


Theory and Numerical Methods for First Order ODEs

� Existence and Uniqueness of solutions

� Analyzing solutions without computing them for y0 = f(y)

� Long-term behavior and steady states

� Numerical methods for ODEs, Euler and Runge-Kutta, when to trust your solver

Second Order Linear ODEs

� The mass-spring system

� Second order ODEs and their properties

� Constant coe�cient linear ODEs -Undriven

� Constant coe�cient linear ODEs -Driven

� Method of Undetermined Coe�cients

� Using Complex Functions

� General linear ODEs theory and the Wronskian

� Variation of Parameters

� Pendulum and Linearized pendulum, beats and resonance

� Electrical circuits

� Laplace Transforms for Solving ODEs

� Series solutions, Ordinary points and Regular Singular points
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Solution: A function y(t) de�ned on a t-interval I is a solution of the ODE if f(t; y(t)) is de�ned and
y0(t) = f(t; y(t)) for all t in I. (We'll �nd out later that a unique solution exists when f and fy are
continuous. No two solutions can cross in this circumstance.)

Direction �eld: drawing slopes tells how to sketch solution. Consider y0 = y � t2. Fig. 1.2.2. Consider
y0(t) = f(y). Consider y0(t) = (y � 1)(y � 2)(y � 3).

Discuss Fig 1.2.3 for y0 = y � y2 � 0:2 sin t.

Nullclines: where slope is zero

Discuss p. 15 6a in class (y2)0.

Finding Solutions by Integration and Integrating Factors

Guessing and using intuition is nice, but it is useful to have methods that can be used for general classes of ODEs

Order: highest derivative

Linear: linear in y, y0 etc. not multiplied by each other, only by g(t). General �rst order linear ODE
y0 + p(t)y = q(t) this is in normal linear form. t2y0 � ety � sin 3t = 0 becomes y0 � et

t2
y = sin 3t

t2

y0(t) = f(t). Just integrate. Use FTC y(t) = F (t) + C. Consider y0 = cos t

Integrating factor: Consider y0 � 2y = 2. Then consider y0 + p(t)y = q(t). Use P (t) =
R t p(s)ds.

Solution is y(t) = e�P (t)
R
eP (s)q(s)ds + Ce�P (t) Check solutions with di�erent C values do not intersect.

For y(t0) = y0 solution is y(t) = e�P (t)
R t
t0
eP (s)q(s)ds + y0e

P (t0)e�P (t).

Solution is unique since for any y0 this is it. OR: If p(t)(= �fy) and q(t)(= f) are continuous, solution exists
and is unique. Consider 2 solutions yy and y2. Then z = y1 � y2 satis�es z0 + p(t)z = 0 with z(t0) = 0
and plug into solution above q(t) = y0 = 0 so z must be zero.

Discuss in
uence of driving term (input) q and initial condition y0. Works this way only because the ODE is
linear.

Consider y0 + 2y = 3et with y(0) = 3 and look at long-time behavior.

Discuss p. 23 2a and 4a in class.

Modeling

Natural (physical) variables, Natural (physical) laws, Natural (physical) parameters. State variables, The
natural process is a dynamical system.

Net rate of change = Rate in - Rate out
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E.g. y00 = �4y. I.e. y0 = v and v0 = �4y

Reduction Method: ODEs of the form y00 = F (t; y0) (Note: no y) Reduce to �rst order letting v = y0 and
integrating to obtain y. E.g., y00 = y0 � t.

Reduction Method: ODEs of the form y00 = F (y; y0) (Note: no t) Reduce to �rst order by letting y0 = v(y).
This works since F is not a function of t. Then y00 = dv

dt = dv
dy

dy
dt = v dvdy . This leads to v dvdy = F (y; v)

which is �rst order in v. E.g. y00 = y02

y � y0

y with y(0) = 1 and y0(0) = 2. Note that this can get quite messy.

Read Escape velocity and inverse square law p. 61. Optional reading: Combat models

Cold Pills: Compartmental model x(t) amount in GI tract and y(t) amount in blood dx
dt = �k1x and

dy
dt = k1x � k2y with x(0) = A and y(0) = 0. Fig. 1.8.1 and 1.8.2. Read Falling Asleep in class example
at home.

Variation of Parameters for 2nd order linear ODE: t2y00+4ty0+2y = sin t with one solution z = et. Let y = uz
then y00 = F (t; y0).

Special form: If y0 = f(y=x) (Can test by checking if f(kx; ky) = f(x; y)) then let y = xz and the ODE
becomes separable. E.g. Goose 
ying to its nest problem, p. 79-80.

Go over Temperature experiment with Newton's Law of Cooling allowing a power other than 1. Do a wi�e
ball experiment. Go over page 45 9c.

Non-dimensionalizing: Newtonian damping dv
dt = �g � k

mvjvj with v(0) = v0. Let t = c1� and v = c2u and

get equation with coe�cients 1 in du
d� . Parameters go down to 1.

Theory for First Order ODEs

Initial values problems useful for understanding and predicting behavior of natural processes. How do we
describe behavior and solution when analytical solution cannot be found?

Key questions:

� Existence: Under what conditions will the IVP have at least one solution?

� Uniqueness: Under what conditions will the IVP have at most one solution?

� Extension and Long-Term Behavior:: How far into the future and past can a solution be extended? How
does a solution behave as t gets large?

� Sensitivity: How much does a solution change when y0 and f change?

� Description: How can a solution be described?

E&U Theorem: Suppose the functions f(t; y) and @f
@y are continuous on a closed rectangle R of the ty-plane

and that (t0; y0) is in R. Then the IVP y0 = f(t; y), y(t0) = y0 has a solution y(t) on some t-interval

6



I containing t0 in its interior (existence) but no more than one solution in R on any interval containing t0
(uniqueness).

Idea: y(t) = y0 +
R t
t0
f(s; y(s))ds.

Solution curves cannot meet if f satis�es E&U theorem. Check f and fy

Fig. 2.1.3 y0 = 3y sin y + t and Fig. 2.1.4 ty0 � y = t2 cos t, y(0) = 0. (No solution if y(0) = 1).

Piecewise continuous { one-sided limits exist at all but a �nite number of points. Jump discontinuities. Solve
y0 + y = step(t� 1). On-o� functions okay for driving term in t.

Page 95 1c y = 1

Extension principle: if f(t; y) and @f
@y are continuous on a closed and bounded rectangle R. If (t0; y0) is in R

then the solution curve can be extended til it hits the boundary of R.

A solution is maximally extended if it can't be extended to a larger interval than I. E.g. y0 = �t2

(y+2)(y�3) .
Fig. 2.2.1

Autonomous ODE { f does not depend on t. Then direction �elds only depend on y and equilibrium solutions
can be studied. Solutions can be translated to the left or right. E.g. y0 = y2. y(0) = 1. Find interval for
solution to exist

Analyzing the sign of f can tell which solution an autonomous ODE approaches. E.g. y0 = (y�3)(y�1)(y+1).

Long-term behavior: If f(y) and @f
@y are continuous for all y, then any solution y(t) which is bounded for all

time approaches an equilibrium solution as t! �1.

Steady-states: y0 = 0 points are candidates for �rst order ODEs. e.g., y0 + p0y = q0 gives ysteady = q0=p0 as
t gets large, if p0 > 0.

Read periodic forced oscillations and Will the message get through p. 103 at home. Read comments page 104.

How much will a solution change when we change a parameter in driving function, y0, etc. E.g., y
0 + p(t)y = q(t),

y(t0) = y0. First discuss y
0 + p0y = q0 and the in
uence of p0 and q0 on the solution. If p(t) � p0 > 0 and

jq(t)j < M for all t then analyze exact solution to �nd jy(t)j � e�p0tjy0j + M=p0j1 � e�p0tj for all t. Thus,
jy(t)j � jy0j + M=p0 for all t.

If change y0 + p(t)y = q(t), y(t0) = a to z0 + p(t)z = m(t), z(t0) = b then (y(t) � z(t))0 + p(t)(y �
z) = q(t)�m(t) < M with (y � z)(0) = a� b and jy(t) � z(t)j � e�p0tja� bj + M

jp0j
j1� e�p0tj.

Ex. 2.3.4

If such limits can be found, the IVP is well-posed. Existence, uniqueness, extension and solution is continuous
in the data.
Skip section 2.4
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Numerical Methods

Can only do particular cases, not general numerically

Basis of numerical methods for ODEs is approximating slope on short intervals

Euler's method: Connect with short segments �x or h of slope f(t; y). E.g. y0 = y, y(0) = 1. with h = 1
and h = 0:5

Derive that error is proportional to �x or h after multiple steps.

Heun's method averages slope at 2 points (error proportional to h2). Present derivation of Heun's and Heun's-
like methods. Runge-Kutta at 4 points (error proportional to h4.

Don't just blindly trust computational results, e.g. Euler for y0 = �10y, y(0) = 1, h = 0:1.

Think about problems that might arise with y0 = 1� t sin y, y(0) = 1, as t gets larger.

Read comments p. 134-135. Skip section 2.7

Second-Order ODEs

The mass-spring-damper system:

� Spring acts to return to equilibrium:

� Hooke's law �ky, Hard-spring �ky � jy3, soft-spring �ky + jy3, aging spring �k(t)y

� Forces of gravity, damping (proportional to velocity) and driving force.

� my00 = S(y) � cy0 �mg + f(t)

Change variables (let y = z � h with h = mg=k) to consider motion around equilibrium given mass kh = mg.
static de
ection

E.g. Hooke's law spring, 1lb weight, static de
ection 15.36 in, damping constant 1.30x10�4 lb � sec / in.
f(t) = 0:26 sin(5:6t) lb yields z00 + 0:05z0 + 25z. Release from rest.

Equilibrium solution for a Hooke's law spring (y0 and y00 must be zero.) y00 = � k
my �

c
my

0 � g

Equilibrium for soft spring g = 9:8 m/sec, c=m = 0:2/sec, k=m = 10sec�2, j=m = 0:2(m sec)�2. 3 solutions
(-1, near 7.5 and -6.5) but only one normal equilibrium. See Fig. 3.1.2

Turning a higher order ODE into a system. Use previous example. Then numerical method can deal with it.

Linearizing around an equilibrium point F (y�yE; y
0�y0E) = 0 + (y�yE)Fy(yE ; y

0
E) + (y0�y0E)Fy0(yE ; y

0
E).

Work out around (-1,0) for our problem. Good close by, not far away. See Figs. 3.1.3, 3.1.4
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Fundamental Theorem for 2nd Order ODEs: If F; Fy and Fy0 are continuous in box B in tyy0, then the ODE
y00 = F (t; y; y0), y(t0) = y0; y

0(t0) = v0 has a unique solution which can be extended to the boundary of B.
The solution depends continuously on the data.

Orbits (phase-plane) for y00 = �25y � 0:5y0, y(0) = A; y0(0) = 0. Figs 3.2.1 and 3.2.2. Time-state curves
cannot intersect. But t� y plots might intersect (this is a projection- y' will be di�erent). (Skip rest of 3.2)

Properties of autonomous ODEs y00 = f(t; y; y0):

� Time shifting

� Orbit depends on time elapsed, not true time

� distinct orbits do NOT intersect

� self-intersecting orbits must be periodic

Solution to y00 + ay0 + by = 0. Guess Cert.

Characteristic polynomial, roots, C1e
r1t + C2e

r2t is also a solution.

Solve y00 + y0 � 2y = 0 and y00 + y0=2 + y=16 = 0 test t times only root.

Theorem 3.3.1 p. 169. Solutions exist for all time, y = 0 is the only solution if y(0) = y0(0) = 0a

Trivial solution is only solution when y(0) = 0; y0(0) = 0. Solve y00 + y0 � 2y = 0 with y(0) = 0; y0(0) = 3.

The D operator y00 + y0 � 2y = (D2 + D � 2)y. Check(D � 1)(D + 2)y and (D + 2)(D � 1)y. Look at
(D2 + D � 2)(sin 3t).

Useful info: P (D)est = P (s)est P (D)(h(t)est) = estP (D + s)[h(t)]

Linearity: P (D)[C1y1 + C2y2] = C1P (D)y1 + C2P (D)y2.

If y1 and y2 are solutions of P (D)y = 0 then so is C1y1 + C2y2.

Set up operator approach to solve y00 + y0=2 + y=16 = 0 (D � 1=4)(D � 1=4)y = 0. Let v = (D � 1=4)y,
then (D � 1=4)v = v0 � v=4 = 0 and (D � 1=4)y = y0 � y=4 = v

Solve (D2 + D � 2)y = sin t. So (D+2)(D�1)y = sin t. Let v = (D�1)y, then (D+2)v = v0+2v = sin t
and (D � 1)y = y0 � y = v

eit Taylor series is cos t + i sin t. D(ert) = r(ert) for complex r.
Show equivalence between C1e

(a+bi)t + C2e
(a�bi)t and D1e

at cos(bt) + D2e
at sin(bt)

Solve y00 + y0 + 100:25y = 0.

Theorem 3.4.1
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Periodic Functions. Fundamental period or period (2�=!for sin!t), cycle, amplitude (half the di�erence
between max and min), frequency (cycles per unit time), circular frequency (radians per unit time).
Simple harmonic motion y00 + !2y = 0

Aliasing: if sample two few points in the numerical solver. Read p. 187-8 at home.

Solve y00 + !2y = 3 sin kt. If k=! = m=n with m;n integers, periodic with period 2�m=k = 2�n=!. Figs
3.5.5 and 3.5.6. What happens as k goes to !

Undetermined coe�cients: Guess a solution and match coe�cients.

� Solve (D2 � 2D + 1)y = 3e�t.

� Solve (D2 � 2D + 1)y = 3et. Try. Then use h(t)et.

� Solve (D2 �D � 2)y = 4t.

� Solve (D2 �D � 2)y = et.

� Solve (D2 �D � 2)y = 4t + et. We can sum particular solutions since the ODE is linear.

� Solve (D � 1)(D � 2)y = te�t.

� When RHS is tn and P (D) has non-zero roots. Guess Ant
n + An�1t

n�1 + ::: + A1t + A0.

� When RHS is tn and P (D) has k zero roots. Guess An+kt
n+k + An+k�1t

n+k�1 + ::: + Ak+1t
k+1 + Akt

k.

� Solve (D2 + 25)y = sin 4t. Consider e4it and take imaginary part.

� Solve damped Hooke's Law spring with oscillatory driving force. (D2 + 2D + 4)y = �12t2e�t cos 2t.
Use h(t)e(�1+2i)t

General Theory of Linear ODEs

If a(t); b(t) and f(t) are continuous, them y00 + a(t)y0 + b(t)y = f(t) with y(tO) = y0 and y0(t0) = v0 has
a unique solution for all t. I.e. solutions do not go to 1 in �nite time.

Corollary: If y0 = v0 = 0 then the trivial solution y = 0 is the unique solution.

t2y00 � 2ty0 + 2y = 0 with y(tO) = 0 and y0(t0) = 0 has 1 solutions. y = Ct2.

Polynomial operators work even if (for P (D) = D2 + aD + b) a(t) and b(t) are not constant. However, we
cannot factor.

Nullspace - Set of solutions to P (D)y = 0
Wronskian: For any two functions f and g in C1, the function W [f; g](t) = f(t)g0(t) � f 0(t)g(t) is called the
Wronskian of f and g.

Basic solution set: A pair of solutions y1 and y2 of the ODE P (D)y = 0 is called a basic solution set if
W [y1; y2](t) 6= 0 anywhere in t.
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Idea is to take the ODE and "transform it" to algebraic equations. Solve the algebraic equations and then
transform back.

If f(t) is de�ned for t � 0 the L[f ](s) =
R1
0 e�stf(t)dt. This is a function of s.

Work out for f(t) = c(! c=s); t(! 1=s2); eat(! 1=(s � a)). (Consider s to be positive or bigger than a as
needed so the transform exists).

Transform of y0. Use integration by parts. L[y0] = �y(0) + sL[y]

Discuss linearity of Laplace Transform. L[af + bg] = aL[f ] + bL[g] where a and b are constants.

Two continuous functions with the same Laplace Transform are equal (we won't prove this).

Solve y0 + ay = f(t) with y(0) = y0. Take y(0) = 1 and f(t) = 4t3e�at. Use table on p. 337

We can take Laplace transforms of functions that do not grow too fast. I.e. of exponential order jf(t)j �Meat

for all t � 0. The would be a problem e.g. with et
2
.

Find Laplace Transform of sin and cos using eiat to �nd L[sin(at)] = a
s2 + a2 and L[cos(at)] = s

s2 + a2

Find the Laplace transform of a square wave on [0,1]. L[square wave] = 1�e�s

s

Laplace Transform goes to 0 as s!1. Laplace transform has derivatives of all orders.

LT of y00; y000:::y(n) and of tnf(t) in terms of derivative of Laplace transform of f . L[tnf(t)] = d(n)L[F ]
ds . So

L[tn] = n!
sn+1 . Consider t cos t.

y00 � y = 1 with y(0) = 0 and y0(0) = 1.

L[
R t
a f(x)dx] = 1

sL[f ]�
1
s

R a
0 f(x)dx. Solve x(t) = 1

2

R t
0 x(s)ds + 1.

Shifting theorems and the Heaviside function. L[eatf(t)](s) = F (s � a) L[f(t � a)step(t � a)] = e�asF (s)
L[f(t)step(t� a)] = e�asL[f(t+ a)]. Find L[e�2t cos(3t)] and L�1 2s+3

s2�4s+20 Work out examples 6.2.5 and 6.2.6.

Transform of a periodic function, square wave. L[f ] =

R T
0
e�stf(t)dt

1�e�sT where the perild is T . P. 318-320.

Find Laplace transform of sin2 t and cos 3t
De�ne convolution (f � g)(t) =

R t
0 f(t � u)g(t)dt. Properties: f � g = g � f ; (f � g) � h = f � (g � h) and

(f + g) � h = f � h+ g � h

Convolution theorem L�1[FG] = f � g and L[f � g] = FG. Ex. 6.4.1 and 6.4.2.

Discuss Theorem 6.4.3.

Solving ODEs with impulse functions. The Dirac delta function. L[�(t)] = 1. L[�(t � u)] = e�us. Work out
impulse in oscillating spring ex. 6.5.1.
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Systems of Linear ODEs

Some simple matrix operations so that we can handle 2x2 linear systems of ODEs

Adding matrices termwise. Multiplying by a scalar. Multiplying a matrix times a vector and by another
matrix.  

a b
c d

!
+

 
e f
g h

!
=

 
a+ e b+ f
c+ g d+ h

!
c

 
a11 a12
a21 a22

!
= c

 
ca11 ca12
ca21 ca22

!

 
a b
c d

! 
x
y

!
=

 
ax+ by
cx+ dy

!  
a b
c d

! 
e f
g h

!
=

 
ae+ bg af + bh
ce+ dg cf + dh

!

Solving Ax = b using Gaussian Elimination. Consider

2x+ 3y = �2
4x+ y = 6

2x+ 3y = 2
4x+ 6y = �4

2x+ 3y = �2
4x+ 6y = �5

Solving Ax = b using Gaussian Elimination. Consider

ax+ by = e
cx+ dy = f

Note that cannot solve uniquely unless ad� bc 6= 0

Eigenvalues of 2x2 matrix Ax = �x or A � �Ix = 0.

Find and solve the characteristic polynomial for  
2 3
4 1

!

Consider x0 = Ax. If guess solutions vexp�t then �vexp�t = Avexp�t . SoAv = �v and � is an eigenvalue
and v is an eigenvector.

 
x
y

!0
=

 
5 3
�6 �4

! 
x
y

!

use initial conditions x(0) = 0 and y(0) = �2.

Complex eigenvalues similar but need only real and imaginary parts for one eigenvalue/eigenvector. Work
through  

x
y

!0
=

 
1 �2
2 1

! 
x
y

!

Repeated eigenvalues with a full set of eigenvectors. A =

 
1 0
0 1

!
. If not a full set of eigenvectors, we need

generalized eigenvectors. This is beyond the scope of this course.

Driven systems { Use undetermined coe�cients. Use all terms you'd want for right hand side of any of the
equations in guess for both. Work these examples: 

x
y

!0
=

 
3 1
1 3

!
+

 
x
y

! 
e4t + e2t

e4t + e2t

!  
x
y

!0
=

 
3 1
1 3

!
+

 
x
y

! 
t
1

!
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