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Abstract The transient potassium A-current is present in
most neurons and plays an important role in determining
the timing of action potentials. We examine the role of the
A-current in the activity phase of a follower neuron in a
rhythmic feed-forward inhibitory network with a reduced
three-variable model and conduct experiments to verify the
usefulness of our model. Using geometric analysis of dynam-
ical systems, we explore the factors that determine the onset
of activity in a follower neuron following release from inhi-
bition. We first analyze the behavior of the follower neuron
in a single cycle and find that the phase plane structure of the
model can be used to predict the potential behaviors of the
follower neuron following release from inhibition. We show
that, depending on the relative scales of the inactivation time
constant of the A-current and the time constant of the recov-
ery variable, the follower neuron may or may not reach its
active state following inhibition. Our simple model is used
to derive a recursive set of equations to predict the contribu-
tion of the A-current parameters in determining the activity
phase of a follower neuron as a function of the duration and
frequency of the inhibitory input it receives. These equations
can be used to demonstrate the dependence of activity phase
on the period and duty cycle of the periodic inhibition, as seen
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1 Introduction

Bursting oscillations occur in many neurons and other cell
types and underlie rhythmic activity in many networks of the
central nervous system. In the mammalian thalamocortical
system, for example, bursting occurs in the thalamocortical
neurons during EEG-synchronized sleep (McCormick and
Bal 1997). Other examples include the circadian rhythmicity
which results from the interaction of the circadian pacemaker,
comprising of the neurons of the suprachiasmatic nucleus
and other neurons such as the photoreceptors (Moore 1999).
Bursting oscillations are particularly prevalent in neurons
of central pattern generators (CPGs) that produce rhythmic
motor activity. These types of neurons include, for instance,
the respiratory neurons in the pre-Botzinger complex of the
brain stem that exhibit pacemaker bursting activity (Johnson
et al. 1994).

The activity of oscillatory networks of neurons is deter-
mined by the oscillation frequency as well as the activity
phase of the component neurons within each cycle. In many
oscillatory networks, the relative bursting phase among neu-
rons plays an important in determining the normal or dys-
functional output of the network. In CPGs, for instance,
the relative phase of neurons or groups of neurons deter-
mines the order of muscle contractions and therefore the
motor behavior (Marder and Bucher 2007). It has also been
shown that the motor system dysfunction associated with
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Parkinson’s disease is critically dependent on how the phase
relationships between basal ganglia nuclei are affected by the
loss of dopamine (Walters et al. 2007). The phase difference
between neurons is often maintained over a wide range of fre-
quencies (Marder and Calabrese 1996; Marder et al. 2005).

The A-current is a transient outward potassium current
that is present in most neuronal types and contributes to spike
timing. The A-current is an essential factor in determining
the frequency-current response of neurons, as was first shown
in the seminal paper of Connor and Stevens (1971). In the
CA3 pyramidal cells in the hippocampus, the activation of the
A-current underlies the propagation failure of action poten-
tials in axons (Debanne et al. 1997). The A-current has been
shown to be important in determining the post-inhibitory
rebound bursting phase of neurons and its effect on deter-
mining this phase is subject to the neuromodulation of the
current by dopamine (Harris-Warrick et al. 1995).

In order to investigate how the A-current interacts with
other intrinsic and synaptic factors to affect the activity phase
of a follower neuron, we focused on a simple inhibitory net-
work consisting of a pacemaker neuron and a follower neu-
ron. The prototype of our model includes two neurons, the
pyloric dilator (PD) and the pyloric constrictor (PY) of the
pyloric CPG in the stomatogastric nervous system of the crab
Cancer borealis. The PD neurons are members of the pyloric
pacemaker ensemble and produce very regular bursting activ-
ity with a period of around 1 sec. The follower PY neurons
are also members of the pyloric system which oscillate due
to the synaptic inhibition they receive from the pacemaker
neurons.

The activity phase of pyloric follower neurons such as
PY has been partially attributed to the presence and extent
of the A-currents in these neurons (Harris-Warrick et al.
1995; MacLean et al. 2005). In the current study, we use
the dynamic clamp technique to verify the role of the A-
current in setting the activity phase of follower PY neurons.
Based on these results, we construct a three-variable model
to analyze how the interaction between the A-current and
other intrinsic properties of the follower neuron determine
the post-inhibition activity phase of this neuron. Our model,
which is based on the model of Bose et al. (2004), focuses on
the bursting envelope of the follower neuron and the spiking
properties are ignored.

We use phase space analysis and separation of time scales
to determine the factors that determine the fate of the fol-
lower neuron trajectory following inhibition in a single cycle
of oscillation. We then use these results to derive a set of equa-
tions that describe the steady-state phase of the follower neu-
ron in response to a repetitive periodic input. These equations
depend on a set of model parameters, including the active
and inactive durations of the pacemaker neurons. Finally,
we compare the phase of the follower neuron as predicted
by these equations with the phase of the biological PY neu-
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rons when the network cycle period is varied using different
protocols.

2 Post-inhibition phase of an oscillatory neuron
and the role of the A-current

This study is motivated by the observation that different neu-
rons in a CPG network are active at different phases of each
cycle of oscillations. These distinct phases often command
the contraction phases of distinct muscles which, in a coor-
dinated fashion, produce meaningful movements. CPG net-
work neurons are typically subject to inhibitory inputs and
produce activity upon rebound from this inhibition. An exam-
ple of this type of activity is shown for the PY neurons in
Fig. la. There are three to five PY neurons in the pyloric CPG
and these neurons can have fairly distinct activity phases. As
seen in Fig. 1a, PY1 has a more advanced phase than PY2,
while PY3 does not spike at all. It has been shown that the
activity phase of the PY neuron is affected by the strength
of the A-current (Harris-Warrick et al. 1995). Our study is
based on the hypothesis that the strength and kinetics of the
A-current in individual PY neurons can determine their dis-
tinct activity phases.

In order to quantitatively demonstrate how the A-current
affects the activity phase, we injected an artificial A-current
into a single PY neuron using the dynamic clamp technique
(see Experimental Methods) and measured the shift in the PY
neuron activity phase while varying the maximum conduc-
tance (g4 ) of the A-current. Figure 1b shows the experimental
results. In Case i, g4 is equal to zero and therefore the trace
shows the membrane potential of the PY neuron without any
additional input. In Cases ii-iv we increased g4 gradually,
and the activity of the PY neuron was shifted to a later phase.
When the maximum conductance was too large (Case iv),
there were no action potentials and the active phase of the
PY neuron was effectively suppressed. This case was similar
to the ongoing activity of the PY3 neuron in Fig. la.

In the following sections, we will use a simplified neuronal
model to analytically explore the role of the A-current in
determining the activity phase of CPG neurons such as the PY
neuron. We will then use these analytical results to predict this
phase for the biological neuron as a function of the frequency
and duty cycle of the oscillatory inhibition it receives.

3 Model
3.1 General equations
Our model is based on the model of Bose et al. (2004) which

includes three variables to determine the bursting envelope:
two variables (v and w) are from the Morris-Lecar (ML)
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Fig. 1 The effect of the A-current on the activity phase of biological
and model PY neurons. a Simultaneous recording of three biological
PY neurons in the crab STG. All PY neurons receive periodic inhibitory
synaptic input from the pyloric pacemaker neurons. The activity of the
pacemaker neurons can be seen in the extracellular nerve recording
(pdn, bottom trace). Note that the PY neurons burst with different time
delays (arrows) with respect to onset of the pacemaker input (vertical
dotted line). PY2 has a more delayed phase than PY 1, while PY3 does
not spike at all. b An artificial A-current was injected into a PY neuron,
using the dynamic clamp technique, and its strength (g 4, the maximum
conductance) was increased from top to bottom (in nS: i: 0, ii: 50, iii:
100, iv: 200), resulting in an increase in the delay to the active state.
When the maximum conductance was too large (iv), the PY neuron was

model representing the membrane potential of the follower
neuron and the activation variable of the potassium current,
and one variable & describing the A-current inactivation. This
model represents only the envelope of the oscillatory activ-
ity in the PY neurons; the spikes shown in Figs. la,b are
smoothed over as they do not play an important role in deter-
mining the effect of the A-current. The equations for the
model are given as

d
e = F0.w) = ganos(Wh( = Ex) = lnh
d 00 —
d_w _ Woo(v) —w )
t Tw (V)
dh  hoo(v) —h
dt — (v)
where
f,w) = ITexe — 82.(v — EL) — gcaMoo(V)(v — Ecq)
—gxkw( — Eg) (2)

represents the ML terms, and wo (v), 160 (v) and Ao (v) are
sigmoidal functions, respectively, representing the steady-
state values of the activation variable for the potassium
current, the activation and inactivation variables for the
A-current. Each sigmoidal function has the form:

1
Xoo(V) = W(v;—:x) (3)

ivy ’L—/’

Increasing the artificial A-current

S

<

not able to reach the active state and there were no action potentials.
Note that even without the dynamic clamp A-current, there was a delay
to the active state of the PY neuron presumably due to its intrinsic bio-
logical A-current. (¢) The effect of the A-current shown in panel b can
be mimicked by simulating the three-variable model with different val-
ues of g4. Note that this model represents only the envelope of slow
oscillations and the spikes seen in the biological neuron are smoothed
over. Model parameters: (in ms) T, = Toer = 500, 7y = 495,
Tm = 810, 7, = 1000, 1y = 40, Tym = 100, = 800; (in mV)
E; = —60, Ec, = 120, v, = —1.2,k,, = =18, Ex = —84,v,, =
15, ky = =5,v, = —6,k, = —0.5, v, = —10,k, =0.1, E;,, = —80;
(innS) g1 = 2, 8ca = 4.8k = 8, ga = 3.5(1), 3.7(i1), 4(iii), 5@1v),
8inh = 25 (in PA) Iexe =775

Here k, is negative for activation variables and positive for
deactivation variables. We say the sigmoid is steep when the
parameter k, ~ O(e1) where 0 < &1 << 1. In our model
ky, and kj, are set to be small (~ O(g1)), but ky,, which deter-
mines the shape of the w-nullcline, can be small or large.
The time constants 7, (v) and 7, (v) determine the speed
with which the variables w and & change in different voltage
regions.
The synaptic current has the following expression:

Linh = ginhSoo(v0) (v — Einp) 4)

We set so(vo) as a steep sigmoid in order to simplify the
synaptic mechanics.

Figure 1c shows the voltage traces simulated by the model
for different values of g4. As in the model of Bose et al., we
simplified the activity of the pacemaker neuron by defining
the membrane potential vy of the PD neuron as a square
wave oscillating periodically between —50 and OmV with
active duration Ty and inactive duration Ti, (Fig. 1c, bot-
tom trace). As seen in Fig. 1c, the model neuron membrane
potential oscillations consist of three voltage ranges (low,
medium and high) and transitions between these three states.
The low voltage state corresponds to the inhibition from the
pacemaker; the high voltage state represents the spiking or
active state and the medium voltage state represents the post-
inhibition state before spiking occurs. As with the biological
neuron (Fig. 1b), when the value of g4 is increased from
top to bottom, the duration spent in the high voltage state
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decreases (Fig. 1c, Cases i—iii) and thus the active phase is
more and more delayed. For large enough g 4 the active phase
is suppressed (Case iv).

3.2 The role of the A-current and the inhibition
in the v—w and w—h phase planes

We can analyze the trajectory of the follower neuron in its
three-variable phase space by considering the dynamics of
the trajectory on two distinct two-dimensional manifolds:
the v—w plane and the w—h plane (described further below).
The dynamics of the trajectory in the v—w plane are described
using a family of “phase planes” parameterized by the slow
variable & which represents the inactivation of the A-current.

Without the A-current term, the ML model is described by
a cubic v-nullcline and a sigmoidal w-nullcline in the v—w
phase plane (Rinzel and Ermentrout 1998). When a trajec-
tory lies near the left branch the neuron is said to be silent;
when it is near the right branch the neuron is called active.
The left and right branches of the v-nullcline correspond,
respectively, to the low- and high-voltage states as described
in Fig. 1c. In the ML model, if a fixed point lies on the sec-
tions of the v-nullcline that have negative slope (i.e., the left
or right branch) it is stable and if it is in the section with the
positive slope (between the minimum and maximum) it is
unstable (Rinzel and Ermentrout 1998). With the parameters
used in Fig. lc, in the absence of an A-current, the v- and
w-nullclines intersect on the right branch at a stable fixed
point (FP, in Fig. 2a), which implies that without inhibi-
tion, the model neuron is always active. This corresponds
to the fact that the PY neurons are active (spike tonically)
when they do not receive inhibition from the pacemaker
(Rabbah and Nadim 2005).

In the presence of the A-current term, however, there is
an additional “middle branch” on the v-nullcline that has
negative slope and therefore the nullcline shape is quintic
(Fig. 2a). Due to the negative slope of this branch, any fixed
point that lies on it would also be stable. We will use the nota-
tions LB, MB and RB, respectively, to denote the left branch,
middle branch and right branch (Fig. 2a). Our assumption
that the steady-state activation curve of the A-current is steep
(k,, is small) implies that MB is almost vertical. In fact, for the
remainder of this manuscript we assume that MB is vertical
(e1 = 0). We have examined the consequences of relaxing
this assumption in a separate study (Zhang et al. 2008). We
refer to the lower knee, the upper knee and the fixed point
(when present; FP in Fig. 2a) on MB as LK, UK and FP. When
h decreases (i.e., the A-current inactivates), LB is unchanged,
but MB shrinks (LK moves up), and RB moves up as well
(Fig. 2a).

The inhibition from the pacemaker neuron causes the v-
nullcline to move down vertically for a distance depending
on the strength of the inhibitory synapse (Fig. 2b), as seen

@ Springer

by the influence of the negative term I;, in Eq. 1. For large
enough inhibition, this shift always results in a stable fixed
point (FP;) on the left branch (called LB! for the inhibited
nullcline; Fig. 2b). In this study, we assume that the onset and
decay of inhibition is fast and therefore the inhibition is only
important during the active state (7T;¢) of the pacemaker.

In the v—w phase plane, the steepness and midpoint of the
w-nullcline determine the existence of a stable fixed point on
MB. If there is an intersection on MB (Fig. 3a), then the fixed
point exists and is locally stable. If the w-nullcline sits above
MB, there will be no fixed point on MB. However, in this
case the flow on MB is still attracted by the w-nullcline and,
although there is no fixed point on MB, for each point on MB
there is a “pseudo-fixed point” on the w-nullcline above MB
(Fig. 3c). The pseudo-fixed point can be formally defined for
any point (v, w) located on the middle branch as the point
(v, w') with the same v-coordinate on the w-nullcline. We
label any fixed point or pseudo fixed point by FP.

The w—h phase plane is used to analyze the dynamics of
the trajectory following the release from inhibition, when
the A-current is large enough to prevent an immediate jump
to the active state. In this case, the trajectory lands on MB
(corresponding to the middle-voltage state in Fig. 1c). MB is
a one-dimensional curve in the v—w phase plane and, in this
plane, MB shrinks when & decays. However, the dynamics of
the trajectory on MB are in fact determined primarily by the
two slow variables, 4 and w. Thus, it is simpler to analyze
the fate of the trajectory on MB by examining its evolution
in the w—h phase plane where the curves of LKs, UKs and
FPs can be properly visualized (Fig. 3b,d).

Figure 3b,d show the curves representing LK UK and FP
in the w—h phase plane, corresponding, respectively, to the
two cases shown in Fig. 3a,c. The curves LK, UK and FP
represent the lower and upper knees of MB and the fixed
point as seen in the v—w phase plane. The shadowed areas
represent the possible ranges of the trajectories. UK and FP
are vertical lines as their positions in the w-direction are not
changed. LK is a curve with negative slopes since the # value
deceases as the w value is increasing when the trajectory is
moving on MB. Consistent with the locations of FP and UK
shown in the v—w phase plane (Fig. 3a,c), in Fig. 3b, FP is
on the left of UK while, in Fig. 3d, FP is on the right of UK.
The black arrow in each of these two figures shows the flow
direction in the w—h phase plane.

3.3 The singular perturbation assumption and the reduced
equations

The membrane potential of the follower neuron can be map-
ped to a trajectory on the v—w phase plane. For ¢ small
enough (see Eq. 1), the system is singularly perturbed
(Mishchenko and Rosov 1980). As a consequence, in some
regions of phase space, v changes very quickly while w and
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Fig. 2 The changes of the nullclines caused by the A-current and the
inhibition in the v—w phase plane. a The presence of the A-current term
causes an additional middle branch on the v-nullcline that has negative
slope and therefore the nullcline shape is quintic. LB, MB and RB repre-
sent the left, middle and right branches of the v-nullcline, respectively.
UK and LK denote the upper and lower knee of MB. As the inactivation

C))

v-nullcline

",

v

Case 1

()

Case 2

Fig. 3 The parameters of the A-current, in conjunction with other
intrinsic model parameters, can determine the fate of the follower neu-
ron trajectory. Two qualitatively distinct cases are shown in the phase
space based on the shape and relative position of the nullclines which
are in turn determined by the relative positions of ws, (v) and MB (blue
segment of the v-nullcline). Panels a and ¢ show these two cases in the
v—w phase plane; panels b and d show the same cases in the w—h phase
plane, respectively. In the w—h phase plane (b and d), the curves LK,
FP and UK correspond to the lower knee LK, the upper knee UK and

w-nullcline

(b)

Inhibition

fraction & decreases, MB shrinks from LK. The dashed nullcline repre-
sents an intermediate value of /. b The inhibition from the pacemaker
neuron causes the v-nullcline to move down vertically for a distance
depending on the strength of the inhibitory synapse. FP, FP; and FP;
represent fixed points in the v—w phase plane
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Start
)’ UK| FP
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the fixed point FP in the v—w phase plane. The point “Start” denotes
the entrance of the trajectory into the w—h phase plane and the gray
area represents the potential paths of the trajectory. Case 1 (a & b; fixed
point on MB): a In the v—w phase plane, the two nullclines intersect at
FP on the middle branch (MB). b In the w—h phase plane, the trajectory
is blocked by FP and can never reach UK. Case 2 (¢ & d; no fixed point
on MB): ¢ In the v—w phase plane, there is no intersection on the middle
branch of the v-nullcline. d In the w—h phase plane, FP is to the right
of UK and therefore the trajectory may reach UK
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h remain nearly constant. In other regions, the behavior of v
can be slaved to that of w and &. Equations to describe either
can be obtained by setting & = 0 in Eq. 1 or a time-rescaled
version of Eq. 1. These two sets of equations are, respec-
tively, referred to as the slow and the fast equations and can
be obtained as follows.

The slow equations are found by setting ¢ = 0 in Eq. 1:

0= f(vv w) — gAnoo(v)h(v — Eg) — Linn
dw Woo (V) — w

at T ) ®)
dh heo(v) — h
dr ()

Note that the first equation in Eq. 5 describes the
v-nullcline, thus indicating that the slow equations describe
the dynamics of the trajectory on this nullcline.

The fast equations are obtained by rescaling t = €& in
Eq. 1 and then setting ¢ = 0:

d

é = f(v,w) — ganco(W)h(v — Eg) — Iinn

dw

= =0 (6)
e _

d§

These equations control the trajectory during the jumps bet-
ween the branches of the v-nullcline. Note that the last two
equations in Eq. 6 imply that the values of w and /4 do not
vary during these jumps.

Each cycle of the trajectory is pieced together using solu-
tions of Eq. 5 to determine the movement on the branches of
the v-nullcline and of Eq. 6 to determine the jumps between
these branches. For instance, during the inhibition by the
pacemaker, the trajectory moves toward FP; on LB! during
Tact, and it stays near FP due to its stability (Fig. 4a). When
the inhibition ends, the v-nullcline is raised (as described in
Fig. 2b). FP; no longer exists and therefore the trajectory
can jump to MB. In fact the trajectory is able to jump when it
reaches the knee on any branch. For example, when the trajec-
tory encounters the lower knee of MB, it jumps to RB. These
jumps correspond to saddle-node bifurcation in the fast equa-
tions (Eq. 6) (Rinzel and Ermentrout 1998). The existence
of a trajectory to the full system (Eq. 1) that is close to the
“pieced-together” trajectory obeying the lower-dimensional
slow and fast Eqs. 5 and 6 follows from the results of geomet-
ric singular perturbation theory as described by Mishchenko
and Rosov (1980).

The trajectories of interest are restricted to three branches
of the v-nullcline: the left branch LB! in the presence of
inhibition and the middle and right branches (MB and RB)
in its absence, and the jumps between these branches. The
slow equations for the trajectory moving on LB', MB and
RB are given as:
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OnLB!:

0= f(v,w) — ganco(Wh(v — Ex) — ginh(v — Einn)
dw —w

- 7

dt Twl @

dh _ 1—nh

dt - Thi

On MB:

0= f(,w)—gancc(w)h(v— Eg)

dw Wpp — W

i e 8

dt Twm ®)

dh _ —h

dt - Thm

On RB:

0= f(v,w) — ganc()h(v — Ex)

d _

d_w _ Weo (V) — w ©)
t Twh

dh _ —h

dt - Thh

Our simplifying assumption that s, (v) is steep (kj, is small)
implies that /1, (v) = 1 on LB! and /14, (v) = 0 on MB and
RB. The time constants for w and % on the left branches (LB
and LB! ), the middle branch (MB) and the right branch (RB)
are set as 7y, and ty;, Ty, and Ty, and 7, and Ty, respec-
tively. All time constants are assumed to be of the same order
of magnitude as Tyt (O(Tyct)) unless otherwise specified in
the results. In cases where two time constants are assumed
to be of different orders of magnitude (i.e., 1] << 12), the
larger one (17 in this case) is assumed to be O(7ycy).

4 Results

As described above, a numerical simulation of our model
(Eq. 1) with different parameter sets can reproduce the variety
of phase delays observed in the biological PY neurons. Our
goal in this study is to determine which parameters result in
the distinct values of activity phase delay in the model neuron
following inhibition, and to derive the relationships among
parameters that would allow us to predict this activity phase
as a function of the activity of the pacemaker neuron. We
begin by describing the behavior of the trajectory in a single
cycle and then use this information to derive the activity phase
in response to a periodic input. Because the activity phase of
the neuron following inhibition is determined by the time it
spends on the middle branch MB, we will first focus on how
the trajectory lands on MB, the factors that determine its fate
on MB, and where it goes after leaving MB.
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Fig. 4 The dynamics of Cases 1 (a & b) and 2 (¢ & d) in the v—w and
w—h phase planes. a In Case 1, the trajectory jumps to the left branch
(LB') from FP; at the onset of inhibition and then moves along LB! to
FP; during Ti,. When the inhibition ends, the trajectory jumps to the
middle branch MB and moves toward FP. At the same time, MB shrinks
from LK due to the decay of /. b In the w—h phase plane, four subcases
are possible based on the relative size of the two time constants Ty,
and tp,,. Note, however, that the only way the trajectory can leave this
phase plane is by reaching LK. ¢ In Case 2 the shape of the w-nullcline

4.1 The fate of the trajectory on MB

We begin with the trajectory at FP, (Fig. 4a). Assume at
t = 0 the follower neuron is inhibited and the trajectory lands
on LB!. For the duration of inhibition (Tyer), the trajectory
moves downwards along LB! towards the stable fixed point
FP; (Fig. 4a). We assume that 7, is small enough on LB!
such that, during the inhibited state, the trajectory reaches a
small neighborhood of FP;. Atthe same time, the inactivation
variable / of the A-current increases with time constant tj;.
The growth of & does not affect the shape of LB!, but does
result in a larger MB!. In fact, the size of MB! is related
to how long the follower neuron stays in the inactive state.
At the end of the inhibition, the trajectory in the v—w plane
is released from a neighborhood, the fixed point FP; and
jumps horizontally to MB. Once the trajectory lands on MB,
h begins to decay with the time constant 7, which causes
MB to shrink from the lower knee LK. At the same time, the
trajectory moves at the rate 7, toward the fixed point FP.
Figure 4a,c show two possible cases—Case 1 and Case
2—depending on the shape and relative position of the v

w

mE=lasinln

causes wrp > wyg on MB. After landing on MB, the trajectory moves
toward FP, and LK rises simultaneously as the MB shrinks. d Five sub-
cases can be achieved in the w—h phase plane based on the relative sizes
of Ty, and . In this case, trajectories 1 and 3 leave the phase plane
by reaching UK whereas trajectories 2 and 4 leave from LK. The fate
of trajectory 5 is unclear since it reaches the intersection of LK and
UK. Insets on the right of panels b and d show the time traces of the
pacemaker and the follower neuron in each subcase

and w nullclines in the v—w phase plane. In Case 1 the w-
nullcline crosses the v-nullcline on the middle branch and
UK is always higher than FP in the w direction, while in
Case 2 UK is lower than FP as the w-nullcline is above the
middle branch of the v-nullcline. The trajectory cannot reach
UK in Case 1; therefore, it can only jump to the right if LK
moves fastenough during Ti, . In Case 2, however, FP is above
the middle branch, which allows the trajectory to jump left
if it moves fast enough to reach UK during Ti,. Although
these two possibilities are not exhaustive, they indicate how
the structure of the nullclines can determine the fate of the
trajectory on MB.

Figures 4b,d show the possible trajectories of Case 1 and
Case 2, respectively, in the w—h phase plane. The curves LK,
UK and FP are as defined in Fig. 3. The difference between
Cases 1 and 2 is that, in the w—h phase plane, the FP curve
lies to the left of the UK curve in the former case, but to its
rightin the latter (Fig. 4b,d). Thus, from the relative positions
of the LK, UK and FP curves, it immediately follows that, in
Case 1, the trajectory can only leave MB by jumping from
LK to RB (because FP blocks the access to UK), whereas in
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Case 2, a trajectory could leave MB either by reaching LK
and jumping to RB, or by reaching UK and jumping to LB.

4.1.1 Case 1

The trajectory arrives on MB through a horizontal jump (in
the v—w plane) and therefore the initial w value on MB is the
same as the last value on LB!. The movement of the trajectory
in the w—h phase plane is determined by the time constants
Twm and 7y, . According to these time constants, several sub-
cases can be defined that represent all possible trajectories on
MB. Each subcase is shown as an arrowed curve on the w—h
manifold (Fig. 4b). In Case 1, for instance, there are four sub-
cases: Subcase 1 satisfies the condition 7, << Tp; which
causes a fast motion in the w direction; therefore, the trajec-
tory rapidly moves to FP immediately after landing on MB,
and it follows the FP curve vertically down until it reaches
the LK curve. Subcase 2 satisfies the condition 7y, >> Thm,
which makes the trajectory move rapidly in the 4 direction
until it reaches the LK curve. In Subcases 3 and 4, 1, and
Thm are of the same order and therefore there is no rapid
movement in either the w or the & direction. The trajectory
either reaches FP first and then moves vertically down to LK
(Subcase 3) or moves directly to LK without encountering
FP (Subcase 4). Note that in all four subcases, the trajectory
eventually reaches LK and jumps to RB. Subcases 1 and 3
are distinguished from 2 and 4 by the fact that the fixed point
is playing a role in determining the movement of the trajec-
tory. Bose et al. (2004) examined only Subcase 1 as defined
here.) Note also that Subcases 1, 3 and 4, but not 2, result in
a measurable delay to activity of the follower neuron (insets
in Fig. 4b).

4.1.2 Case 2

We use a similar method to analyze Case 2. In this case,
because the w-nullcline is relatively shallow, it does not inter-
sect MB in the v—w plane. In Subcase 1 the trajectory moves
quickly in the w-direction and reaches UK almost immedi-
ately after landing on MB, which leads to a left jump back
to LB. Subcase 2 is the same as that in Case 1, in which the
trajectory reaches LK fast and then jumps to RB. Subcases 3
and 4 show the cases when t,,,, and t,, are of the same order.
The trajectory reaches UK and jumps left in the former and
reaches LK and jumps right in the latter. Subcase 5 shows a
rare possibility that the trajectory reaches UK and LK at the
same time when MB shrinks to a point or when 7 = 0. In
this case the fate of the trajectory remains ambiguous.

Note that in Case 1, although the delay in activity in Sub-
cases 1, 3 and 4 can be quite similar, Subcase 1 is inherently
distinct from the other two. In this subcase, the delay in the
active phase is caused only by the presence of the fixed point
FP and the delay caused by the time spent in MB would
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completely disappear if the FP disappeared (e.g., if gcq is
increased in Eq. 1), in which case the behavior of the fol-
lower neuron would be identical to that of Subcase 1 of Case
2 (Fig. 44d).

4.1.3 Simulation of the biological neurons

We now use the geometric setup described in Fig. 4 to demon-
strate the distinct behaviors of the biological PY neurons. In
order to simulate the biological PY neurons, we only need to
consider the subcases in Case 1, since the membrane poten-
tial of PY never moves to the inactive state without receiving
inhibition. Therefore in the v—w phase plane, the trajectory
can only jump to the right or stay on MB (till the next cycle
of inhibition) after landing on it. Figure 5a,b show these two
possibilities. In Fig. 5a, the left panel shows the model solu-
tion which represents the activity of PY1 in Fig. 1a and Case
iin Fig. 1b; the middle panel shows the trajectory of the solu-
tion in the v—w phase plane; and the right panel shows the
trajectory in the w — g4 h phase plane describing the activity
on MB. In this case the trajectory moves faster in the gah
direction than in the w direction and therefore it reaches LK
directly and then jumps to the right.

Figure 5b shows a simulation with a stronger A-current
corresponding to PY3 in Fig. 1a and Case iv in Fig. 1b. The
three panels show the same information as in Fig. 5a. It is
clear (especially in the right panel) that in this case, the trajec-
tory reaches FP first due to a large g4 and then moves along
it. It fails to reach LK during 7j,, thus it cannot jump to the
right. The trajectory remains near FP on MB until the next
cycle of inhibition arrives (see PY trace in Fig. 5b). The inhi-
bition moves the v-nullcline down and the trajectory jumps
to the left.

4.2 Periodic solutions

The analysis on the w—h manifold gives us a clear view of
the possible fates of the trajectory on the middle branch in
a single cycle. However, the determination of this fate does
not guarantee knowledge of the long-term behavior of the
follower neuron. This is because the values of w or 4 may
vary from cycle to cycle and may also depend on the his-
tory of these variables in previous cycles. It is possible that
these variables converge to a stationary value (dynamic equi-
librium) after a number of cycles. In order to determine the
long-term behavior of the follower neuron, it is necessary
to track the values of w and & over multiple cycles. In the
following sections we derive analytic expressions for each
variable as a function of the pacemaker and other network
parameters. We will derive these expressions for a represen-
tative case discussed above.

We first examine the accumulation of the inactivation vari-
able & in Case 1, which provides a vertical MB and a stable
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Fig. 5 The periodic solutions in Case 1 when the A-current is moder-
ate (a) or strong (b). a Left panel: a modest A-current causes a phase
delay to the active state. Middle panel: the periodic solutions in the
v—w phase plane. Right panel: The trajectory in the w — gah phase
plane, which shows the dynamics on the middle branch. The trajectory
reaches the curve of the lower knee (LK) during 7j, and therefore the
membrane potential reaches the active state after a phase delay. b Left
panel: the follower neuron cannot reach the active state when the A-
current is strong. Middle panel: the periodic solutions in the v—w phase

fixed point FP on it (Figs. 3a and 4a). For simplicity, we
assume that the movement in the w direction on MB is fast
compared to the movement in the / direction (Subcase 1 or 3
in Fig. 4b) and that 7, 7,5, and 7, are set properly to guar-
antee the trajectory lands on MB only from LB! in every
cycle. Under these two conditions we do not need to con-
sider the variability of the w value in each cycle. Suppose
at + = 0 the pacemaker becomes active, and therefore the
follower neuron moves to its inactive state due to inhibition.
We suppose the trajectory starts in the v—w plane on the left
branch with 2(0) = 0. During 0 < ¢ < Ty, the trajectory
moves downward and obeys Eq. 7; therefore at t = T:

)

Following r = Ty, the follower neuron is released from
inhibition, which is reflected in the v—w phase plane as a jump
from LB! to MB. When the trajectory lands on the middle
branch, it moves to FP and the lower knee LK begins to rise
with time constant 7,,. (Our assumptions above require that
the trajectory does not reach LK before it reaches FP.) The
time #, spent on the middle branch is determined by the
equation

Tact

Thi

h(Taer) = 1 — CXP( (10)

‘
fa, wrp)—gah(Tyc) exp <—Tl

hm

) (vg — Eg)=0 (11)

11

plane. The trajectory jumps back to the left branch when the inhibition
starts. Right panel: In the w — gah phase plane the trajectory reaches
the curve of the fixed point (FP), and then it moves downward along
FP. It does not reach LK during Tij,, therefore the membrane potential
does not reach the active state. The arrows in the left and middle pan-
els denote the inactive, active and intermediate states. The labels 1-4
in the middle panels denote the v-nullcline corresponding to the times
denoted by the same label in the left panel

Here vy is the v value of the middle branch and #,, represents
the time the trajectory spends on the middle branch, which
can be calculated explicitly (see also Bose et al. 2004) as

gah(Tact)(vg — Eg)
f(ve, wrp)

12)

hm1

J—
If the trajectory is able to jump to the right branch during
(Tact, P — 84) where P = Tyt + Tin, thenatr = P

Tin —Im

h(P)= (1 ~exp (_ ) (13)

Here ¢, represents the time the trajectory takes to exceed the
w value of the upper knee of MB!, wy k1, in the w direction
while it is moving along RB. ¢, equals zeroif wrp > wyg1;
when wrp < wyki, if the trajectory jumps from MB to RB
at a moment in (P — &4, P), then when the inhibition starts
att = P, the trajectory will return to MB! instead of LB!.
&q can be calculated by the following equation:

)

In order to avoid the trajectory landing on MB!, we set 7,,,
and 7y, to be small thereby forcing g, to also be small. Under
this condition the interval (P — &4, P) can be ignored for
simplicity.

m

Tact)) ( t
Thi Thm  Thh

&£y = Max (O, Twh In Wrp = WiP2 (14)

WyK1 — WFPpP2
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If the trajectory is unable to jump to the right branch during
(Tact, P — &), thenatt = P

h(P) = (1 —exp (—%)) exp (—TT:‘) (15)

Based on the above-mentioned steps, we conclude the fol-
lowing recursive equations describing the values of / in cycle
n(h'") at the moment that the inhibition from the pacemaker
isremoved att = (n — 1) P + Tye:

W' =hmp + Tac) = 1+ [h((n — D p + Tact)

T; 1 1 T,
X exp (——1 + (———) t,’fl) — 1] exp (—iﬁ)
Thh Thh  Thm Thi

(16a)

gah((n—=1)p+Ta)(vo—Ek) ] (16b)

f(vg, wrp)

f' =max [O, Thm I

where 1), denotes the time spent on the middle branch in the
nth cycle. Note that if the time spent on the left branch is
too short, 4 would not become large enough (MB does not
grow enough) in that cycle and the log term in Eq. 16b can
be negative. In this case, the trajectory would not land on the
middle branch and ¢} is defined to be 0. The activity phase
¢ in each cycle can be calculated by

_ The + 15,
P

This iteration scheme converges to the steady state values h*
and ¢ which satisfy

T Tw T
BT exp (_ﬁ) +exp (_ﬂ_ﬁ)
Thi Thh  Thi

" a7

rrhiil Thm
> (M>( i ) (h*)flﬂ (18a)
f(vg, wrp)
f =max [O, Thm I M] (18b)
fve, wrp)

In these equations, 4* denotes the steady state value of h
(inactivation of the A-current) at the end of the inhibition
from the pacemaker in each cycle and #;; is the steady state
value of the time spent on the middle branch. Therefore the
steady state activity phase is

Tact + 1,
P

Equations 1619 show that 4, t,, and ¢ can be represented
as functions of Ti, and Ty, and therefore the cycle period
(P) and the duty cycle (Tyc/ P) of the pacemaker neurons
play an important role in determining the activity phase of
the follower neuron.

A natural question that arises from these calculations is
whether we can use these simplified Eqs. 16—-19 to predict
the activity phase of the biological PY neurons. We addressed
this question by using an experimental protocol to measure

" = (19)
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the activity phase of the biological PY neurons as a function
of the cycle period of the pacemaker neurons. We performed
this experiment using two PY neurons. In order to control the
cycle period, we blocked the biological synapses from the
pacemaker neurons to the PY neurons (Rabbah and Nadim
2005) and used the dynamic clamp technique to produce an
artificial synaptic input (from a model pacemaker neuron)
to the PY neurons. This allowed us to change the values of
Tin and Ty (and therefore the cycle period) in a controlled
manner. We used three different protocols for changing the
cycle period.

In the first protocol, we changed cycle period by varying
Tin, but keeping Ty fixed. Figure 6a shows the membrane
potentials of the two PY neurons when T, = 500ms and
Tin = 300, 500, 1300 ms. Figure 6b shows the comparison
of steady-state phases as predicted by Eqs. 16—-19 and the
activity phase of the biological PY neurons. It is clear that
the activity phase decreases with Ti,. In the second protocol,
we changed the cycle period by changing both T, and Ty
while keeping the duty cycle constant. In the third protocol,
we changed the cycle period by keeping Ti, fixed and varying
Tact- The results of the model and experiments for these two
protocols are shown, respectively, in Fig. 6¢,d. As seen in
Fig. 6b—d, our model provides a good qualitative prediction
of the activity phase of the PY neurons for all three proto-
cols. For the first two protocols and a large range of periods in
the third protocol, there is also very good quantitative agree-
ment between the model and the experiments. Note that in
many central pattern generators, including the pyloric net-
work, variations of cycle period are similar to the protocol
shown in Fig. 6¢, where the duty-cycle of the pacemaker neu-
rons remains constant (Abbottetal. 1991; Bucheretal. 2005).
Despite the fact that our equations were derived using sev-
eral simplifying assumptions, Fig. 6 indicates that they can
faithfully predict the activity phase of the biological neurons.
Note, however, that the model does not quantitatively match
the biological phase in Fig. 6d for the smallest values of Ty;.
At these small values the A-current does not de-inactivate
sufficiently and the middle branch is very short. As a result,
the trajectory either does not land on the middle branch at
all or barely spends time on that branch. This inability of the
model to predict the phase for may be due to the fact that
our model only includes a single inactivation variable for the
potassium A-current, whereas this current in the biological
PY neurons may involve multiple inactivation variables with
distinctkinetics, as suggested by Harris-Warrick et al. (1995).

5 Discussion
The transient potassium current or A-current has been shown

to exist in various types of neurons (Huguenard et al. 1991;
Herrington and Lingle 1994; Wustenberg et al. 2004) and
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is important in setting the timing of action potentials
(Gerber and Jakobsson 1993), especially following inhibitory
input (Harris-Warrick et al. 1995). The A-current is known
to contribute to the generation of a coordinated motor pat-
tern (Hess and El Manira 2001) and acts as a bursting trig-
ger in the absence of a slow variable (Tabak et al. 2007,
Toporikova et al. 2008). In a network of bursting neurons, the
A-current often acts to delay the onset of the burst, thus set-
ting the activity phase of different neurons within the network
(Harris-Warrick et al. 1995).

In a previous modeling study, we examined how the A-
current can interact with short-term synaptic depression to
promote phase maintenance in a follower neuron when the
frequency of the periodic input is varied (Bose et al. 2004).
Because the focus of the study of Bose et al. was on synaptic
depression, only a single set of parameters associated with
the A-current were considered. In the current study, our focus
is to understand how the various parameters associated with
the A-current lead to different activity phases of a follower
neuron. Our study is done in two stages. First, we use dynam-
ical systems analysis to determine the fate of the trajectory
of the follower neuron following inhibition in a single cycle.
We then use this information to derive a set of equations

that describe the steady-state activity phase of this neuron in
response to a periodic input. The activity phase predicted by
these equations matched the activity phase of follower PY
neurons in the crab pyloric network when cycle period was
varied through different experimental protocols.

5.1 How does the A-current affect the behavior
of the neuron following inhibition?

A typical response of a follower neuron in an inhibitory net-
work is to rebound to an active state following the inhibition,
but the transition to the active state may be delayed by the
amount and kinetics of the A-current. For example, in the
crustacean pyloric network, the follower LP and PY neurons
show different burst phases, which is partially determined by
the different amount and specific properties of the A-current
(Tierney and Harris-Warrick 1992). It has been suggested
that the variation in the phase of different PY neurons can
be due to the different levels of A-current expressed in these
neurons (Hooper 1998). In fact, our experiments show that
different PY neurons in the same preparation burst in differ-
ent phases. Furthermore, their burst phases can be modulated
by injecting an artificial A-current (Figs. 1, 2).
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Our study focuses on two important questions regarding
the phase of the follower neurons. First, following inhibition,
how do the parameters of the A-current interact with other
intrinsic properties to determine the time delay before the
burst (active state)? Second, during rhythmic activity, how
do different network parameters, including the cycle period,
duration of inhibition and the strength and kinetics of the
A-current interact to determine the activity phase of the
follower neuron?

When we examined the factors that determine the delay
before the burst, we found that, although the dominant fac-
tors in determining the delay are the maximal conductance
and inactivation time constant of the A-current, the time con-
stant governing the intrinsic properties of the neuron (w: the
activation of the potassium current in the ML model) also
contributes to this delay. Thus, the voltage-gated currents
other than the A-current that are active in the time interval
following the inhibition can prolong or shorten this delay.
For example, when the time constant (7, ) of the recovery
variable w is of the same order of magnitude of the inactiva-
tion time constant of the A-current, increasing (decreasing)
Tym Will lead to an increase (decrease) of the time delay to
the active state (Fig. 4b).

More importantly, these other intrinsic currents can be a
determining factor in whether a burst even occurs. As seen
in our analysis of Fig. 4d, if the intrinsic recovery variable w
activates too fast, the neuron can return to its inactive phase
even before the arrival of the next cycle of inhibition. Inter-
estingly, such a possibility may be relatively easy to check
in a biological neuron by inspecting whether the follower
neuron can ever return to an inactive state without receiving
inhibition, for example, by blocking synaptic inputs or using
a dynamic clamp synapse.

Our analysis of the A-current in this study is based on the
simple assumption that the activation and inactivation steady-
state curves are steep. Although a more gradual activation of
the A-current is not considered here, a shallow activation
curve could result in qualitative changes of the phase plane
(e.g., the vertical curves in Fig. 4) that may result in addi-
tional potential fates of the trajectory following inhibition.
One example is that the follower neuron may produce non-
periodic or even chaotic behaviors in which it only bursts
in some cycles but not others, a behavior that is not possi-
ble in the current simplified model. A more detailed analysis
requires examining all possible phase-plane structures that
could arise due to the various model parameters (Zhang et al.
2008) and is beyond the scope of this study. However, it is
useful to note that the simple phase-plane analysis techniques
such as the one shown in Fig. 4 can be used to explore such
potential outcomes.

Our results on the steady-state activity phase of this neuron
in response to a periodic input indicate that the phase of the
follower neuron is not only a function of the period (P) of the
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input it receives but also a function of how P is changed. For
example, if P is doubled, the phase of the follower neuron
can become larger or smaller, depending on whether the dura-
tion of the synaptic input is increased or not. This is because
the extent to which the A-current recovers from inactivation
depends both on P(= Ty + Tin) and on the duration for
which the neuron remains inhibited (7,¢). Although there
are many possible methods for changing P, we focus on
three protocols. We show that if P is changed but T or the
duty cycle (T, /P) is fixed, the phase of the follower neuron
decreases as P increases. Both these mechanisms of chang-
ing period occur in CPG networks, for example in the swing
phase of locomotion which remains constant (constant Ty¢()
despite a tenfold variation in the cycle frequency (Grillner
2006) or the lobster pyloric pacemaker ensemble (constant
duty cycle) (Abbott et al. 1991). However, if P is changed
by keeping 7jj, fixed, the phase of the follower neuron would
increase as P is increased. Our theoretical predictions were
then verified through a set of experiments conducted in fol-
lower PY neurons showing a close match between experi-
ment and theory. Thus, our analysis provides a basic expla-
nation for how the changes in phase depend not only on P
but on how P is changed.

5.2 What do our results imply for the biological system?

The activity phases of CPG neurons are often determined by
the frequency of network oscillations. In some cases, such
as fish swimming, strict phase maintenance is required to
produce a meaningful motor output (Grillner 2006). In other
cases, the activity phase of different neurons, and therefore
the muscles that they control, increases or decreases as a
function of network frequency (Hooper 1997). Because there
is a dominance of inhibitory connections in CPG networks
(Friesen 1994; Marder and Bucher 2001; Marder et al. 2005)
and the potassium A-current is a common current present
in most neurons, our analysis can be applied in a variety of
CPG and other oscillatory networks. In fact, our model can be
used to determine (at least approximately) the phase of any
follower neuron (with A-current) receiving rhythmic inhibi-
tion. To do so, the main factors that should be determined
are the time constant of the A-current inactivation which can
be readily determined in voltage-clamp measurements, the
timing of synaptic inhibition (7, and Tj,) and whether the
neuron is active or silent in the absence of inhibition.

5.3 Conclusions

Rhythmic biological networks in general and the crustacean
pyloric network in particular may have many follower neu-
rons that both receive periodic driving input and interact
with one another. Moreover, the presence of neuromodula-
tors results in intrinsic or synaptic modifications and there-
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fore changes the activity phase of the follower neurons. For
example, dopamine can reduce the strength of the A-current
thereby prolonging the duration of bursting (Harris-Warrick
et al. 1995). Our results show that the factors that deter-
mine the post-inhibitory delay to bursting may include other
voltage-gated currents that interact with the A-current. Addi-
tionally, during rhythmic activity, the timing of the inhibition
is crucial in determining the steady-state activity phase of the
follower neuron. Our modeling work provides a mathemati-
cal framework for understanding the activity of the individual
follower neurons. Similar techniques can be used to account
for inputs from other network neurons in order to determine
the activity phase of these neurons and the long-term fate of
their trajectories. As the number of neurons involved and thus
the complexity of the network is increased, the simplifying
techniques utilized in this study may be of critical importance
for understanding the underlying dynamics.
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6 Appendix: Experimental Methods
6.1 Dynamic clamp

The dynamic clamp experiments such as the one shown in
Fig. 1 were performed in the Nadim lab (unpublished data)
on C. borealis PY neurons in two-electrode current clamp
mode as described in (Rabbah et al. 2005). An artificial
A-current was implemented in dynamic clamp (Manor and
Nadim 2001; Rabbah et al. 2005) and injected in the PY neu-
rons with a sampling rate of 4 kHz. The equations describing
the artificial clamp A-current are given by

Iy = ganh(v + 80)

dn . Noo(V) — v

)
% _ hoo(v) —v
dt W)
1

me®) = e Caa Ty 0=
hOO(U) = 1 k)

1 + exp(10(v + 45))

155

75, (v) = 260 +

1 4 exp(10(v + 45))°

The dynamic clamp software used here has been developed
in the Nadim laboratory and is available for free download
at (http://stg.rutgers.edu/software/index.htm).
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