic depression to extend the range of phase maintenance [4]. In the current
study, we focus on a CPG neuronal network to examine phase maintenance of follower
neurons in a three-cell network in which a pacemaker neuron imposes the network
oscillations on two follower neurons coupled with reciprocally inhibitory synapses
(inset of Fig. 1). The questions of interest center on the synaptic and intrinsic mecha-
nisms that control the activity phase of the follower neurons and their dependence on
cycle frequency. This network is modeled after the pyloric network of the crustacean
stomatogastric ganglion which consists of an oscillatory pacemaker group of neurons
AB and P D and four sets of follower neurons [20]. The pacemaker AB and P D neu-
rons are always co-active, due to strong electrical coupling, and inhibit all follower
neurons which, in turn, become active in two distinct (but sometimes overlapping)
intervals in each cycle, thus producing a tri-phasic rhythm (Fig. 1a). Previous expe-
rimental studies have shown that the activity phases of all neurons in this network
are relatively well-maintained, despite large variations (0.5–2 Hz) in cycle frequency
[13,14].

In this study, we use the AB neuron as the representative of the pacemaker group and
the follower neurons L P and PY as representatives of the follower neurons active in
two distinct phases. The other pacemaker neuron type P D two follower neuron types
I C and V D, which are co-active with L P and PY , respectively, are not included
in our model. Thus, in our model, AB sends feed-forward inhibition to L P and PY
while the latter two neurons reciprocally inhibit one another.

We use phase-plane analysis to derive a set of equations that can be numeri-
cally solved at any value of the period to determine the phase relationship between
AB and the follower neurons. As we vary the cycle period of AB, we investigate
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Fig. 1 Voltage traces of a typical tri-phasic rhythm taken from experiment (left) and simulation (right).
The middle panel shows a schematic diagram of the oscillator neuron AB and the two follower neurons
L P and PY . All synapses are inhibitory

how the activity phases of L P and PY change. The analysis allows us to deter-
mine the role of each of the neurons and the synapses between them in setting their
activity phases. In particular, we show that when all synapses exhibit short-term
depression, there are multiple control mechanisms for setting the phases. These control
mechanisms may work in concert or be completely independent from one another. We
show that as the cycle period changes, the control of the network phase relation-
ships shifts between different sets of parameters associated with the neurons and their
synapses. Our results, therefore, indicate that synaptic depression within the pyloric
network provides a natural mechanism to help the network maintain the observed
phase relationships among its different neurons despite large changes in the cycle
period.

The mathematical techniques that we employ are motivated by geometric singular
perturbation theory in which a difference in time scales is exploited to reduce a high-
dimensional model to low-dimensional sub-systems that are more amenable to analysis
[21]. We utilize this idea to project the dynamics of the neurons in their silent state
onto a two- or three-dimensional phase space. Analyzing the ensuing dynamics in
these phase spaces then makes it possible to analytically determine how long each
neuron spends in its silent state, thereby allowing us to calculate the phase of each
neuron. In parallel, we numerically solve the full set of model equations to see how
these numerical solutions compare with those obtained from the analytic reduction
method.

The paper is organized as follows. In Sect. 2, we derive the model set of equations
and describe the dynamics of synaptic depression. Section 3 contains results with
Sect. 3.1 containing the derivation of the firing times and subsequent subsections
discussing the role of each of the synapses within the network. Section 4 contains a
Discussion in which we address some of the modeling assumptions and implications
for the biological network.
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2 Model

The network we are studying consists of three neurons, AB, L P , and PY . A schematic
of the network architecture is shown in Fig. 1 together with biological and simulation
voltage traces of these neurons. AB is the pacemaker neuron of the pyloric network.
It oscillates at frequencies that lie between 0.5 and 2.0 Hz [24]. The activity of the
pacemaker AB neuron is taken for simplicity to be a square-wave. In particular, we
denote the time that AB is active by TAB and the time it is inactive by Tinactive. Therefore
the period of AB satisfies P = TAB + Tinactive. L P and PY are the follower neurons
of the pyloric network. We are mostly interested in the burst envelope of these neurons
so we use Morris–Lecar type equations to model their activity [22]. The equations to
describe the activity of L P and PY without synaptic connectivity are:

dvx

dt
= Ix − gleak[vx − Eleak] − gCam∞(vx )[vx − ECa] − gK wx [vx − EK ] (1)

dwx

dt
= w∞(vx ) − wx

τw,x (vx )
(2)

where x is PY or L P . vx is the voltage of neuron x , Ix in an applied current, gleak,x

is the conductance of the leak current, Eleak,x is the reversal potential of the leak
current, and wx is the recovery variable of K +. The functions m∞, w∞, and τ∞ are
sigmoidal functions of voltage and are given in the Appendix. Recent experiments by
Rabbah and Nadim [27] showed that the delay in firing of PY relative to firing of
L P is due to intrinsic properties of the neurons. Thus, in the silent state, we choose
τw,L P (vL P ) < τw,PY (vPY ) so that PY has a a slower intrinsic decay rate than L P .

We denote the right-hand side of (1) by f (vx , wx ). The vx - and wx -nullclines
associated with (1) and (2) are the set of points {(vx , wx ) : f (vx , wx ) = 0} and
{(vx , wx ) : wx = w∞(vx )}. The former is cubic shaped, the latter is sigmoidal. We
assume that for both L P and PY , these nullclines intersect at a stable fixed point along
the right branch of the cubic nullcline. Thus in the absence of input, both L P and PY
tend to a high-voltage fixed point.

L P and PY receive inhibitory synaptic inputs from AB and also from one another.
The synapses are modeled to be depressing meaning that the strength of the synapse
weakens as the frequency of the pre-synaptic neuron increases. The equations to model
the activity of L P and PY are:

dvL P

dt
= f (vL P , wL P ) − ḡABsAB[vL P − Einh] − ḡPY sPY [vL P − Einh] (3)

dwL P

dt
= w∞(vL P ) − wL P

τw,L P (vL P )
(4)

dvPY

dt
= f (vPY , wPY ) − ḡABsAB[vPY − Einh] − ḡL P sL P [vPY − Einh] (5)

dwPY

dt
= w∞(vPY ) − wPY

τw,PY (vPY )
(6)
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Fig. 2 Dynamics of the synaptic and depression variables. A schematic associated with the AB synapse
is shown. At the moment (demarcated by arrow) AB becomes active, the s variable (solid line) is reset to
the current value of d (dashed line). At all other times, the two variables are decoupled and governed by
distinct sets of equations. During the time AB is active, s decays at a slow rate and d depresses. Once AB
becomes inactive, s decays at a different rate, while d recovers. The s and d variables for the L P and PY
synapses behave in a similar manner

In the above equations, ḡAB , ḡPY and ḡL P are the maximal conductances of the
AB, PY and L P synapses, respectively, while sAB , sPY and sL P are the associated
gating variables. Einh is the reversal potential of the synapses that is chosen so that
all synapses are inhibitory.

Our model for the synapses is similar to that in [17] where each synapse has a gating
variable sx and another variable dx that measures the extent of synaptic depression
of the synapse. Both variables follow piecewise continuous linear kinetics. They are
coupled at discrete moments of time whenever a pre-synaptic cell becomes active.
When this occurs, sx is set equal to the current value of dx ; see Fig. 2. At all other
times the equations for the each of the synaptic variables are:

ddAB

dt
=

{
(d̂AB(Tinactive) − dAB)/τα vAB ≤ vT

−dAB/τβ vAB > vT
(7)

dsAB

dt
=

{−sAB/τκ vAB ≤ vT

−sAB/τζ vAB > vT
(8)

ddPY

dt
=

{
(d̂PY (P, TPY ) − dPY )/τa vPY ≤ vT

−dPY /τb vPY > vT
(9)

dsPY

dt
=

{−sPY /τ1 vPY ≤ vT

−sPY /τ2 vPY > vT
(10)

ddL P

dt
=

{
(d̂L P (P, TL P ) − dL P )/τc vL P ≤ vT

−dL P/τd vL P > vT
(11)

dsL P

dt
=

{−sL P/τ3 vL P ≤ vT

−sL P/τ4 vL P > vT
(12)
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For example, when AB enters its active state, we set sAB = dAB and then let dAB and
sAB evolve according to (7) and (8). vT is the activation threshold of the synapses.
When vAB < vT , dAB increases to d̂AB(Tinactive) (recovery from depression) with rate
1/τα where d̂AB(Tinactive) is an increasing function of Tinactive given by

d̂AB(Tinactive) = (1 + tanh((TAB + Tinactive − P1)/x1)/2. (13)

In this equation, P1 determines the half-activation time of d̂AB and x1 determines
the steepness of d̂AB . This relationship models the dependency of recovery from
depression on the cycle period of activity and is used to provide a better approximation
of the two time scales of recovery observed in the pyloric synapses [3]. Once vAB goes
above threshold (AB becomes active), sAB is set to dAB and then decreases at a rate
of 1/τζ where τζ is a large parameter. While vAB remains above threshold, dAB

decreases towards 0 with time constant 1/τβ representing the depression of the AB
synapse. Once vAB goes below threshold, sAB decreases to 0 with rate 1/τκ . As the
inactive phase of AB increases, the synapse has more time to recover from depression
and thus dAB has more time to increase towards d̂AB(Tinactive).

Similarly, we let

d̂L P (P, TL P ) = (1 + tanh((P − TL P − P2)/x2))/2, (14)

where TL P refers to the length of time L P is active. Note that TL P is a priori unknown,
but will be determined below. d̂PY (P, TPY ) can also be modeled using a sigmoid
similar to d̂AB where TPY refers to the length of time that PY is active. For simplicity,
however, we set d̂PY = 1.

In some cases that we will examine, the synapses from AB to L P and PY will be
nondepressing. In these cases, the strength of the AB synapses will be independent of
period. Whenever AB becomes active, we will set sAB = 1 instead of dAB .

The mathematical effect of inhibition is to lower thevx -nullcline of the post-synaptic
cell in the (vx , wx ) phase space. Consider L P for example. Before it receives inhibition
from the pacemaker AB, L P lies at a high-voltage fixed point. The inhibition from
AB turns on quickly and causes this fixed point to disappear, thereby allowing L P to
return to its silent state. Depending on the strength of the AB inhibition (which due
to depression is period dependent), the vL P - and wL P -nullclines may intersect either
on the middle or left branch of the cubic. In the former case, L P will be able to leave
the silent state due to its intrinsic properties, while in the latter L P will remain in the
silent state until the AB inhibition decays; Fig. 3. The general effect of PY inhibition
on L P and of AB and L P inhibition on PY is similar.

We will not carry out a formal singular perturbation analysis in this paper. Instead,
we will assume that the wx , sx and dx variables evolve more slowly than the vx variables
while the trajectory is away from the branches of a cubic nullcline. This can be achieved
by taking the time constants associated with those variables to be large and will allow
us to project the dynamics of the neurons while they are near the left branch of a cubic
onto a lower dimensional phase space; see [1,4] for related examples. Simulations of
our model are done using the software package XPPAUT [9]. Numerical solutions of

123



Maintaining phase of the crustacean tri-phasic pyloric rhythm 167

VLP

wLP

Weak AB Inhibition Strong AB InhibitionA B

Fig. 3 Dynamics of L P due to AB inhibition. a The inhibition from AB to L P causes L P to return to the
silent state, but is too weak to affect how long L P stays in this state. Note the lack of intersection of the
v- and w-nullclines along the left branches. b The inhibition from AB is strong and creates a fixed point
on the left branch of the v-nullcline. L P must wait for AB inhibition to decay allowing the fixed point to
disappear before it can jump to the active state

equations (25) and (26), below, were obtained using MATLAB. Parameter values are
given in the Appendix.

3 Results

We describe the tri-phasic pyloric rhythm starting with the onset of AB activity at
t = 0 as shown in Fig. 1. AB remains active for time TAB during which time both
L P and PY are silent. At t = t1, L P becomes active for a time length TL P . During
this time, it inhibits PY . At t = t2, PY becomes active and inhibits L P enough to
return L P to the silent state. PY stays active for a time length TPY . After one period
P = TAB + Tinactive, AB again becomes active, inhibiting PY and L P and the cycle
continues. We define φL P = t1/P and φPY = t2/P as the phase at which L P and
PY fire with respect to the onset of AB activity. The main goal of this paper is to
determine these two quantities as a function of P , and to show what effect synaptic
depression has on these two phases. Throughout this paper, we shall change P by
changing the time Tinactive while keeping TAB fixed; see the Discussion for comments
on how changing period in different ways affects the results.

To determine φL P and φPY , we must determine t1, t2, TL P and TPY . However,
the latter two quantities obey TL P = t2 − t1 and TPY = P − t2. Thus we need only
determine two equations for the remaining unknowns t1 and t2. To calculate these times
we first must understand how L P and PY evolve in their silent state, and what causes
them to have a chance to jump to the active state. Consider first L P in the case where
only AB inhibition is present. In the vL P − wL P phase plane, inhibition lowers the
vL P -cubic nullcline. As L P evolves in the silent state, the synapse from AB decays,
causing the cubic nullcline to rise slowly back toward its original location. L P can
jump to the active state when it reaches a local minimum of any of the slowly rising
cubics. These local minima form a one-dimensional L P-jump curve in (vL P , wL P )

space; labeled j.c. in Fig. 4a. Another way to visualize this is in the (wL P , sAB) phase
space; Fig. 4b. When projected into this phase space, the trajectory moves down and
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Fig. 4 Jump curves and surfaces. a The set of local minima of the v-nullclines forms a one-dimensional
jump curve ( j.c.). Additionally, the intersection of the w-nullcline with different v-nullclines forms a curve
of fixed points ( f p.c.). b The projection of panel a. onto the wL P − sAB phase space. c The projection
of the L P trajectory onto the wL P − sAB − sPY phase space. The jump and fixed point surfaces, j.s and
f p.s, are now both two-dimensional. The trajectory begins toward the front of the box with a high value of
sPY , but a low value of sAB and moves down, to the left and into the box (sAB , wL P and sPY all decay).
When AB becomes active, the trajectory is reset vertically to a higher value of sAB . The trajectory then
moves in the same way as before but for the time AB is active, sAB decays very slowly. The trajectory
escapes when it reaches j.s (foliated surface)

to the left. In addition to the L P-jump curve, there exists a curve of fixed points,
labeled f p.c.. These points are not true fixed points of the system, but rather are
points along which the vL P - and wL P -nullclines intersect (v′

L P = w′
L P = 0), but

where s′
AB < 0. A typical trajectory in this phase space will transition to the active

state when it reaches the jump curve. Let us now add in the PY inhibition to L P . In
this case, L P must potentially wait for both the AB and PY inhibitions to decay in
order to jump to the active state. The local minima of the associated cubics now form
a two-dimensional jump surface ( j.s.) and the fixed points form a two-dimensional
surface ( f p.s.) as shown in the (wL P , sAB, sPY ) phase space in Fig. 4c. Similarly,
there exists a two-dimensional PY -jump surface resulting from the slow decay of the
AB and L P synapses to PY and a two-dimensional surface of fixed points.

Let us assume that AB becomes active at t = 0 and that both L P and PY are in
their silent state. L P is the first to reach its jump surface, primarily because of the
assumption that when the neurons are below threshold, τw,L P (vL P ) < τw,PY (vPY ).
Assume that the jump surface is a plane and can be expressed by the linear relationship:

ḡABsAB + ḡPY sPY + M1wL P = g∗
syn1. (15)

Note that if ḡPY = 0, (15) reduces to the equation for a one-dimensional linear jump
curve as in [4]. The constants M1 and g∗

syn1 are both positive and can be determi-
ned from the ḡPY = 0 case. The former is related to the slope of the L P-jump
curve; the latter is related to the level of inhibitory synaptic input needed to make the
vL P -nullcline tangent to the wL P -nullcline; see Fig. 4a. We now calculate the value
at time t1 of the three dynamic variables explicitly represented in (15). The first is
the easiest. Since AB is taken to be a periodic square wave function (with period
P = TAB + Tinactive), the value of the depression variable dAB will also be periodic.
Using this fact, it is straightforward to find from (7) that the maximal value of dAB
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occurs at the onset of AB activity and is given by

dmax,AB(P) = d̂AB(Tinactive)
[1 − e−Tinactive/τα ]

1 − e−TAB/τβ e−Tinactive/τα
. (16)

Note that dmax,AB(P) is an increasing function of Tinactive. At the time that AB becomes
active sAB is set equal to dmax,AB and then decays according to (8). Thus sAB(TAB) =
dmax,AB(P)e−TAB/τζ . During the time that AB is silent, sAB decays with time constant
τκ , so

sAB(t1) = dmax,AB(P)e−TAB/τζ e−(t1−TAB )/τκ . (17)

Note that the case when AB is not depressing can be considered by simply setting
dmax,AB ≡ 1. We next calculate sPY (t1). Since the tri-phasic rhythm is assumed to be
periodic, we similarly find that

dmax,PY (P, TPY ) = [1 − e−(P−TPY )/τa ]
1 − e−TPY /τb e−(P−TPY )/τa

. (18)

This maximum occurs at the onset of the PY burst. Note that dmax,PY depends on TPY

where this term is to be determined by t2 (TPY = P − t2). Utilizing the activity of
the previous cycle of a periodic solution, t = 0 corresponds to the end of a PY burst.
Therefore sPY (0) = dmax,PY e−TPY /τ2 and at time t1

sPY (t1) = dmax,PY (P, TPY )e−TPY /τ2 e−t1/τ1 . (19)

Finally, we determine wL P (t1). When PY becomes active (during the previous cycle)
assuming ḡPY > 0, L P returns to the silent state with a value we denote ŵL P . L P
stays in the silent state for time TPY + t1 = P −(t2 − t1). Assuming that w∞(L P) ≈ 0
near the left branches of the vL P nullcline and that τw,L P (vL P ) is a constant denoted
by τw,L P , we find

wL P (t1) = ŵL P e−(P−(t2−t1))/τw,L P . (20)

We can now substitute Eqs. (17)–(20) into (15). Note however, that if ḡPY = 0,
then L P stays in the active state until AB becomes active and (20) is replaced by
wL P (t1) = ŵL P e−t1/τw,L P .

To find a second equation relating the times t1 and t2, we use a linear approximation
for the PY -jump surface:

ḡABsAB + ḡL P sL P + M2wPY = g∗
syn2. (21)

Similar to before,

sAB(t2) = dmax,AB(P)e−TAB/τζ e−(t2−TAB )/τκ . (22)

123



170 C. Mouser et al.

To calculate sL P (t2), we note that L P becomes active at t = t1. Thus independent of
the value of sL P prior to t1, sL P (t1) = dmax,L P , where

dmax,L P (P, TL P ) = d̂L P (P, TL P )
[1 − e−(P−TL P )/τc ]

1 − e−TL P/τd e−(P−TL P )/τc
. (23)

L P remains active until time t2 which implies

sL P (t2) = dmax,L P e−(t2−t1)/τ4 . (24)

Similar to before wPY (t2) = ŵPY exp(−t2/τw,PY ) where τw,PY is the time constant
for PY activity in its silent state. We can now substitute into (21) to obtain the following
two equations for t1 and t2:

ḡABdmax,AB(P)e−TAB/τζ e−(t1−TAB )/τκ + ḡPY dmax,PY (P, TPY )e−TPY /τ2 e−t1/τ1

+ M1ŵL P e−(P−TL P )/τw,L P = g∗
syn1. (25)

ḡABdmax,AB(P)e−TAB/τζ e−(t2−TAB )/τκ + ḡL P dmax,L P (P, TL P )e−TL P/τ4

+ M2ŵPY e−t2/τw,PY = g∗
syn2. (26)

Note that TPY = P − t2, and if ḡPY = 0 then TL P = P − t1, while if ḡPY > 0 then
TL P = t2 − t1.

Equations (25) and (26) can be solved numerically to obtain t1 and t2. In specific
parameter regimes, certain terms on the left-hand side of the above equations become
small and an analytic estimate for t1 and t2 becomes possible. Our goal for the
remainder of the paper is to use (25) and (26) to understand how φL P = t1/P and
φPY = t2/P depend on the parameters in these equations. We shall check this for
several cases; when the L P and PY inhibition is absent (Sect. 3.1), when L P to PY
inhibition is added (Sect. 3.2), when PY to L P inhibition is present (Sect. 3.3), and
when both reciprocal synapses are present (Sect. 3.4).

3.1 Phase determination with no synapses between L P and PY

When the synapses between L P and PY are removed, we set ḡL P = 0 and ḡPY = 0
in Eqs. (25) and (26). Then t1 and t2 (and, therefore φL P and φPY ) are determined by
the properties of the AB synapses and the intrinsic properties of the neurons. In this
case, the dependence of φL P on P has been previously shown by Manor et al. [17],
and that of φPY is similar.

If the AB synapses onto LP and PY are not depressing, then φL P and φPY both
decay like 1/P since (25) and (26) are no longer period dependent. For each cell, this
decay is controlled either by τκ the time constant of decay of the AB synapses and ḡAB

the maximal conductance of the synapse or by the cell’s own intrinsic time constant
of decay in the silent state, τw,L P or τw,PY . The situation changes dramatically when
the AB synapses are depressing. Following the results of Manor et al. [17], with an
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Fig. 5 Behavior of L P and PY when only AB inhibition is present. a Phase curves for L P and PY show
a stereotypical cubic shape indicating the different control mechanisms of phase by different parameters
at different periods. b The value of dAB,max increases with period. The strengthening of the feed-forward
AB synapses for P > 600 causes the control of phase in panel a to be switched from L P and PY to the
synapses

appropriate choice of parameters, both sets of parameters can control the phase curves,
each doing so at different ranges of periods. In particular, when τκ is large enough so
that the synaptic decay is slower than the rate at which wPY and wL P decay on the
left branches of their respective nullclines, phase maintenance is enhanced. In Fig. 5a,
we can see that for 500 < P < 650, φL P and φPY decrease. In this range of periods,
the synapses from AB to L P and PY are largely depressed and, consequently, do
not significantly contribute to the time at which L P and PY fire. Here the first terms
on the left-hand sides of (25) and (26) are close to zero, the second terms are absent
(ḡPY = ḡL P = 0) and therefore the third terms alone determine t1 and t2. Thus in
this range, phase is mostly determined by the intrinsic dynamics of L P and PY . In
the range 650 < P < 1,000, the AB synapse increasingly recovers from depression
(dmax,AB gets larger; Fig. 5b). As a result the synaptic properties take over control for
setting φL P and φPY in this range. For P > 1,000, the AB synapse has maximally
recovered from depression causing dmax,AB to saturate. Now the first terms on the
left-hand sides of (25) and (26) take longer to decay than the third terms (since τκ is
large enough). Thus the synapses from AB determine the firing times. However, as the
period increases, the phase decreases like 1/P since the value of dmax,AB in the first
terms will eventually saturate; dmax,AB → 1 as P → ∞ [17]. These three regimes
combine together to cause the phase curve to be cubic in shape. Thus, although a
constant phase is not perfectly achieved, phase-maintenance is better than when the
AB synapse is nondepressing where φL P and φPY decay like 1/P .

3.2 The effect of L P to PY inhibition on φPY

We now explore how the presence of the L P to PY synapse affects φPY . We show
that the inclusion of the L P to PY synapse leads to another way to control the phase
of PY activity. In (25) and (26), we let ḡPY = 0 while setting ḡL P to a positive value.
When the synapse from L P to PY is present, each time L P is active, it provides
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Fig. 6 Behavior of PY under AB and L P inhibition. a PY phase curves showing how the half-activation
period of the L P synapses affects its ability to change phase. b The behavior of dL P,max for the three cases
shown in panel a. The value dAB,max is also shown to illustrate the relationship between the two synapses

further inhibition to PY . In order for PY to fire, the L P inhibition must also decay.
Therefore, the additional time it now takes for PY to fire is determined, in part, by the
the size of ḡL P sL P and the rate at which sL P decays. Using Eq. (26), we can determine
over which parameter regimes the L P to PY synapse significantly contributes to φPY .
For example, suppose τ4, the time constant of decay of the sL P synapse when L P is
active, is small enough, or that ḡL P , the maximal conductance of this synapse is small.
Then the term ḡL P sL P is insignificant and, therefore the L P to PY synapse does not
significantly affect t2. However, if τ4 is not so small compared with τκ and τw,PY , and
if ḡL P is big enough, then the L P inhibition will more significantly contribute to φPY .

The period dependence of the L P synapse and the rates of depression and recovery
also play a role in setting phase. For example if the time constant of recovery from
depression of the L P synapse (τc) is very small, then the synapse will recover quickly
and will largely be period independent. Similarly, if the depression time constant τd

is small, then the synapse will be ineffective at suppressing its post-synaptic target.
More interestingly, depending on the value of parameters, the the L P to PY synapse
can work in concert with or independently of the AB synapse to effect PY firing.
Figure 6a shows graphs of the φL P , φPY and dmax,L P for different choices of the
parameter P2, the half activation of the strength of the L P to PY . The dashed line
traces show the case when P2 = 570 (note the half-activation of the AB synapse
P1 = 870 in all cases), the dotted line traces when P2 = 870 and the solid traces
when P2 = 1,770. In the latter case, the length of the L P interburst (t1 = P − TL P )
never becomes large enough to cause the L P to PY synapse to gain strength. Thus
dmax,L P = 0 (Fig. 6b) and φPY looks as it would if ḡL P = 0. When the parameter
P2 is lowered to 870, then the L P to PY synapse does strengthen around P = 1,380
(dotted traces) because P − TL P becomes larger than P2. Here, the synapse becomes
strong in a range of periods for which the AB synapse is already saturated. Thus it
controls φPY quite independently of the AB to PY synapse. When, P2 = 570 (dashed
traces), the L P to PY synapse works in concert with the AB to PY synapse to delay
PY firing. Here the phase curve has a single local maximum that is larger in value
than when the L P to PY synapse is absent. Numerical simulations of the full set of
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Fig. 7 The behavior of L P in
the presence and absence of PY
inhibition. Without PY
inhibition, the time t1 is
calculated from the moment L P
falls back to the silent state.
When PY inhibition is present,
t1 is much smaller as shown and
is only calculated from the lower
arrow associated with the bold
trajectory to the jump point

VLP

wLP

LP
jump
curve

PY to LP inhib. present

PY to LP inhib. absent

t = t1

t = 0
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equations using XPPAUT yield similar results (not shown). As P → ∞, the value
of dmax,L P tends to d̂L P [1 − exp(−(P − TL P )/τc)] since TL P → ∞ as can be seen
from Eqs. (14) and (23). Thus dmax,L P is bounded away from one and the L P to PY
synapse never fully recovers.

3.3 The role of PY to L P inhibition on φL P and φPY

Next we address what effect the synapse from PY to L P has on the phase of L P
and PY . Again depending on the parameters, there are many possibilities that can be
considered. However, we shall take a cue from the biological system and study one
important subcase. It is known that the PY to L P synapse is initially strong, depresses
very quickly and also decays very quickly once PY becomes silent [16]. From these
results, we conclude that the primary role of the PY to L P synapse is to end the firing
of L P and return it to its active state. This simple role, however, has a dramatic affect
on both φL P and φPY . First, the knocking down of L P to its silent state by PY means
that at small periods, φL P decreases. In particular, for small values of P , the AB
synapse is weak and does not play a big role in setting t1, which is set mainly by the
intrinsic properties of L P . Once L P is on the left branches of its vL P nullcline, wL P

begins to decay before AB becomes active. Thus when AB next becomes active, L P
is much closer to the jump surface than it would have been had it been knocked down
to the silent state by AB, Fig. 7. Thus the remaining time that L P must now spend
evolving toward the jump surface is much smaller in the presence of the PY synapse
than in its absence. Therefore t1 is significantly smaller and φL P decreases. At large
P , however, the AB synapse is stronger and continues to dominate the determination
of t1. This is especially true if we choose τ1, the time constant of decay of the PY to
L P inhibition to be small.

The second effect of the presence of the PY to L P synapse is to strengthen the
L P to PY synapse. This is because the presence of the PY to L P synapse causes
L P to have a shorter active duration than when this synapse is absent. Note that when
ḡPY = 0 (the PY to L P inhibition is absent), TL P = P − t1, whereas when ḡPY > 0
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Fig. 8 The effect of PY
inhibition on dL P . When PY
inhibition is present, L P
inhibition strengthens
independently of the half
activation P2 of the synapse
since L P spends longer time in
the silent state. When the PY
inhibition is absent, the L P
inhibition can only strengthen if
P2 is sufficiently small as L P
spends relatively little time in
the silent state
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(the PY to L P inhibition is present), TL P = t2 −t1 because the PY inhibition ends the
L P burst. Thus L P spends a larger fraction of its period in the silent state, which, in
turn increases both terms of equation (23) allowing dmax,L P to increase with P , Fig. 8.
Moreover, since TL P is bounded as P → ∞, dmax,L P → 1 in this limit. Therefore
independent of the value of P2, the L P to PY synapse will play a role in setting the
PY phase. Thus, the effect of PY inhibition is to strengthen the inhibition that it itself
receives! The ramifications of this are explored in the next section.

3.4 Reciprocal inhibition between L P and PY

The above results indicate that the inhibitory synapses between the two pyloric neurons
L P and PY can play a role in enhancing the ability of the neurons to achieve phase
maintenance. Indeed, we have seen that the L P to PY synapse can control PY phase
in a range of periods for which the AB synapses to L P and PY are already saturated,
and thus are no longer period dependent. Therefore, it is natural to consider cases in
which the AB inhibition is both nondepressing and depressing.

When the AB synapse is nondepressing (dmax,AB ≡ 1), and the inhibition between
L P and PY is absent, φL P and φPY decrease like 1/P . In order for the synapse from
L P to PY to be able to create a range of periods over which φPY increases, dL P must
increase as the period increases. Similarly, dPY must increase as the period increases
in order to create a range of periods over which φL P increases. Let us first consider
dmax,L P as given by Eq. (23). This term will increase as period increases so long as
L P spends increasingly longer times in the silent state. As P increases, even though
the time t1 need not increase the time P − TL P will. To understand this, recall that one
role of the PY inhibition to L P is to return the latter to the silent state at an earlier
stage than AB would have. This is independent of depression of either the AB or PY
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Fig. 9 L P and PY phase curves when reciprocal inhibition is present. Panels a1 and b1 obtained by
numerically solving the full set of equations for their respective cases and Panels a2 and b2 obtained by
solving (25) and (26) show good qualitative agreement. a When the AB synapses are nondepressing, the
PY phase can still be better than 1/P if the L P inhibition is depressing. The local maxima of φPY is due
to the strengthening of the L P to PY synapse. Note the small increase in φL P near these periods. b When
the AB synapses are depressing, then φPY and φL P can both have multiple local extrema

synapses. Thus the L P to PY synapse will have a chance to recover for more time
and thereby will strengthen. A stronger L P to PY synapse delays PY firing and thus
increases φPY . In Fig. 9a, we show an example of this; panel A1 is obtained by solving
the full set of equations numerically with XPPAUT, while panel A2 is obtained by
solving (25) and (26) with MATLAB. In particular, the L P to PY synapse becomes
strong when P − TL P > P2(= 1,140). In this range, the value of the synaptic and
depression time constants associated with the L P synapse play an increasingly larger
role in setting PY phase. If the time constant of L P to PY synaptic decay is chosen to
be large relative to the time constant of decay of the AB synapse, then the L P synapse
can increase the phase of PY for a range of periods larger than P2. For very large
values of P , the L P synapse will fully recover from depression and will not be able
to further increase the delay of PY firing. Thus for large P , we expect φPY to decay
like 1/P as shown in the figure.

A delay in PY firing has the added effect of strengthening the PY to L P synapse
provided that this synapse is also depressing, as PY spends more time in the silent
phase. This can have a very subtle effect on the L P phase. At first glance, the PY
to L P synapse does not appear to do much to help L P phase be constant, instead
almost all of this work falls on AB. However, PY does put L P in a position so that
at small periods, the intrinsic controlled L P phase is much closer to the larger period
AB-synaptically controlled L P phase. Moreover at these larger periods where the AB
synapse is strengthening, increases in strength of the PY to L P synapse can induce
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changes in the L P phase. This is because this synapse can now complement the AB
to L P synapse to keep the L P neuron near the jump surface for a longer time, thereby
delaying L P firing. This subtle effect, however, does not dramatically affect the L P
phase since the time constant of decay of the PY to L P synapse is small. Thus its
effect will have worn off by the next L P cycle. This is consistent with the biological
system where the PY to L P synapse is a strong, short lasting one whose main effect
is to terminate L P firing [16].

In summary, when the AB input is nondepressing, the depression of the L P to PY
synapse can still be utilized to improve phase maintenance of PY . However, the phase
of L P is still mostly determined by the AB synapse and basically decays like 1/P .

When the reciprocal inhibition between L P and PY is present and the AB synapses
are depressing, the complexity of the network is increased. However, the dynamics of
L P and PY can be understood based on the results of Sects. 3.1–3.3. As discussed
above, depending on parameters, various synaptic or intrinsic parameters play a role in
setting phase at different intervals of period. Let us focus on the case where P2 > P1
(P2 = 1,470 and P1 = 870). In this case, both φL P and φPY can have several local
maxima and minima and, in particular, can have good phase maintenance over a large
range of periods. Figure 9b shows one such case where φL P varies between 0.35
and 0.45 and φPY varies between 0.6 and 0.7 for P ∈ [600, 2,400]. These curves
can be parsed into three distinct intervals. At small periods, the AB, L P and PY
synapses are weak and play little role in setting phase. Here intrinsic parameters of
L P and PY , namely τw,L P and τw,PY , are more important; only the last term of the
left-hand side of equations (25) and (26) is large. At intermediate periods, the AB
synapse strengthens while the L P and PY synapses remain weak. Here, the time
constant of AB synaptic decay, τκ , is the most important parameter in setting phase.
The first term on the left-hand side of (25) and (26) is dominant. Finally, at larger P ,
the AB synapse has saturated and plays no additional role in setting phase. Instead, at
these periods the L P and PY synapses have strengthened enough to be important. In
particular, the inhibition from PY to L P allows L P to spend more time in the silent
state, thereby strengthening the L P to PY synapse. This strengthened synapse in turn
delays PY firing, increasing its phase, and strengthening the PY to L P synapse. The
time constants of decay between the L P and PY reciprocal synapses play the most
important role of setting phase for large P . In this case, the first and second terms on
the left-hand side of (25) and (26) are large, but the first terms decay more quickly then
the second terms. Thus the control of phase for large P is most strongly controlled by
time constants associated with the reciprocal L P and PY synapses.

The importance of the PY to L P synapse in redirecting the role of the L P to PY
synapse cannot be overstated. In particular, when the PY to L P synapse is absent,
the L P to PY synapse strengthens only as a result of the effect of the delay to firing
induced by the AB to L P synapse. The L P to PY synapse is only effective in a
range of periods that depends closely on the AB to L P synapse; see Sect. 3.2 and
the relationship between the parameters P1 and P2. However, when the PY to L P
synapse is present, the L P to PY synapse can act much more independently. Namely,
it can strengthen in a range of periods that is largely independent of any effects of the
AB induced delay, and therefore can affect the PY phase curve in a range of periods
that is different than the AB synapse does. In particular, in order for the L P synapse
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to strengthen, the value of P2, the half-activation of the depression and recovery term
associated with dL P need not be related to P1, the half-activation associated with dAB .

4 Discussion

Central pattern generating (CPG) networks are often driven by pacemaker neurons
that set the network frequency and influence the firing times of follower neurons via
feed-forward synapses [7]. Nonetheless, the dynamics of these networks are often
modulated or controlled by mechanisms that are downstream from the feed-forward
inputs. Even in small networks, the dynamics resulting from the interactions among
the rhythmically active neurons can be surprisingly complicated. We have analyzed
a simplified network, modeling the pyloric CPG of the crustacean stomatogastric
ganglion. Our results build on our previous studies that examined the effect of short-
term synaptic depression, a common property of many synapses, on the activity phase
of a follower neuron in a two-cell feed-forward network [4,17].

In this study we focused on a three-cell network, consisting of a pacemaker neuron
AB that produces feed-forward inhibitory synapses on two follower neurons L P and
PY . The follower neurons also have reciprocally-inhibitory synaptic connections thus
producing feedback interactions in the network. We examined the mechanisms that
determine the activity phase of L P and PY in face of changes in network frequency.
Our analysis demonstrates that phase constancy is enhanced when the synapses bet-
ween neurons are depressing. As a result, the PY and L P neurons can keep a relatively
constant phase over a fourfold change in the network cycle period, consistent with the
experimental findings of Hooper [13].

Mathematical analysis carried out in lower dimensional phase spaces allowed us to
understand how different combinations of parameters can affect the activity phase of
follower neurons in different ranges of the cycle period. It also revealed a number of
interesting facts about how the dynamics of the network evolve. For example, it has
traditionally been thought that the primary role of the PY to L P synapse is simply
to return L P to its silent state [27]. Our analysis now demonstrates that an additional
effect of this synapse is to strengthen the L P to PY synapse by causing L P to spend
more time in its silent state, allowing for recovery from short-term depression. This
effect occurs whether or not the PY to L P synapse is depressing, thus indicating that
the plasticity of this synapse may not be so critical to the proper functioning of the
network.

4.1 Role of synaptic depression

Many synaptic connections in CPGs exhibit short-term depression [19,23,26]. Our
results show that synaptic depression can play a variety of potential roles in setting
the phases of the follower L P and PY neurons. First, the feed-forward synapses from
AB to both L P and PY allow the intrinsic properties of these follower neurons to
determine phase at small periods where the AB synapses are weak. At intermediate
cycle periods, these same synapses strengthen and become more effective in the control
of the activity phases. Second, the depression in the L P to PY synapse allows the
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PY phase to be determined by this synapse in different ranges of periods. If the L P
synapse strengthens in the same range of periods as the AB synapses, then these two
work in concert to determine PY phase. If not, the L P to PY synapse can work
independently of the AB to PY synapse to influence the phase of PY activity. As a
consequence, even if the AB synapse is non-depressing, the L P to PY synapse can
still promote phase constancy of φPY (to be better than 1/P) in some range of periods.
Third, as shown in Sect. 3.4, depression in the PY to L P synapse can also have a
small but subtle effect on the L P phase. Thus, changes in the cycle period of the
pacemaker neuron AB may not directly affect AB’s synapses, yet result in changes
in downstream synapses that the pacemaker does not directly target. This provides
another set of candidate mechanisms that can affect the phase of the follower neurons.

4.2 Consequences of model assumptions

The primary modeling assumption made here is that the individual spikes within a burst
are not of large relevance in determining the phase relationships of neurons. Synapses
in the stomatogastric ganglion have both a spike-mediated and a non-spike-mediated
(graded) component whose strength depends on the slow oscillatory waveforms of the
presynaptic neuron [12]. When action potentials, and therefore spike-mediated trans-
mission, is blocked by bath application of tetrodotoxin, a tri-phasic rhythm characte-
ristic of the pyloric network activity can be generated by applying various modulatory
substances [2]. Thus, the simplified Morris–Lecar type models and graded synapses
used provide a good first-order approximation of the activity of the pyloric network,
in particular the envelope of the slow oscillations (as in Fig. 1) and its underlying
synaptic mechanisms. We note that our model of short-term depression was chosen to
match known biological results. In particular, Eqs. (13) and (14) are used specifically
to model the longer time scale associated with recovery of pyloric synapses [3,28].
The specific form of these synapses is important to our results in that changes to para-
meters associated with these equations (as in Fig. 6) may lead to deterioration of phase
maintenance. We also chose the time constants of the various synaptic connections
to mimic known biological facts. For example, the time constants associated with the
PY to L P synapse were chosen to make it strong, fast decaying and fast depressing
consistent with published experimental results [16].

The other major modeling assumption is that the jump surfaces in the silent states
of L P and PY are planes. This assumption allowed us to analytically derive (25) and
(26). The results shown in Fig. 9 validate this assumption as they show a very good
qualitative agreement between phase curves obtained from (25) and (26) with those
obtained by numerically solving the full set of equations. This qualitative agreement
occurs despite the fact that our analytic reduction effectively ignores the behavior of
the neurons when they are active and only records their w values at the moment they
return to the silent state.

In our earlier work [17], we considered cases where P was varied either by
increasing TAB while keeping Tinactive fixed or by increasing both TAB and Tinactive
but keeping the duty cycle (TAB/P) constant. We showed that changing the period in
the feed-forward AB − L P network in either of these ways still allows the phase of
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L P to be controlled by either synaptic or intrinsic parameters at different ranges of
periods. In the current model, our derived formulas (25) and (26) allow us to again
consider either of those two possibilities. The same qualitative behavior exists in both
cases, namely that there are distinct ranges of period over which one set of parameters
or the other would dominate phase determination. However, the shapes of the phase
curves and their dependence on various parameters are quantitatively different in the
two cases.

4.3 Conclusions

Many neural networks maintain a constant relative phase in the activity patterns of
participating neurons despite changes in network frequency [6,25]. In CPGs this
constraint on phase is of special importance because the underlying neural patterns
are commanded to muscles that often have to be activated at precise phases of each
cycle in order to produce meaningful behavior, for example, locomotion [29,30]. We
have built on our previous modeling results to propose mechanisms through which
synaptic dynamics, such as short-term depression, can contribute to phase mainte-
nance in face of changes in network frequency. Our most important findings are that
synaptic interactions among follower neurons may affect their phase in each cycle
of oscillation and that these interactions may extend the range of cycle periods for
which there is phase maintenance beyond those made possible by the dynamics of the
feed-forward synapses from the pacemaker neurons. These predictions are potentially
important for understanding mechanisms underlying phase maintenance in the pyloric
network and can be experimentally tested by manipulating the strength and dynamics
of the synapses in this network using pharmacological agents or the dynamic clamp
technique.
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Appendix

We numerically solved Eqs. (1)–(14) to obtain our results. In these equations
m∞(vx ) = 0.5(1 + tanh((vx + 1.2)/18)), w∞(vx ) = 0.5(1 + tanh((vx − 15)/5)),
and τw(vx ) = mx (40 − 30w∞(vx )). For both L P and PY , Ix = 75, gleak = 2,
Eleak = −60, Einh = −80, gCa = 4, ECa = 120, gK = 8, and EK = −84. In all
simulations, TAB = 300, τα = 1,800, and τβ = 15.

In the case of the depressing synaptic AB input, mL P = 8.1, m PY = 8.4 and
ḡAB = 1.8. When the L P and PY synaptic inputs were present, we set ḡL P = 1
and ḡPY = 2. However, when these synapses were not present, ḡL P and ḡPY were set
equal to 0. The remaining parameter values were as follows: τκ = 1, 650, τc = 3, 300,
τd = 990, τa = 2, 700, τb = 150, τ1 = 60, τ2 = 600, τ3 = 210, τ4 = 300, x1 = 55,
x2 = 35, P1 = 570 and P2 = 1,470.
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When the AB synapses were not depressing, we simply set dAB ≡ 0.38. We
changed mL P = 2.55, m PY = 3.15, ḡAB = 1.4, ḡL P = 13, ḡPY = 11, τκ = 1, 200,
τc = 60, τd = 60, τa = 1, 350, τb = 240, τ1 = 60, τ2 = 1, 350, τ3 = 330, τ4 = 60,
P2 = 1140 and x2 = 10.

We solved Eqs. (25) and (26) using MATLAB. We used the same set of parameter
values as we did when using XPPAUT. There are a few parameters in these equations
that do not explicitly appear in (1)–(14) that can be estimated from the geometry of
the nullclines. We set M1 = M2 = 3.12, ŵL P = ŵPY = 1. For the non-depressing
case Fig. 9a1 and a2, g∗

syn1 = 2, g∗
syn2 = 1.5, τw,L P = 102, τw,PY = 126, and

for the depressing case Fig. 9b1 and b2, g∗
syn1 = 1.05, g∗

syn2 = 1, τw,L P = 240,
τw,PY = 255.
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