Chapter 16
A PRC Description of How Inhibitory Feedback

Promotes Oscillation Stability

Farzan Nadim, Shunbing Zhao, and Amitabha Bose

Abstract Using methods of geometric dynamical systems modeling, we
demonstrate the mechanism through which inhibitory feedback synapses to oscilla-
tory neurons stabilize the oscillation, resulting in a flattened phase-resetting curve.
In particular, we use the concept of a synaptic phase-resetting curve to demonstrate
that periodic inhibitory feedback to an oscillatory neuron locks at a stable phase
where it has no impact on cycle period and yet it acts to counter the effects of
extrinsic perturbations. These results are supported by data from the stable bursting
oscillations in the crustacean pyloric central pattern generator.

1 Introduction

Oscillations in the nervous system often originate from neurons that have in-
trinsic pacemaker properties or from populations of neurons that are coupled
with excitatory connections or gap junctions that result in synchronous patterned
activity (Grillner, Markram, De Schutter, Silberberg, & LeBeau 2005). While purely
inhibitory circuits can give rise to oscillations in the absence of excitation (Bartos
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et al. 2007; Friesen 1994; Manor et al. 1999), feedback inhibition in pacemaker or
excitatory oscillatory networks has been proposed to be important in determining the
oscillation frequency (Borgers & Kopell 2003; Wang & Buzsaki 1996; Whittington
et al. 2000). Alternatively, feedback inhibition may be prevalent but have little effect
on network oscillation frequency. In such cases inhibition has been proposed to
promote stability in the oscillatory network (Mamiya & Nadim 2004; Thirumalai,
Prinz, Johnson, & Marder 2006).

We examine the idea of feedback inhibition as a promoter of oscillation stability,
motivated by our recent data in the pyloric central pattern generator (CPG) of
crustacean decapods in which the absence of feedback inhibition leads to a larger
variability in the relatively stereotyped triphasic oscillations (freq ~1 Hz). We
provide experimental evidence that oscillations in this CPG have less variability in
response to perturbations and the effect of factors that inherently increase variability,
such as intercircuit interactions, is buffered by the inhibitory synapse. Our results
include a demonstration that the experimentally measured phase-resetting curve
(PRC) of the pyloric pacemaker neurons lies closer to zero in the presence of
feedback inhibition, indicating less sensitivity to extrinsic inputs.

We use a generic two-variable neuronal oscillator model to demonstrate how
feedback inhibition can act to increase stability. This model has a typical cubic
nullcline and is a simplified model built to mimic the activity of the pyloric
pacemaker neurons. Our presentation, however, uses the geometric structure and not
the details of the model. As such, the argument is quite general and can be expanded
to different oscillator types.

2 Model

We use a single cell oscillator(O) described by two equations of the form

dv
Sa = F(V7h) - Isyn — Ipert

dh
= h 16.1
” G(v, h), (16.1)

where v is the membrane potential, /i is a recovery variable, s, denotes the
feedback synaptic current, I, represents a perturbation of the system and ¢ is a
positive parameter. We denote by P the oscillation period in the absence of synaptic
input and perturbations. The synaptic current is given as

Isyn = gsyns(t) (V - Vsyn) , (16.2)

where Vi, is the synaptic reversal potential. s(¢) is a periodic function with period
Py and is equal to 1 for a time duration of D and is equal to O at all other times.
In our simulations below, we use a two-variable oscillator based on an inactivating
calcium current with instantaneous activation and inactivation variable / based on
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a simplified model of the pyloric CPG pacemaker AB neuron (Kintos, Nusbaum, &
Nadim 2008)". In this model, we have

F(Vv h) = lexi — 8L (V - EL) - gCamoo3(V)h (V - ECa) s
G(v, h) = (hoo(v) — h)/Th(v).

We assume that, in the presence of the inhibitory feedback, the oscillator neuron O
will oscillate with period Py and will lock to a certain phase relationship with the
synaptic input (to be explained later). This assumption implies that the inhibitory
feedback does not affect the oscillation frequency. The neuron presynaptic to O
does not need to be explicitly modeled but will be referred to as F. The feedback
synapse arrives periodically and, when active, has a constant conductance. Thus,
we can assume that, if O fires at phase 0, then the synaptic feedback has an onset
and an offset phase. The onset phase is also referred to as the synaptic phase @gy,.
The synaptic duty cycle (spc) is defined as the ratio between the active duration
D of the synapse and the period of O. Thus the offset phase is ¢gn + spc.
We will refer to the oscillation of O in the presence of feedback inhibition as
the control case and in the absence of inhibition (gsy, = 0) as the uninhibited
case.

Much of the analysis that we will conduct will be in the v—h phase plane
(Fig. 16.1a) where we will track the behavior of the O trajectory in response to
both synaptic inputs and perturbations. The v— nullcline is defined as the set of
points {(v,h): F(v,h) = 0} and the h-nullcline is the set of points {(v,h) :
G(v,h) = 0}. The former is a cubic-shaped curve that has at lower voltage a
local maximum LKy = (viko, ALko) and at higher voltage a local minimum
RKy = (Vrkos /irko)- The left and right branches of the cubic are denoted as LBy
and RBy, respectively. The A—nullcline is a decreasing sigmoidal shaped curve that,
depending on parameters, intersects the v—nullcline on the middle or left branch.
For the uninhibited case, parameters are chosen such that the intersection of the
two nullclines occurs on the middle branch of the v-nullcline, allowing O to exhibit
a stable limit cycle (Fig. 16.1a). When the O trajectory is subjected to inhibition
from F (for the duration D), s(t) = 1. The effect of the synapse is to raise the
v—nullcline in the v—h phase plane resulting in a new local maximum LK; = (v ki,
hik1), local minimum RK; = (vgrki, firk1), and left and right branches denoted
LB, and RB(Fig. 16.1b). If the strength of the synapse, which is governed by ggyn,
is sufficiently large when s(¢) = 1 the intersection of the v— and A—nullcline occurs
along LB, (Fig. 16.1b, top left black circle). In a neighborhood of this intersection
point, the O trajectory will slow its rate of evolution as this point represents a stable
fixed point in the v — —h phase space where both dv/d¢ and dh/dt equal 0. At
other points along LB, because of the shape of the h-nullcline—namely that it is

lev/ = (fext — i — ica — isyn)/cm; m8(v) = 1/(1 + exp(_(V + 61)/42))7 hS(V) = 1/(1 +
exp((v 4 88)/8.6)); m(v) = (270/(1 4 exp((v + 84)/7.3))) (exp ((v + 162)/30.0)) + 54; icxe =
—0.45, g, = 0.3142, gca = 1.2567, ggyn = 0.0235(active for 219.4 ms starting at 7o = 302 ms
in each cycle), E; = —62.5, Ec, = 120, Egy, = —80,¢,, = 7,6 = 1.
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h-nulicline
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Fig. 16.1 The phase plane of the oscillator neuron.(a) In the uninhibited case, the /s-nullcline
intersects the cubic v-nullcline in the middle branch resulting in an unstable fixed point (filled
circle) and a stable limit cycle (black curve). (b) Inhibition results in a shift of the cubic v-nullcline
so that it intersects the i-nullcline in the left branch resulting in a stable fixed point (filled circle).
Periodic inhibition results in transient movement of the limit cycle trajectory (black curve) to the
left branch (LB) of the inhibited v-nullcline for the duration D of the inhibition. LK/RK denote
the local mimima/maxima of the respective v-nullclines. Refer to text for detailed explanation of
abbreviations

decreasing and has nonzero slope near LBy and LB;—the rate at which trajectories
evolve near LB, is greater than near LBy. The opposite is true for trajectories near
RB; and RB,.

For parts of the analysis, we will assume that the system is singularly perturbed
(Mishchenko & Rozov 1997). By this, we mean that the parameter ¢ in (16.1) is
small and the O trajectory can by analyzed by separating a slow time scale (¢) from
a fast one (v = t/¢). The fast time-scale governs the rapid increase and decrease
of voltage v corresponding to fast depolarization during a spike and repolarization
at the end of the spike. The slow time-scale governs the evolution of the slow
inactivation variable & during times when the O neuron is in its silent or active
state. Mathematically, this separation of time-scales is achieved by setting ¢ = 0 in
(16.1) to obtain the slow subsystem

0= F(V, h) - Isyn - Ipert
dh

o =G0 (16.3)

or by replacing ¢ with 7 in the same equation and then setting ¢ = 0 to obtain the
fast subsystem

dv
E = F@,.h)— Isyn - Iperlv
dh
=0 (16.4)

el
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In the singularly perturbed system, the O trajectory lies in a neighborhood of the
v—nullcline at all moments of time, except when it makes the very fast transitions
between the left and right branches of the nullcline. When this reduction is made,
the uninhibited O trajectory can be tracked by following the evolution of the slow
h-variable along either LB, or RB( because the evolution of the v-variable can be
obtained by solving the constraint F(v,h) = 0. The transition between LB( and
RBj occurs from either LK or RK( and is assumed to be arbitrarily fast (i.e., taking
no time) with respect to the slower /-evolution. This implies that the period of the
uninhibited O orbit can be computed by understanding how much time the trajectory
spends near LB, and RBy. For the Control case when inhibition is present, whenever
s(t) = 1, the O trajectory lies close to either LB; or RB;. Thus when s(¢) switches
from O to 1 or vice versa, the trajectory chooses which branch to lie close to. For
example, if the trajectory is near LB with s(¢) = 0, then at the switch to s(¢) = 1,
the trajectory transitions quickly to LB;. If it were near RB( and above the point
RK; then it transitions to RBy, but if it were below RKj, then it would transition
to LB;. Similarly if with s(¢) = 1 the trajectory is near LB; and above LK, and
s(t) switches to 0, the trajectory jumps to RBy. Otherwise, it goes to LBy. Thus, as
the onset location and duration of the inhibition changes, the O trajectory will lie in
different places in phase space. We will show how this is related to the PRC of the
O neuron.

3 Results

3.1 Experimental

We examined the effect of inhibitory feedback on oscillation activity in the crab
pyloric network, a pacemaker-driven oscillatory network with an extremely regular
oscillation frequency. Pyloric pacemaker (AB and PD) neurons receive their sole
inhibitory feedback though a synapse (LP to PD) from the follower neuron LP that
bursts out of phase with the pacemakers. Perturbations to the pyloric rhythm arise
from many sources, such as the intrinsic noise in pyloric neurons and excitatory
inputs from descending projections. We examined whether the LP to PD synapse
has an effect on the pyloric cycle period or on how the cycle period is affected
by perturbations. After recording the ongoing oscillations (Fig. 16.2; control), the
LP to PD synapse was removed by hyperpolarizing the LP neuron (uninhibited).
Forty cycle periods were measured in each condition and the cycles immediately
following the LP neuron hyperpolarization were not included in this analysis. On
average, cycle period was not affected by the removal of the feedback inhibitory
synapse; however, the coefficient of variation was significantly smaller in control
than uninhibited (Fig. 16.2b). These results suggest that, during the normal ongoing
pyloric activity, the LP to PD synapse does not affect the mean network cycle period
but it significantly reduces its variability.
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Fig. 16.2 (Experimental) Pyloric oscillation variability is reduced in the presence of the inhibitory
feedback synapse but period is not affected. (a) Intracellular voltage traces from the pacemaker
group neuron PD and the follower LP indicate the activity of pyloric circuit neurons. Recordings
were done under control or uninhibited (LP hyperpolarized by injection of -5 nA DC current,
arrow, to remove the LP to PD synapse) conditions. (b) There was no significant change in the
mean pyloric period between control and uninhibited conditions but the coefficient of variation
was larger in uninhibited compared to control (P < 0.05)

The effect of extrinsic perturbations on the activity of a neural oscillator
is often measured by examining the phase-resetting curve (PRC) (Achuthan &
Canavier 2009; Oprisan, Thirumalai, & Canavier 2003; Pinsker 1977). To examine
the role of the LP to PD feedback inhibitory synapse on the effect of perturbations
to the pyloric oscillations, we constructed and compared the PRCs measured by
perturbing the PD neuron in control and uninhibited conditions. To construct the
PRCs, we injected brief positive current pulses (2 nA, 50 ms) into the PD neuron.
Using specialized software (phase response: http://stg.rutgers.edu/software), we
injected the current pulses at phases 0.1-0.9 of the cycle to be able to average the
response across different trials and preparations. Figure 16.3a shows an example of
one such injection under control conditions. Figure 16.3b shows the PRC measured
when the reset phase Agpp = (Po—P)/ Py was plotted against the phase of the
perturbation gperx = At/ Py. Here, At was measured as the time of the perturbation
onset after the first spike in PD burst, Py was the free run period, and P was defined
as the perturbed period (Fig. 16.3a).

With positive current perturbation the period was prolonged at early perturbation
phases and shortened at late phases in both control and uninhibited conditions.
However, in the uninhibited case, the perturbations had a stronger effect on the cycle
period which was seen in the significant shift of the PRC away from zero compared
with the control case. Negative-current perturbations had the opposite effect on cycle
period: the period was shortened at early perturbation phases but prolonged at late
phases in both conditions (not shown). Yet again, in the control case the PRC was


http://stg.rutgers.edu/software

16 A PRC Description of How Inhibitory Feedback Promotes Oscillation Stability 405

b
0.15 - -e- Uninhibited
’ -= Control
0.10 A {
S 0.05- /{/
==
3
0.00 -
-005{ {—¥
5mV ~0.10 4 | ]
2nA I 0.0 0.2 0.4 0.6 0.8
500 ms Ppert

Fig. 16.3 (Experimental) The inhibitory feedback synapse attenuated the effect of extrinsic
perturbations as measured through the PRC. (a) Intracellular voltage traces from the PD neuron
are used to monitor pyloric oscillatory activity. A brief current pulses (2 nA, 50 ms) was injected
into the PD neuron at different phases in the presence or absence (not shown) of the LP to
PD synapse. (b) The PRC in response to the perturbation was measured as the reset phase
(Agpp = ((Po—P)/Py)) and plotted against the perturbation phase @per. In control, the PRC
lies closer to zero compared to uninhibited (N = 4). The green bar indicates the duration of the
synapse activity

closer to zero compared to the uninhibited case. These results show that the LP to PD
synapse significantly reduces the effect of perturbations by “flattening” the overall
PRC. In particular, there was significant flattening of the PRC even at phases were
the synapse was typically not active.

4 Model Description of the PRC Effects

We now turn to our basic mathematical model to explain the observations regarding
the PRCs for the two cases. Recall from Fig. 16.2 that the PD neuron cycle period
has some natural variability and that this variability is reduced in the presence of the
LP to PD feedback inhibitory synapse, as reflected in the cycle period coefficient
of variation and more descriptively in the PRC (Fig. 16.3). First, we show that a
simplified model as described by (16.1) can reproduce these experimental results.
For this, we use the two-variable model of the AB neuron defined in the Model
section.

Let A(?) be a limit cycle of period T' of the differential equation dX /dt = f(X),
X € R". Then the PRC of A, for an infinitesimal perturbation vector y can be
calculated as the inner product Z(¢) - y where Z(¢) satisfies the adjoint equation to
the linearization of the original differential equation, given by dZ /dt = —A(t)" Z,
where A(t) = d fa() (Ermentrout & Terman 2010). The close relationship between
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Fig. 16.4 The model PRC lies closer to zero in the presence of feedback inhibition. (a) Voltage
traces from the model neuron O in the presence (control) and absence(uninhibited) of synaptic
inhibition (black bars). Both cases have the same cycle period. (b) The numerically calculated
solutions Z(¢) to the adjoint equation calculated at the limit cycle describe the PRC in the control
and uninhibited cases. ¢ represents the phase of the limit cycle. Model as described for the AB
neuron in Sect. 2.2.1 and Table 3 of (Kintos et al. 2008). The synaptic input was added from phase
0.3 t0 0.7 (green bar) of oscillation with gp.x = 0.0235 nS and Ey,, = —80mV

the PRC and the adjoint solution has allowed some researchers to refer to these
terms interchangeably. Although adjoint solutions are not always easy to solve for
analytically, they can be calculated numerically once a limit cycle has been found
(Ermentrout 2002) and graphed to show the shape of the PRC.

Figure 16.4 shows the adjoint solutions Z(¢) at the limit cycle, generated for both
the control model and when inhibition is removed (uninhibited).The curves Z(¢)
were generated by numerically calculating the solutions to the adjoint equation of
(16.1) at the limit cycle, for one cycle of oscillation, and represent the PRC for an
infinitesimal perturbation (Brown et al. 2004). (A similar PRC can be generated
by subjecting the trajectories in this model to perturbations of duration 20 ms and
amplitude 0.125 nA.) Note that the curves Z(¢) shown in Fig. 16.4b qualitatively
match the experimental PRCs obtained in Fig. 16.3b.

To explain why the control PRC is generally smaller in amplitude at any phase
of the perturbation, i.e., why the oscillation is more robust to perturbation in the
presence of the inhibitory feedback synapse, we first introduce the concept of the
synaptic phase resetting curve (sSPRC). The sPRC documents the change in the O
phase as a result of F inhibition and depends primarily on two factors: the synaptic
(onset) phase @gy, defined as the phase in the O cycle that the inhibition arrives,
and the synaptic duty cycle spc, defined as the fraction of the cycle that the synapse
remains active. To conduct this analysis, we will assume that ¢ is small and use
separation of time scales as described in the Model section above.

Divide the uninhibited O trajectory by phase (¢ between 0 and 1 in one cycle),
as shown in Fig. 16.5a, such that the point with the maximum voltage along RBy is
labeled ¢y = 0. Label the value ¢ as the point along RB that has the same h-value
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Fig. 16.5 The oscillation phases in the singularly-perturbed case where ¢ = 0. (a) The phase
points defined on the uninhibited trajectory. (b) Phase relationships for ¢y, in (¢1, ¢2—). (¢) Phase
relationships for ¢gy, in (@2, ¢3). Blue trajectory denotes the Control case and the red trajectory is
the uninhibited case. The trajectories shown in B and C start at the same time and terminate at the
time? = ((psyn + SDC)PO

as RKj, ¢, as the point RKy, ¢4+ as the point on LB with & = hggo, @3 as the
point on LBy that is D = spc x Py time away from the point LK, but where the
evolution is considered using the dynamics along LB, and ¢4 as the point LK. We
will derive the shape of the sSPRC using the different phase points defined above. In
particular, we will show that the sSPRC is a monotone decreasing function of ¢gy, on
a certain interval of phase values. Within this interval, there exists a unique phase
@* at which the synaptic input from F does not change the O phase. Moreover, we
will show that ¢* is a stable attracting phase in the dynamics so that O locks to the
synaptic input such that this input always arrives at ¢ = ¢*. Recall that the synaptic
input is periodic with period Py. This input to O will, in general, change the period
of O to a new value we call P. We define SPRC(¢syn) = (Po — P)/ Py and call this
the change in phase.

Consider the phase interval ¢s, € (@1, ¢2-—) as shown in Fig. 16.5b. In this case,
the effect of the synapse is to shorten P relative to Py. This happens for two different
reasons. First, at the moment the inhibition begins, the trajectory immediately jumps
down to LB;. Thus the phase of the trajectory is advanced because it leaves RBy
prematurely and does not need to spend time reaching the local minimum point
RKj. Second, for the duration of the inhibition, the trajectory lies on LB;. Since the
speed at which the trajectory evolves (vertically) on LB is greater than on LBy, the
trajectory moves further up in the A-direction on LB, than it would have on LBy.
In addition it starts from a higher i-value on LB; as shown in Fig. 16.5a. Thus at
t = (¢syn + Spc) Po, when the trajectory returns to LBy, it lies closer to the local
maximum point LK than it would have in the absence of the inhibition. Therefore
it takes less time to reach LKy and as a result P < Py. Therefore SPRC(¢syn) is
positive on the interval (¢, @2—).

Next consider the case where @y, is in the interval (24, ¢3) as shown in
Fig. 16.5c. By the definition of ¢3, for any ¢y, in this interval, the trajectory will
spend the duration of the inhibition on LB; and when the inhibition ends it will
return to LBy at a point lower than LK. Because the evolution rate on LB is larger
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than on LBy the point to which the trajectory returns to LBy will be higher than it
would have been in the absence of inhibition. Thus, the remaining time to LK will
be less and as above P < Py which implies that SPRC(@sy,) > 0. In this interval of
synaptic phases, in the singular limit, SPRC(¢syy) is constant. The reason for this has
to do with the fact that there is no time compression between trajectories that receive
synaptic inputs during this interval. Let us elaborate by considering two values of
@syn called @gyna < @synp. The synaptic input corresponding to @syna arrives when
the trajectory is at some / value called /4. Similarly ¢y, arrives at h = hg with
ha < hg. At this moment in time, there is a certain time distance, say #;, between
the points s15 and &g that is determined by the rate of evolution along LBy. After
the inhibition starts, both trajectories now evolve along LB. There is a new time
distance, say f., between the & values of the trajectories. But this time remains
invariant as long as the trajectories evolve on LB;. The trajectories spend the same
amount of time D on LB, before returning to LB where there time distance again
becomes #4. Thus neither trajectory has advanced in phase relative to one another
since after the inhibition their time distance apart remains the same as before. This
implies that SPRC(¢sy,) is constant on this interval.

The above result is a generic feature of many systems that are decomposed into
fast-slow pieces. It follows from the fact that if two trajectories follow the same one-
dimensional path for the same amount of time, then, while the Euclidean distance
between the trajectories may change, the time distance between them does not. In
fact, it is just an application of the group property of flows of a dynamical system
(Guckenheimer & Holmes 1997). Finally we note that when we relax, the separation
constraint on timescales, SPRC(¢,y,) need not be constant on this interval. Indeed
from our numerical simulations, shown later, SPRC may in fact be nonmonotonic.
It is not so obvious how to explain why this is the case other than noting that
trajectories are no longer constrained to exactly LBy and LB and therefore may
take slightly different times to reach different locations in phase space. Nonetheless,
the fact that SPRC(@gyn) > 0 for this interval of @y, follows for the same reasons as
above.

If ¢yn = ¢3, when the inhibition ends, the trajectory has &z = hiko and
immediately jumps back to the RBy (Fig. 16.6a). The uninhibited trajectory will
lie below i = hyp still on LBy when the control trajectory jumps to RBj. Now
consider the interval (¢3, ¢4). Since we have already established that SPRC(@gyn) >
0 at ggyn = @3, let us determine what occurs at the opposite end of the interval
when ¢y, = ¢4 (Fig. 16.6b). Here, the inhibition starts just before the trajectory
would have jumped from LK, to RBy. The trajectory, instead, must now spend
an amount of time spc X Py on LB until the inhibition ends. Moreover, once the
trajectory returns to RBy, it will have a higher A-value than Ay xo. Thus there will be
an additional amount of time needed for the trajectory to reach the location of the
phase point ¢g. Therefore, P > Py and sSPRC(¢syn) < 0. By continuity with respect
to @gyn, there exists a value ¢* € (@3, ¢4) such that if g, = @™, then P = P; and
SPRC(¢syn) = 0. Further, note that the value of ¢* is such that ¢* + spc ~ 1.

The synaptic locking phase adjusts itself according to the duration of the synaptic
input. To prove uniqueness of ¢*, let us show that Ag is monotone decreasing on
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Fig. 16.6 The oscillation phases in the singularly-perturbed case where ¢ = 0.(a) Phase
relationships for ¢y, = @3. (b) Phase relationships for ¢y, in (g3, ¢4). Blue trajectory denotes
the control case and the red trajectory is the uninhibited case. The trajectories in both panels start
at the same time and terminate at the time ¢ = (¢gyn + spc) Po

this interval. Consider two different values of ¢y, denoted ¢c and ¢g, both in the
interval (@3, @4) such that gc < @g. When @i, = ¢c, the trajectory moves along
LB, and rises above LKy before the inhibition turns off. Say it reaches a point with
h-value h = hc. Similarly, when ¢sy, = @, the trajectory reaches a point with # =
hg when the inhibition turns off. It is clear that ic < hg by continuity with respect to
initial conditions since the two trajectories spend the same amount of time on LB;.
Therefore, when the trajectories return to RBy, the one associated with /¢ lies below
that associated with sg. Now observe that the position of the uninhibited trajectories
retain their original orientation. That is the uninhibited trajectory E reaches RB first
and begins evolving down, followed at some later time by the uninhibited trajectory
C. Define h(gsyn) = hrg,e1 #7000 a5 the value of h along the uninhibited
trajectory at the moment its inhibited counterpart returns to RBy. Then, h(¢pc) >
h(pg) and the following ordering of points holds hg > hc > h(pc) > h(gg). Thus,
the change in phase is more for trajectory E than for trajectory C, again implying
monotonicity of sPRC on this interval. Therefore, sSPRC is monotone decreasing on
the interval (¢3, ¢4) and the value ¢* is unique. To summarize, we have now shown
that on the larger interval (¢1, ¢4), sSPRC contains a unique value ¢y, = ¢* at which
the SPRC(¢syn) = 0.

Let us now establish that in the O-F control network, the locked phase ¢* at
which P = P, is a stable, attracting phase of the dynamics (implying that F phase-
locks to O activity at phase ¢*).To this end, we define a map f(modulo 1) which
records the onset phase ¢y, of the synapse at each cycle of inhibition. This map
is defined on the interval [¢;,@4] as the sum of the current synaptic phase and the
sPRC at that phase.

ot = 1 (¢4n)
f(@) = ¢ + sPRC(¢p)(mod 1)
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In other words, it takes the value of ¢y, at one cycle and computes what this value
will be at the next cycle. The range of this map is the entire interval [0,1]. This
new value of ¢y, obviously depends on how the synapse affected the period in the
previous cycle and how this changed the phase relationship between O and the F
inhibition. From the above analysis, it is easy to establish that f(¢) is a continuous
function on [0,1], that it has a unique fixed point ¢* and is such that f(¢;) > ¢;
while f(¢4) < ¢a.

Proving the stability of ¢* is an exercise in applying the concepts of Fast
Threshold Modulation due to Somers & Kopell (1993). Namely, consider two
synaptic phases @syn1 < @syn2 in a neighborhood of ¢*. These phases correspond to
different h-values h; (0) at which the trajectory receives the inhibition. There exists
a time difference Aty between these two initial conditions which is computed by
flowing the trajectory at &;(0) forward along LBy for the time Afy until it reaches
the position of /,(0). When inhibition arrives to these two trajectories, they both
move to LB and there exists a new time At between them. Since evolution is faster
on LB than LBy, At; < Aty.Both trajectories now flow along LB, for exactly the
same amount of time D = spc X Py and the time distance between them remains
invariant. After time D, the trajectories are released from inhibition and transition
to RBy, yielding, once there, a new time distance Af,. In (Somers & Kopell 1993)
conditions are given so that Af, < At;. The main conditions involve a compression
factor which is directly related to the rate of evolution on LB, immediately before
the jump to the rate on RBy immediately after the jump. In our case, these rates
are strongly governed by the vertical distance of the trajectory to the z-nullcline at
these two moments and the time constants governing evolution on those branches.
Provided that these time constants are of the same order—a reasonable assumption
for bursting neurons—it follows that Az, < Af#; < Aty. This compression in
time implies compression in phase. Thus, locally, any two values of ¢4y, lying in
a neighborhood of ¢* are brought closer together by the map f after one iterate.
This implies stability of the point ¢*. It must be noted that when ¢gyn1 and @gyn lie
in (¢, @3), the respective trajectories also make jumps between LBy, LB, and RBy,
as discussed earlier. However, the difference in these phases is that the trajectories
return to LBy before jumping to RB( through the point RKy. The fact that when
@syn1 and @gyno lie in (@3, @4) that the trajectories jump from LB, directly to RBy
accounts for the compression.

The stability of ¢* has an immediate consequence. It means that any perturbation
applied to the control trajectory will immediately begin to decay due to the fact
that ¢ = @* is the attracting phase and that any change in phase induced by the
perturbation will not persist. Later, we will use this observation to show why the
PRC for the control case lies closer to 0 than the PRC for the uninhibited case.

Next let us see how the sPRC is affected by the synaptic duty cycle spc. In
Fig. 16.7, we plot numerically-generated examples of the sPRC for three different
values of spc. In general, when spc decreases, part of the sSPRC shifts up in the @gy,—
sPRC plane while another portion of it shifts down. Consider two distinct synaptic
duty cycles spc2 < spci- To understand which part of sSPRC shifts up, first let ¢gy, <
@3, where @3 is defined as above but now applied to the spc; case. The trajectories
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Fig. 16.7 Numerically
generated sPRC for different
values of spc. The sSPRC was
generated for three different
values of spc, 0.2, 0.3 and
0.4, using the model
described in Fig. 16.4 with

& = 0.14 to approximate the
singular limit. The value ¢™*
is indicated by the
intersection of the sPRC
with O

0.0 0.2 0.4 0.6 0.8 1.0
Psyn

for both of the spc’s jump to LB at ¢y, and return to LBy after the time interval
spcj X Po(j = 1,2) before leaving the silent state through LK. Since spc2 < $pci,
the trajectory associated with spcy spends less time on LB than the other trajectory.
Therefore, it advances less in phase since the speed of evolution on LB, is greater
than on LB. Thus, the trajectory with longer duty cycle has a greater phase advance
for small values of ¢y, resulting in the sPRC shifting up as shown in Fig. 16.7
(green curve above black and red). Alternatively, now consider the case where ¢y,
is larger, say closer to ¢4. Trajectories in both cases will now move along LB; to
points above LKy when the inhibition turns off. The one associated with spco will
have a smaller s—value and will thus need to spend less time on RBy to return to
the ¢ = 0 location. While both trajectories will be delayed in phase relative to the
uninhibited trajectory, the spcy trajectory will be ahead of its counterpart in phase.
As aresult, the SPRC curve for spcy will lie above that for spc; for larger values of
@syn as shown in Fig. 16.7 (red curve above black and green). Note that larger ¢y,
values have a larger effect on the spc than smaller ¢y, values. At larger ¢y, there
are two sources of phase delay. One is the fact that trajectory may still be on LB,
under the influence of inhibition at the time that the uninhibited trajectory would
have returned to RBy. This means that the trajectory spends extra time on the LB.
This occurs for all ¢gn € (93, @4). Second, when this happens, the trajectory must
also spend extra time on RB( while returning to the ¢ = 0 starting point. In contrast,
changes in spc have less of an effect for lower values of ¢y, as here the different
duty cycles simply change the time spent on LB, but do not change the fact that
these trajectories still leave LB through LKy to return to the right branch and the
¢ = 0 starting point.

To understand how the sPRC counteracts the effect of perturbations, we first
check to see whether the perturbation arrives before, during, or after the inhibition
from F. The phase of the perturbation, ¢ is defined with respect to the ¢ = 0
reference point on the uninhibited or control trajectory. If ¢gper < ¢*, then the
uninhibited and control trajectory are roughly following identical paths from ¢ = 0
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phases of the control and
uninhibited trajectories. Line v
segments connect the ¢=0.9

corresponding phases in the
two limit cycles of the model o o
described in Fig. 16.4

Fig. 16.8 Corresponding h I

0000000

t0 @pert. For this interval of phases, the SPRC can be composed with the PRC to
derive the overall change Ag in the phase of O. Specifically, consider an inhibitory
perturbation to the control trajectory. This perturbation will change the phase of O
by an amount denoted Agp.. and result in a new period P for that cycle. In turn,
this causes a change in the value of ¢gy,. This new value of ¢y, = ‘P*synPO /P.
Since P = Py(1 — A@pee), it follows that ¢y, = (p*syn/(l — A@pr). For example, if
A@pre > 0, then @gyy > (p*syn, which, referring to Fig. 16.7, shows that the O phase is
delayed. Further, spc also changes to a new value given by spc = spc™ /(1 — Agprc),
where spc™* refers to the synaptic duty cycle of the unperturbed control case. Denote
the effect of SPRC on the O phase by SPRC(¢sn, spc). The effects of both the
perturbation and sPRC on the change in O phase can be calculated as Agp =
SPRC(¢™*yn/ (1= Agprc), spc™ /(1= Agprc)). In general, if the perturbation increases
O phase, then the sPRC will decrease the O phase and vice versa. This is to be
contrasted with the uninhibited trajectory. In that case, any change in phase induced
by the perturbation is never counteracted and persists indefinitely.

Let us explore how the sPRC counteracts the perturbation a bit more closely by
considering the singular case in which we again impose timescale separation. From
before, we know that ¢* satisfies ¢* + spc & 1. That is, ¢™* adjusts itself so that
the time the inhibition turns off corresponds to the time that the control trajectory
jumps to RBy. Thus the above argument about ¢p; arriving before the inhibition
holds for all gperx < @* = 1 — spc. If @pern € (¢, 1), then the perturbation will
change the current value of the O phase, denoted ¢o, to some new value, po™V.
Note that ¢o"*" is not determined by the PRC of the uninhibited trajectory since
the control trajectory does not lie near the uninhibited one for these phases. The
perturbed trajectory will lie in a neighborhood of LB until the moment in time that
the inhibition ends, which occurs att ~ P,. Provided that 90"V > ¢3, the perturbed
trajectory will lie above LK at this moment, independent of the actual value of its
phase, and at this time, will jump up to LBy, and spend a small amount of time
reaching the ¢ = 0 starting point. This argument suggests that, in the singular limit,
Ag =~ 0 for all gper € (™, 1).

Next, let us see how the argument extends to the nonsingular case. Now the
trajectory spends a nonzero amount of time making the transition from the silent
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to the active state. In Fig. 16.8, we show the control and uninhibited trajectories
where we have broken up each trajectory by phase and drawn short line segments to
indicate places of equal phase along both. Note for this set of parameters, p* = 0.4
and spc = 0.3. The control trajectory stays in a neighborhood of LB from ¢ = 0.4
to ¢ = 0.7, while from ¢ = 0.7 to ¢ = 1 it returns to the active state. Note the
position of the control and uninhibited trajectories at both ¢ = 0.4 and ¢ = 1. The
control trajectory is longer (in Euclidean distance), but both traverse this range of
phases in the same total amount of time. This means that the average speed with
which the control trajectory moves in this range of phases is larger than for the
uninhibited one. This is most clearly seen for phases in the range (0.4, 0.7) and
(0.9, 1) when the control trajectory “catches and passes” the uninhibited trajectory
(first in the vertical direction, then in the horizontal direction) in phase space. This
observation is not unique to this particular model or parameters we have chosen.
Indeed any time two periodic orbits have the same time length, but different total
arc lengths over one period, there must be regions in phase space over which
the trajectories evolve at different speeds. In our particular case, the main factors
governing the speed near LB and LB, are the #-dynamics since near these branches
dv/dt is close to 0. Across the jump to the active state, the primary factor controlling
speed is the vertical distance to the v-nullcline. This can be seen from the fact that
both trajectories are relatively flat in the region (¢*, 1) since dv/d¢ dominates d//d¢
across this jump.

Now consider an inhibitory perturbation with phase @pex between ¢* and
©* + spc. Assume that the perturbation affects them in the same way by shifting
them to the left by some amount Av. For both trajectories, this causes a change
in the phase. For the uninhibited trajectory, this change in phase persists for the
remainder of the cycle resulting in a new value for the phase as documented by the
uninhibited PRC. The situation for the control trajectory is different. Independent of
the current phase of the perturbed control trajectory, the synaptic inhibition remains
onuntil at ¥ = (¢* + spc) Po. Note that the trajectory is constrained by the synaptic
inhibition to lie close to the inhibited v-nullcline during this time. In particular, at
t = (¢* +spc) Po. The perturbed control trajectory will lie in a neighborhood of the
¢ = ¢* + spc point of the control trajectory. This is in fact the key point. Namely,
the inhibition places a time constraint on when the perturbed control trajectory
can leave LB;. Thus, because of this constraining effect any phase change the
perturbation may have supplied is largely wiped out by the inhibition. For example,
if the perturbation had advanced O’s phase, the inhibition constrains the trajectory
until # = (¢* + spc) Py, counteracting the advance by delaying the trajectory from
leaving for the active state until that time. For ¢ > (¢* 4 spc) Po, the perturbed
trajectory lies in a neighborhood of the control trajectory in the v—h phase plane.
Thus, any change in phase between the control and perturbed control trajectory is
due solely to the minor difference in speed across this jump. In summary for this
subcase, the synaptic inhibition largely wipes out any phase resetting supplied by the
perturbation. In contrast, in the absence of F inhibition, the phase resetting persists
for the entire cycle. The above argument suggests that, as in the singular case, the
control PRC should be fairly insensitive to perturbations arriving in the interval
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(¢*, ¢* + spc) and should thus be quite flat since the only increase in phase is due
to slightly different speeds across the jump up to the active state. This is consistent
with the PRCs that we computed as shown in Fig. 16.4.

The biggest changes in the PRC occur when ¢ lies between ¢* + spc and
1. Consider an inhibitory perturbation coming during this interval that causes a
change Av < 0 in both the inhibited and uninhibited trajectories. Now the only
difference that the inhibited trajectory has with its uninhibited counterpart is that it
lies higher in phase space and thus has a larger dv/d¢ value over this portion of its
orbit. Thus, it can get to the active state more quickly and therefore result in a smaller
overall change in phase than the uninhibited trajectory does. Here, there is no direct
constraining effect of the synapse. Instead, it is the inhibition that places the control
trajectory in a particular part of phase space where it can utilize its advantage in
speed to minimize phase changes.

5 Discussion

An important property of many CPG networks is that they exhibit very robust
rhythmic oscillations. In many cases, this property is critically important for the
proper function of the organism. For example, CPG networks have been shown to
control heartbeat, feeding, ventilation, and locomotion (Dickinson 2006; Marder &
Calabrese 1996). In all of these cases, stable periodic solutions are necessary for the
survival of the animal.

Oscillations often arise in a CPG either through a reciprocally inhibitory pair
of neurons or as a result of an endogenous bursting pacemaker neuron(s). In the
former case, oscillations are driven by the antiphase interactions of the two neurons.
The stability of the oscillations created by this oscillatory pair naturally makes
the CPG relatively insensitive to perturbations. In the latter case, however, where
oscillations are due to a pacemaker, there is no apparent mechanism that would
promote robustness of the rhythm. In this paper, we proposed that a feedback
inhibitory synapse that, in general, has no role in creating oscillations instead plays
the role of minimizing the pacemaker’s sensitivity to perturbations. To demonstrate
this capability of the inhibitory neuron, we computed the pacemaker’s PRC in the
presence and absence of inhibitory feedback. The PRC of a neuron documents the
amount that the neuron changes in phase (or period) in response to perturbations
applied at different parts of the rhythmic cycle. We showed that the control PRC lies
closer to 0 than the uninhibited PRC. This implies that the control pacemaker is less
sensitive to perturbations than its uninhibited counterpart.

From a mathematical viewpoint, the effect of the feedback inhibition in making
the oscillator less sensitive to perturbations can be explained simply through the
notions of neutral and asymptotic stability. The uninhibited oscillator in this model
is a neutrally stable limit cycle. While it attracts all trajectories that lie in a
neighborhood of itself, it does not assign a phase preference to the attraction.
In other words, the perturbed uninhibited trajectory has no means to compensate
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the change in phase. This can easily be seen by considering a perturbation of the
uninhibited trajectory that lands the perturbed trajectory exactly on the limit cycle
itself. Here, the phase is immediately changed, and since the perturbed trajectory
is itself on the limit cycle, there will be no additional change in phase. In contrast,
the control trajectory is an asymptotically stable limit cycle both in the sense of
attracting nearby trajectories and also in the sense of assigning a phase preference.
This can be seen through the stability of the fixed point ¢* of the map f(¢syn) =
@syn + SPRC(¢@syn). The fixed point ¢* forces the oscillator to lock at a specific
phase of the inhibitory feedback. Thus, any perturbation to the control trajectory
immediately begins to decay back to the ¢ = ¢* fixed point. The rate of decay
is governed by the magnitude of the derivative (eigenvalue) obtained through the
linearization of the map. The key point is that this decay begins immediately from
the moment of the perturbation. This is the reason why the feedback inhibition can
have an effect on the period even when the perturbation occurs after the inhibition in
that particular cycle has already ended (e.g. for ¢pert > @syn+spc in the non-singular
cases shown in Fig. 16.4b).

Several other studies have documented how neurons are affected by various
synaptic or perturbing inputs. Prinz et al. (2003) found that the PRC of a neuron
was more sensitive to the duration of synaptic input than to the strength of the input.
This was established by showing that the PRC saturates at biologically plausible
synaptic conductances, but continues to change over all biologically realizable
synaptic durations (at least in the case of PD neurons). Oprisan et al. (2003) found
similar sensitivity to and importance of the duration of short perturbative or longer
synaptic inputs in their modeling study in which they reconstructed the PRC of a
bursting neuron from time series data. Our work builds on the results of these earlier
studies and asks not just how the duration or phase of an input can affect the PRC,
but also how two different inputs interact with one another to determine the PRC.
In particular, we explored how the perturbation to a pacemaker neuron is buffered
by the existence of a specific synaptic component of the network, a component that
seemingly has very little effect on the existence or frequency of oscillations in the
pacemaker.

Results from our laboratory (Figs.16.2 and 16.3) and previous experimental
studies of the stomatogastric pyloric network show that the inhibitory feedback
LP to PD synapse to the pyloric pacemaker neurons has no effect on the aver-
age pyloric cycle period in control conditions (Mamiya & Nadim 2004; Zhou,
LoMauro, & Nadim, (2006)) even if the synapse is drastically strengthened in the
presence of neuromodulators (Thirumalai et al. 2006). We and others had previously
proposed that such feedback inhibition may in fact act to stabilize the pyloric
rhythm cycle period in response to perturbing inputs (Mamiya & Nadim 2004;
Thirumalai et al. 2006). Our current work now demonstrates that the stabilizing
effect of feedback inhibition is in fact quite generic and applies to counteract
both longlasting perturbations(such as through neuromodulation) that tend to alter
network frequency and fast perturbations typically modeled as noise.
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